东乡野生稻抗旱鉴定指标的筛选和QTL定位研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
干旱是导致水稻减产的重要非生物因素之一,因而培育和筛选抗旱性强的水稻品种是保障粮食供给和水稻生产可持续发展的关键所在。为此,本论文以协青早B//协青早B/东乡野生稻BC1F1o回交重组自交系群体为研究对象进行抗旱性研究,分别测定干旱胁迫和对照条件下苗期和孕穗期的形态、生理和产量等性状指标,并结合隶属函数、主成分分析和逐步回归分析等方法对群体抗旱性进行综合分析,建立水稻苗期和孕穗期抗旱评价体系,同时利用已构建的遗传图谱对东乡野生稻苗期和孕穗期两个生育期抗旱相关性状进行QTL定位分析,深入探讨东乡野生稻在干旱环境下的抗旱分子作用机理。论文获得的主要结果如下:
     1.采用PEG6000模拟干旱法,在苗期对旱稻、群体及亲本进行抗旱鉴定及综合指标筛选,测定了最大根长、根基粗、根数、茎长、根鲜重、根干重、萎蔫率等10个性状,并利用主成分分析和逐步回归分析法对各株系抗旱性进行综合评价和抗旱鉴定指标筛选。研究结果表明,与抗旱性密切相关的3个指标分别为最大根长、根基粗和萎蔫率,筛选出的这三个指标可作为水稻苗期抗旱鉴定综合指标。
     2.根据苗期抗旱性鉴定指标的筛选结果,利用该群体已建立的遗传图谱,对包括最大根长、根基粗和萎蔫率等共10个性状进行QTL定位分析。试验发现在干旱环境下,8个性状共定位到16个QTLs,最大根长、根基粗和萎蔫率这3个性状分别检测到3个、1个和4个QTLs。最大根长的qMRL-4和qMRL-7的加性效应为负值,说明这2个QTLs均来自于东乡野生稻,其总贡献率为11.87%。影响根基粗的QTL(qBRT-7)位于第7染色体的RM11~RM18标记区域内,其加性效应为负值,贡献率为24.11%,表明该位点来自于“东野”并且可能是个主效QTL。萎蔫率的4个QTLs,分别位于第1、7和11染色体上,其加性效应均为正值,其他苗期性状的大部分QTLs加性效应值也为正值,说明这些位点的增效等位基因来自于亲本协青早B,可能是由其自身遗传控制的。
     3.采用传统干旱棚田间鉴定法评价了上述群体孕穗期的抗旱性,并测定了参试材料在正常水分和干旱胁迫下的株高、单株有效穗数、穗长、每穗总粒数、实粒数、千粒重、结实率、单株产量等性状值。结果表明,相比于非干旱胁迫环境,水稻的性状值在干旱胁迫条件下均有所降低,其中穗长对干旱胁迫表现不敏感,而千粒重对水分胁迫表现为敏感,结实率和单株产量均对干旱胁迫表现为极敏感。此外,实验采用隶属函数值和主成分分析法获得各株系的抗旱综合值,进一步以抗旱综合值为因变量,9个指标性状值为自变量,通过逐步回归分析法建立了评价孕穗期抗旱性的最优回归方程,筛选出结实率、单株产量和千粒重3个抗旱性鉴定指标。
     4.试验对群体孕穗期的结实率、单株产量和千粒重等多个性状进行QTL定位,共检测到32个QTLs位点,分别位于水稻第1、2、3、7、8、9、10、11染色体上。结实率、单株产量和千粒重3个性状分别定位到了4个、2个和8个QTLs,其中qSR-1和qSR-10的贡献率较大,分别为41.30%和43.48%,加性效应值分别为-12.04、-11.97,可能是两个主效QTL。qGWP-1、qGWP-1a的加性效应值分别为-6.17、-5.16,贡献率分别为33.93%和23.35%,也可能是两个主效QTLs,千粒重的QTLs的加性效应均为负值。由此可见,3个性状的大部分QTLs的增效等位基因均来自“东野”,可见是东乡野生稻等位基因的表达结果,说明东乡野生稻含有抗旱基因。
     5.对水稻苗期和孕穗期的抗旱综合值(D值)进行相关性分析后发现,二者的相关系数为0.935,达到极显著水平,这说明了苗期与孕穗期抗旱性关系密切,并获得了10个在两个时期都表现强抗旱的株系。
     6.比较分析苗期与孕穗期的QTL定位结果,发现在苗期与孕穗期都存在一因多效或紧密连锁现象,而且控制孕穗期相关性状的QTL热点区也是控制苗期相关性状的QTL区域,再次说明了苗期和孕穗期的抗旱性紧密相关。
     7.初步探讨了强抗旱株系和弱抗旱株系孕穗期水分胁迫下的的生理生化特性。研究结果表明,在水分胁迫下,各株系的可溶性糖和脯氨酸含量随着干旱加剧而增加,而且抗旱性强的株系增加的幅度大于抗旱性弱的株系。丙二醛含量也随着干旱加剧而增加,但抗旱性强的株系增加幅度小于抗旱性弱的株系。3个生理指标相对值与株系抗旱系数的相关性分析表明二者显著相关。
Drought is one of important abiotic factors for the decrease of rice yield. Screening of rice varieties with drought-resistance therefore is the key to the sustainable development of rice production and food supply. In this thesis, a backcross inbred lines (BIL) population including234lines was chosen as the research object, which was derived from an interspecies cross XieqingzaoB(Oryza sativa)//XieqingzaoB/Dongxiang wild rice (O.rufipogon). The morphological, physiological and yield characteristics were investigated in detail under both normal and drought stress conditions at seedling and booting stages. Through subordinate funcation analysis, principal component analysis and step wise regression analysis, the drought-resistance of population was analyzed comprehensively. The assessment index system of drought-resistance was established at both seedling and booting stages. Meanwhile, by using constructed molecular linkage map, we mapped the drought-resistance QTL locus from Dongxiang wild rice at both seedling and booting stages. These results will contribute to futher explore the molecular mechanism of the drought resistance of Dongxiang wild rice.The main results were summarized as follows:
     1. Upland rice, BILs and their parents were employed to evaluate drought-resistance at seedling stage under PEG6000simulated drought stress. Ten traits were recorded for drought-resistance, such as MRL, NR, SL, DRW, FRW, DSW, BRT, WR,DR. Comprehensive assessment of drought-resistance based on the principal component analysis (PCA) was applied. The result of the stepwise regression analysis demonstrated that MRL、BRT and WR significantly were influenced under drought condition. Therefore, the three index could be used to assess the drought-resistance at seedling stage.
     2. According to the results of index screening of drought-resistance, we used the established genetic linkage map to analyze the drought-resistance related QTLs for ten traits at seedling stage, including MRL, BRT, WL, etc. A total of16QTLs were detected in eight traits under drought condition. Among them, there were3QTLs for MRL,1QTL for BRT and4QTLs for WR. The addictive genetic effect of qMRL-4, qMRL-7and qBRT-7was negative, indicating the alleles from DongXiang common wild rice. The general contributions of qMRL-4and qMRL-7were11.87%and the contribution of qBRT-7was24.11%, which could be a large effect QTL.Four QTLs detected for WR were located on1,7and11chromosomes,which addictive effect was positive, indicating the alleles from Xieqingzao B and decreasing the drought-resistance ability of population. Meanwhile, the additive genetic effect of QTLs in other traits were all positive, indicating these locus from parent Xieqingzao B. The other traits variations between normal condition and drought condition might be caused by their own genetics.
     3. Drought-resistance of the BILs population was appraised by the traditional method at booting stage in rainless shed. Nine traits related with drought-resistance were analyzed under drought stress condition and normal condition, including EIPN, SP, FSP, PL, PD, TGW, SR and GWP. The results showed, to different extent, the nine traits were all influenced under drought condition, among which the lines with weak drought-resistance were more seriously influenced than that with strong drought-resistance. PL was not sensitive to drought stress, otherwise TGW expressed sensitive to drought stress.Other yield traits were very sensitive. In addition, by applying subordinate funcation analysis, principal component analysis, and step wise regression analysis, we screened three index, including SR, GWP and TGW, which could be used as evaluation index at booting stage.
     4. A total of32QTLs for yield traits were detected at booting stage,which located on chromosome1,2,3,7,8,10,11, respectively. Among these traits, SR, GWP and TGW were respectively identified4,2and8QTLs.The contribution of four main effect QTLs including qSR-1, qSR-10, qGWP-1and qGWP-1a was41.30%、43.48%、33.93%and23.35%,respectively.Their addictive effect of QTLs for SR、GWP and TGW were all negative, indicating the alleles from DXWR. These results showed that the most QTLs of the three traits with enhancing alleles came from DXWR, suggesting DXWR had drought-resistance genes.
     5. We analyzed the correlation between comprehensive index (D value) at seedling and booting stages. The correlation coefficient was0.935, reaching a extremely remarkable level. The lines with strong drought-resistance at booting stage were identical with the lines at seedling stage. Meanwhile, the lines with weak drought-resistance at seedling stage were identical with the lines at booting stage. It indicated that the drought resistance at seedling stage was closely related to that at booting stage. Moreover, ten lines with strong drought-resistance at two stages had been obtained.
     6. There were pleiotropic or tightly linked QTL regions respectively at two stages by comparing the QTL mapping results of seedling and booting stage. And some QTL regions at booting stage were found to be the co-localized regions at seedling, indicating the seedling was associated with booting stage closely again.
     7. The physiology and biochemistry properties were studied between strong and weak drought-resistance lines at booting stage under drought condition. The results indicated that soluble sugar and proline content accelerated more rapidly in stronger drought-resistance lines than that in weaker ones with water stress aggravated. The contents of MDA increased in better drought-resistance lines obviously less than that in weaker ones. The above results indicated that the three index were remarkably related to drought-resistance.
引文
[1]廖显辉.话说“节水农业”.农业考古.2002,(1):44-47
    [2]邱福林,张伟平.水分胁迫对水稻生长影响的研究进展.垦殖与稻作.2000,(2):7-13
    [3]刘翰朝.我国21世纪水资源挑战与节水型社会经济模式的探讨.水利与建筑工程学报.2006,4(2):73-77
    [4]罗怀良.四川水资源可持续利用与水质保护研究.四川环境.2003,22(3):38-41
    [5]邓楠.制定《农业科技发展纲要》,推动农业科技革命.中国农业科技导报.1999,(2):3-8.
    [6]Farooq M.Wahid A.Lee D J,et al.Advances in drought resistance of rice[J].Critical Reviews in Plant Science.2009,28:199-217
    [7]Kato Y, Hirotsu S, Nemoto K, et al.Identification of QTLs controlling rice drought resistance at seedling stage in hydroponic culture[J].Euphytica.2008,160:423-430.
    [8]Yue B, Xue W Y, Xiong L Z, et al.Genetic basis of drought resistance at reproductive stage in rice:separation of drought tolerance from drought avoidance[J].Genetics.2006,172:1213-1228
    [9]郑桂萍,郭晓红,陈书强,等.水分胁迫对水稻产量和食味品质抗旱系数的影响.中国水稻科学.2001,15(2):88-92
    [10]胡标林,余守武,万勇,等.东乡野生稻全生育期抗旱性鉴定[J].作物学报.2007,33(3):425-432
    [11]Brown L R and Halweil B.China's water shortage could shake world food security.World Watch.1998,7:3-4
    [12]罗利军,张启发.栽培稻抗旱性研究的现状与策略.中国水稻科学.2001,15(3):209-214
    [13]王一凡,华泽田等.节水稻作研究与应用.北京:中国农业科学技术出版社.2002
    [14]余守武,谢建坤,万勇等.水稻抗旱性相关性状的QTLs定位研究进展.分子植物育种.2004,2(3):391-400
    [15]胡标林,李名迪,万勇等.我国水稻抗旱鉴定方法与指标研究进展.江西农业学报.2005,17(2):16-60
    [16]金善宝.中国小麦学.北京:中国农业出版社.1996.754-758
    [17]Kamoshita A,Chandra B R,Manikanda B N,et al.Phenotypic and genotypic analysis of drought-resistance traits for development of rice cultivars adapted to rainfed environments[J].Field Crops Research.2008,109:1-23
    [18]Kamoshita A.Rodriguez R,Yamauki A,et al.Genotypic Variation in Response of Rainfed Lowland Rice to Drought and Rewatering[J].Plant product Science.2004,7(4):406-420
    [19]Mitra J.Genetic and genetic improvement of drought resistance in crop plants[J].Current Science.2001,80(6):758-763
    [20]Blum A. Drought resistance.water-use efficiency.and yield potential:are they compatible,dissonant,or mutually exclusive?[J].Australian Journal of Agricultural Research.2005,56: 1159-1168
    [21]Luo L J.Breeding for water-saving and drought-resistance rice(WDR)in china[J].Journal of Experiment Botany.2010,61,(13):3509-3517
    [22]Henry T. Nuguyen,R. Chandra Babu,et al. Breeding for drought resistance in rice:physiology and molecular genetics considerations.Crop Science.1997.37(5):1426-1434
    [23]路贵和,安海润.作物抗旱性鉴定方法与指标研究进展[J].山西农业科学.1999,27(4):39-43
    [24]郭龙彪,钱前.栽培稻抗旱性的田间评价方法.中国稻米.2003,2:26-27
    [25]胡荣海,昌小屏.反复干旱法的生理基础及其应用.华北农学报.1996,11(3):51-56
    [26]Frova C,Krajewski P, Fonozo N,et al.Genetic analysis of drought tolerance in maize by molecular markers.I.Yield components.Theor Appl Genet,1999,99:280-288
    [27]Crasta O R,Xu W W,Rosenow D T,etal.Mapping of post-flowering drought resistance traits in grain sorghum:association beTGWeen QTLs influencing premature senescence and maturity.Mol Gen Genet,1999,262:579-588
    [28]李晚忱,付凤玲,袁佐清.苗期耐旱性鉴定方法与指标研究进展.西南农业大学学报.2001,1(3):29-32
    [29]凌祖铭,李自超,余荣,等.水旱栽培条件下水、陆稻品种产量和生理性状的比较.中国农业大学学报.2002,7(3):13-18
    [30]孙传清,张文绪.水稻根系性状和叶片水势的遗传及其相关研究.中国农业科学.1995,(1):42-48
    [3]]郎有忠,胡健,杨建昌,等.抗旱型稻根系形态与机能的研究.扬州大学学报(农业与生命科学版.2003,24(4):58-61
    [32]Guo L B,Qian Q,Zeng D L,et al.Genetic Dissection for Leaf Corrrelative Traits of Rice(Oryza sativa L.)Under Drought Stress[J].Acta Genetica Sinica.2004,31(3):275-280
    [33]张灿军,姚宇卿等.早稻抗旱性鉴定方法与指标研究-Ⅰ.鉴定方法与评价指标.干旱地区农业研究.2005,23(3):33-36
    [34]胡荣海.小麦品种(系)抗逆性评价、筛选及应用.植物学通报.1991,8(1):9-13
    [35]李艳,马均,王贺正,等.水稻品种苗期抗旱性鉴定指标筛选及其综合评价[J].西南农业学报.2005,1893):250-255.
    [36]王昌贵,王向东,赵鹏珂,等.栽培稻叶结构、水分生理及抗旱性关系研究[J].中国农学通报.2010,26(19):76-80
    [37]Farooq M,Wahid A,Lee D J,et al.Advances in drought resistance of rice[J].Critical Reviews in Plant Science.2009,28:199-217
    [38]Zombori Z,Jancso M,Zvara A, et al.Investigation of the effect of drought stress on the rice transcriptone [J].Acta Biologica Szegediensis,2008,5291):143-145
    [39]路贵和,安海润.作物抗旱性鉴定方法与指标研究进展.山西农业科学.1999,27(4):39-43
    [40]杨建昌,王志琴,朱庆森.水稻品种的抗旱性及生理特性的研究.中国农业科学.1995,28(5):65-72
    [41]徐富贤,郑家奎,朱永川,等.杂交中稻发根力与抽穗开花期抗旱性关系的研究.作物学报,2003,29(2):188-193
    [42]王育红,姚宇卿,张灿军,等.旱稻抗旱性鉴定方法与指标研究.Ⅳ.旱稻苗期抗旱性[J].干旱地区农业研究.2005,23(4):134-137
    [43]周广生,崔克辉,靳德明,等.发根力作为栽培稻品种苗期抗旱性鉴定指标的研究[J].中国农 业科学.2005,38(12):2571-2576
    [44]凌祖铭,李自超,余荣,等.水、路稻根部性状的研究[.J].中国农业大学学报.2002,7(3):7-11
    [45]国际稻作研究所,陆稻的研究.北京,农业出版社.1981,63-65
    [46]张燕之.水稻抗旱性鉴定方法与指标探讨.辽宁农业科学.1994,(5):46-50
    [47]高吉寅,胡荣海,路漳,等.水稻等品种苗期抗旱生理指标的探讨.中国农业科学.1984,17(4):41-46
    [48]Rabello A R,Guimaraes C M,Rangel P H N,et al.Identification of drought-responsive genes in roots of upland rice(Oryza sativa L)[J].BMC Genomic.2008.9:485-497
    [49]Zulkarnain W M,Ismail M R,Ashrafuzzaman M,et al.Growth,physiological and biochemical responses of Malaysia rice cultivars to water stress[J].Pertanika Journal of Tropical Agricultural Science.2009,32(2):323-333
    [50]Ali M G,Komastu S.Proteomic analysis of rice leaf sheath during drought stress[J].Journal Proteome Research.2006,5(2):396-403
    [51]Deivanai S,Sheela devi S,Sharrmila R P.Physiochemical traits as potential indicators for determining drought tolerance during active tillering stage in rice(Oryza sativa l.)[J].Pertanika Journal of Tropical Agricultural Science.2010,33(1):61-70
    [52]Nisachon J,Supansa K,Khomsorn L,et al.A proteomic analysis of drought stress responsive proteins as biomarker for drought-tolerant sugarcane cultivars[J].American Journal of Biochemistry and Biotechnology.2010.6(2):89-102
    [53]王贺止,马均,李旭毅,等.水稻开花期一些生理生化特性与品种抗旱性的关系[J].中国农业科学.2007,40(2):399-404
    [54]Sarvestani Z T,Pirdashti H.Sanavy S A,et al.Study of water stress effects in different growth stages on yield and components of different rice(Oryza sativa L.)Cultivars[J].Pakistan Journal of Bioligical Sciences.2008,11(10):1303-1309
    [55]Davatgar N,Neishabouri M R,Sepaskhah A R,et al.Physiological and morpgological responses of rice(Oryza sativa L.)to varying water stress management stragies[J].International Journal of Plant Production.2009,49:52-53
    [56]Pirdashti H,Sarvestani Z T,Bahmanyar M A.Comparison of Physiological Response among Four Contrast Rice Cultivars under Drought Stress Conditions[J].World Academy of Science,Engineering and Technology.2009,49:52-53
    [57]Venuprasad R,Lafitte H R,Atlin G N.Response to direct selection for grain yield under drought stress in rice[J].Crop Science,2007,47:285-293
    [58]Zou G H,Liu H Y,Mei H W,et al.Screening for drought resistance of rice recombinant inbred populations in the field[J].Jouenal of integrative plant biology.2007,49(10):1508-1516
    [59]程建峰,潘晓云,刘宜柏,等.水稻抗旱性鉴定的形态指标[J].生态学报.2005,25(11):3117-3125
    [60]张玉屏,朱德峰.不同时期水分胁迫对水稻生长特性和产量形成的影响.干旱地区农业研究.2005,23(2):48-53
    [61]胡运高,王志,黄廷友,等.水稻品种耐旱性鉴定的形态学评价指标研究[J].西南科技大学学 报.2006,21(1):102-108
    [62]兰巨生.农作物综合抗旱性评价方法的研究[J].西北农业学报.1998,7(3):82-85.
    [63]Chinoy J J.Physiology of drought resistance in wheat. Ⅴ.Drought coefficients in relation to drought intensity[J].Phyton.1962,19:11-20.
    [64]Fischer K S,Edmeades G O,Johnson E C,et al.Selection for improvement in maize yield under moisture deficit.Field crop Res.1989,22:227-243.
    [65]山仑.有限灌溉技术的研究与开发.农业现代化研究.1998,19(5):336-336.
    [66]曹敏建,王学智,冢田利夫等.不同玉米品种萌芽期及苗期抗旱性初步研究.玉米科学.2004,12(3):66-67
    [67]谷艳蓉,张国芳.4种牧草幼苗对水分胁迫的响应及其抗旱性.四川草原.2005,(5):4-7.
    [68]高吉寅,胡荣海,路漳,等.水稻等品种苗期抗旱生理指标的探讨.中国农业科学.1984,17(4):41-46
    [69]侯建华,吕凤山.玉米苗期抗早性鉴定研究.华北农学报.1995,10(3):89-93.
    [70]揭雨成,黄丕生,李宗道.苎麻基因型抗旱性差异及其早期鉴定研究.作物学报.2000,26(6):942-946
    [71]孙彩霞,沈秀瑛.作物抗旱性鉴定指标及数量分析方法的研究进展.中国农学通报.2002,18(1):49-51
    [72]贾俊香,贾炜珑,陆欣.转基因玉米苗期抗旱性鉴定方法、指标与综合评价的探讨.山西农业大学学报.2003,23(4):319-322
    [73]严建明,黄文章,胡景涛等.应用隶属函数法鉴定水稻的抗旱性.杂交水稻.2009,24(5):76-79
    [74]陈凤梅,程建峰等.杂交水稻抗旱性状的筛选研究.杂交水稻.2001,16(4):51-54
    [75]孙正国.应用灰色关联分析法综合评价水稻新品种.农业与技术.2005,25(1):63-67
    [76]孟宪梅,黄义德,李奕松.2003.水稻若干生理指标与品种抗早性关系的研究.安徽农业大学学报.2003,30(1):15-22
    [77]石永红,万里强,刘建宁.多年生黑麦草抗旱性主成分及隶属函数分析.草地学报.2010,18(5):38-47
    [78]曾宪海,安锋,蔡明道等.搞渗胁迫后橡胶树萌发籽苗抗旱性主成分及隶属函数分析.中国农学通报.2010,269(01):260-264
    [79]Paterson A H,Damon S,Hewitt J D,Zamir D and Rabinowitch H D.Mendelian factors underlying quantitative traits in tomato:comparison across species,generations,and environments.Genetics.1991,127:181-197
    [80]Tanksley S D. Mapping polygenes.Annu Rev Genet.1993,27:05-233
    [81]Mathilde A C, Theresa M F, Cho Y, et al. Saturated molecular map of the rice genome based on an interspecific backcross population. Genetics.1994,138:1251-1274
    [82]何风华.水稻QTL分析的研究进展.西北植物学报.2004,24(11):2163-2169
    [83]吴为人,唐定中,李维明.数量性状的遗传剖析和分子剖析.作物学报.2000,26(4):501-507
    [84]Botstein B.White R L,Skolnick M,et al.Construction of a genetic linkage map using restriction fragment length polymorphisms.Am J Hum Genet.1980,32:314-331
    [85]Welsh J.. and McClelland M. Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Res.1990,18(24):7213-7218
    [86]Williams J.G.. Kubeilk A.R.. Livak K.J.. et al. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic AcidsRes.1990.18(22):6531-6535
    [87]Jaccoud D.. Peng K., Feinstein D.,et al.Diversity arrays:A solid state technology for sequence information in dependent genotyping. Nucleic Acids Res.2001.29(4):25-30
    [88]冯艳丽,武剑王,王晓武.多样性序列芯片技术(DArT)的原理及应用.中国蔬菜.2010.(2):1-6)
    [89]McCouch S R,Teytelman L,Xu Y B,et al.Development and mapping of 2240 new SSR markers for rice(Oryza sativa L.)[J].DNA Research.2002,(6):199-207
    [90]孙洪,程静,詹克慧,等ISSR标记技术及其在作物遗传育种中的应用.分子植物育种.2005,3(1):123-127)
    [91]邹喻苹,葛颂.新一代分子标记SNPs及其应用,生物多样性,2003,11(5):370-382[80]唐定中,李维明,吴为人等.利用RFLP、AFLP标记构建水稻分子连锁图.高技术通讯,1999,3:48-52
    [92]骆蒙,贾继增.植物基因组表达序列标签(EST)计划研究进展,生物化学与生物物理进展.2001,28(4):494-497
    [93]柳李旺,龚义勤,黄浩,朱献文,新型分子标记-SRAP与TRAP及其应用遗传.2004,26(5)::777-781
    [94]於卫东,蒋靓,庄杰云,等.盐胁迫下水稻部分生化性状的QTL定位.核农学报.2009,23(1):150-153
    [95]王明霞,柳李旺,龚义勤等RAMP与REMAP分子标记技术及其应用.分子植物育种.2006.4(6):859-865
    [96]杜晓云.张青林.罗正荣.逆转座子分子标记及其在果树上的应用.果树学报.2009,26(6):865-870
    [97]Tanksley S D. Mapping polygenes.Annu Rev Genet.1993.27:205-233
    [98]Gandiner S E,Hampton J G et al. Genetic analysis among and within populations forming ecotype ans cultivars of Lucerne,Medicago Sativa(Legumincosae)using RAPD fragments.Plant Systematic and evolution.1997.208(1):107-119
    [99]庄杰云.水稻杂种优势遗传机理与分子标记辅助高产育种研究[J].浙江大学博士学位论文.2001
    [100]Tanksley S D,Grandillo S.Fulton T M,et al. Advanced backcross QTL analysis in a cross between an elite processing line of tomato and its wild relative L.pimpnellif olium.Theor Appl Genet.1996,92: 213-224
    [101]Eshed Y. Zamir D. An introgression line population of lycopersicon pennellii in the cultivated tomato enables the identification and fine mapping of yield-associated QTL.Genetics.1995,141: 114-1162
    [102]Hua J P.Xin Y Z,Xu C G,et al.Genetic dissection of an elite rice hybrid revealed that teterozygotes are not always advantageous for performance.Genetics.2002,162:1885-1895
    [103]Zhang Q F,Shen B Z,Dai X K,et al.Using bulked extremes and recessive class to map genes for photo-sensitive genic male sterility in rice.Proc Natl Acad Sci USA.1994,91:8675-8679
    [104]Robin S,Pathan M S,Courtois B,et al.Mapping osmotic adjustment in an advanced back-cross inbred population of rice.Theor Appl Genet.2003,107:1288-1296
    [105]方宣钧,吴为人,唐纪良.作物DNA标记辅助育种.2002,北京:科学出版社
    [106]刘三宏.水稻抗旱QTL定位及不同抗逆性的遗传重叠与细胞学机制研究(博士学位论文)2007,北京:中国农科院
    [107]Soller M.,Beckmann J.S. Genetic polyphism in varietal identification and genetic improvement.Theor.Appl.Genet.1983,67:25-33
    [108]Lebowitz R L,Soller M,Beckman J S.Trait-based analysis for the detection of linkage between marker loci and quantitative trait loci in cross between in bred lines.Theor Appl Genet.1987,73:556-562
    [109]Thoday J M.Location of polygenes.Annu Rev Genet.1991,27:205-233
    [110]Soller M,Brody T,Genzi A.On the power of experimental design for the detection of linkage beTGWeen marker loci and quantitative loci in crosses between inbred lines.Theor Appl Genet.1976,47:35-39
    [111]Tanksley S.D. Mapping polygenes.Nature.1961,191:368-370
    [112]Edwards M D,Stuber C W,Wendel J F.Molecular marker facilitated investigations of quantitative trait loci in maize. I,Numbers,genomic distribution and types of gene action.Genetics.1987,116:113-125
    [113]Lander E.S.Botstein S. Mapping Mendelian factors underlying quantitative trait loci using RFLP linkage maps.Genetics.1989.121:185-199
    [114]Lincoin S,Daly M,Lander E.Constructing genetics maps with MAPMARKER/EXP 3.0 Whitehead Institute Technical Report,Whitehead Institute,Cambridge,Massachusctts,USA.1992
    [115]Zeng Z B.Precision mapping of quantitative trait loci.Genetics.1994,136:1457-1468
    [116]Wang D L,Zhu J,Li Z K,et al.Mapping QTLs with epistatic effects and QTLxenvironment interactions by mixed linear model approaches.Theor Appl Genet.1999,99:1255-1264.
    [117]Basten C J,WeireB S,Zeng Z B.QTLcartographer,version 1.16.Department of statistics,North Carolina State University.Raleigh,NC.2002
    [118]Zhu J,Weir B S,Chen L S,et al.Advanced topics in biomathematics:Proceedings of international conference on mathematical biology.Singapore,World Scientific Publishing Co.1998,321-330
    [119]Champoux M C,Wang GSarkaruag S,Mackill D J,et al.Locating genes associated with root morphology and drought avoidance in rice via linkage to molecular markers.Theor Appl Genet.1995,90:969-981
    [120]Ray J D,Yu L,McMouch S R,et al.Mapping quantitative trait loci associated with root penetration ability in rice(Oryza sativa L.).Theor Appl Genet.1996,92:627-636
    [121]Yadav R,Courtois B,Huang N.et al.Mapping genes controlling root morphology and root distribution in a doubled-haploid population of rice.Theor Appl Genet.1997,94:619-632
    [122]Hemamalini G.S.,Shashidhar H.E,Hittalmani S. Molecular marker assisred tagging of morphological and physiological trsits under two contrasting moisture regimes at peak vegetative stage in rice(Oryza sativa L.).Euphytica.2000,12:69-78
    [123]Price A H, Steele K A,Moore B J,et al.A combined RFLP and AFLP linkage map of upland rice(Oryza sativa L.)used to identify QTLs for root-penetration ability.Theor Appl Genet.2000,100: 49-56
    [124]Zhang J,Zheng H G,Aarti A et al. Locating genomic regions associated with components of drought resistance in rice:comparative mapping within and across species.Theorectical and Applied Genetics.2001,103:19-29
    [125]刘立峰,穆平,张洪亮等.水,旱稻千粒重和产量QTL效应的验证.中国农业科学.2006,39(2):219-224
    [126]Ali M L,Pathan M S,Zhang J,et al.Mapping QTLs for root traits in a recombinant inbred population from two indicaecotypes in rice.Theor App Genet,2000,101:756-766
    [127]Zheng H G,Babu R C,Pathan M S et al. Quantitative trait loci for root-penetration ability and root thickness in rice:comparison of genetic backgrounds.Genome.2000,43:53-61
    [128]Zhang W P,Shen X Y,Wu P,et al.QTLs and epistasis for seminal root length under a different water supply in rice(Oryza sativa l.).Theor Appl Genet.2001b,103:118-123
    [129]徐吉臣,李晶昭,郑先武等,苗期水稻根部性状的QTL定位.遗传学报.2001,28(5):433-438
    [130]Mu P,Li Z,C P,Zhang H L. QTL mapping of the root traits and their correlation analysis with drought resistance using DH lines from paddy and upland rice cross.Chinese Science Bulletin.2003.48(14):2718-2724
    [131]Lillly J.M., and Lodlow M.M. Expression of osmotic adjustment and dehydration tolerance in diverse rice lines.Field Crops Research.1996.48:185-197
    [132]Price A H, Young EM,Tomos A D.Quantitative trait loci associated with stomatal conductance leaf rolling and heading date mapped in upland rice(Oryza stativa L.).New Phytol.1997a,137:83-91
    [133]Courtois B,McLaren G,Sinhua P K,et al.Mapping QTLs associated drought avoidance in upland rice.Mol Breed.2003,6:55-66
    [134]Zhang J,Nguyen H T,Blum A.Genetic analysis of osmotic adjustment in crop plants.J Exp Bot.1999,50:291-302
    [135]腾胜,钱前,曾大力,等.水稻苗期耐旱性基因位点及其互作的分析,遗传学报.2002,29(3):235-240
    [136]Babu R C,Nguyen B D,Chamarek V,etal.Genetic analysis of drought resistance in rice by molecular markers:Association between secondary traits and field performance.Crop Sci,2003,43: 1457-1469
    [137]胡颂平,王正功,张琳,等.干旱胁迫下水稻叶片光合速率与叶绿素含量的相关性及其基因定位.中国生物化学与分子生物学报.2007,23(11):926-932
    [138]Lanceras M,Robin S,Laffit R.Mapping osmotic adjustment in an advanced back-cross inbred population of rice.Theroretical and Applied genetics.2003,107(7):1288-1296
    [139]穆平,张洪亮,姜德峰,等.利用水、旱稻DH系定位产量性状的QTL及其环境互作分析.中国农业科学.2005,38(9):1725-1733
    [140]赵秀琴,徐建尤,朱苓华,等.利用高代回交导入系定位水、旱条件下影响水稻根系及产量 的QTL.中国农业科学.2008,41(7):1887-1893
    [141]Ramaih S. Advances in drought resistance of rice[J].Critical Reviews in Plant Science.2009,28: 199-217
    [142]Bing Yue, Wei Ya Xue, Li zhong Xiong, et al. Genetic basis of drought resistance at reproductive stage in rice:separation of drought tolerance from drought avoidance [J]. Genetics Society of America.2006,10:1213-1228
    [143]Kazuo Shinozaki Kazuko Yamaguchi-Shinozaki. Gene expressionand signal transduction in water-stress response [J]. Plant Physiology.1997,115:327-324
    [144]Bray E.Classification of genes differentially expressed during water-deficit stress in Arabidopsis thaliana:an analysis using microarray and differential expression data[J]. Ann Bot.2002,89:803-811
    [145]汪耀富,杨天旭,刘国顺,等.渗透胁迫下烟草叶片基因的差异表达研究.作物学报.2007,33(6):914-920
    [146]Takahashir, Josheen, Kitagaway Y. Induction of ch illing resistance by water stress, and cDNA sequence analysis and expression of water stress regulated genes in rice[J]. PlantMol Biol.1994,26: 339-352
    [147]Nirmal J, Hiroaki K, Yoshichika K.Isolation and characterization of water stress specific genomic gene pwsi18 from rice[J].Plant and Cell Physiol.1998,39(1):64-72
    [148]Liu W Y, Wang M M, Huang J, et al. The OsDHODHl gene is involved in salt and drought tolerance in rice [J]. Journal of Integrative Plant Biology.2009,51 (9):825-833
    [149]Gu Z M, Wang J F, Huang J, et al. Cloning and characterization of a novel rice gene family encoding putative dual specificity protein kinases, involved in plant responses to abiotic and biotic stresses [J]. Plant Science.2005,169(3):470-477
    [150]刘三雄,刘灶长,周立国,等.OsI2基因的克隆及其植物表达载体的构建[J].分子植物育种.2007,5(4):548-552
    [151]孟繁君,黄骥,鲍永美,等.水稻TFⅢA型锌指蛋白基因ZFP207的克隆和表达分析[J].遗传.2010,32(4):387-392
    [152]Xu D, Duan X, Wang B, et al. Expression of a late embryogenesis abundant protein gene, HVA1, from barley confers tolerance to water deficit and salt stress in transgenic rice[J]. Plant Physiology.1996,110(1):249-257
    [153]Capell T, Escobar C, Liu H, et al. Over-expression of the oatarginine decarboxylase cDNA in transgenic rice (Oryza sativa L.)affects normal development patterns in vitro and results in putrescine accumulation in transgenic plants[J]. Theoretical and Applied Genetics.1998,.(97):246-254
    [154]Wei Z C, Wu R. Rice plants over expressing a HALI and COR47 transgenes showed tolerant to drought, cold and salt[M]. Inabstracts, general meeting of the international program on Rice Biotechnology.1997,356-362
    [155]朱宝成.转基因抗早耐盐碱水稻通过鉴定[J].中国农业信息快讯,2001,(4):38
    [156]梅道亮,叶永棋,罗利军,等.节水抗旱杂交稻旱优3号节水减污作用研究[J].中国稻米.2007,3:32-33
    [157]余新桥,梅捍卫,刘康,等.优质节水抗旱雄性不育系“沪旱1A”的选育与利用[J].上海农业学报.2006.22(2):32-35
    [158]余新桥,李明寿,梅捍卫,等.优质节水抗旱杂交稻旱优2号[J].分子植物育种.2010,8(6):1177-1179
    [159]上海市农业生物基因中心.旱优8号大米让人赞不绝口[EB/OL]http://www.agri.sh.cn/njxw/nyxw/201011/t20101116_168068.html.2010-11-16
    [160]罗利军.旱稻新品种—中旱一号和中旱三号[J].农村百事通,2000,(15):19
    [161]中国种业互联网.Q优6号被农业部评为中国第一批超级稻[EB/OL].http://www.ahnw.gov.cn/2006nykj/Show.asp?ContentID={3CE58520-0075-44AA-A73F-0E5680D9D8 57},2006-09-05
    [162]陈杰娥.菲律宾培育出抗旱水稻品种[J].福建农业科技.2009,2:81
    [163]Wang D. Pan Y J, Zhao X Q, et al. Genome-wide temporal-spatial gene expression profiling of drought responsiveness in rice [J]. BMC Genomics.2011,12:149-164
    [164]Khowaja F S, Norton G J, Courtois B, et al. Improved resolution in the position of drought-related QTLs in a single mapping population of rice by meta-analysis [J]. BMC Genomics.2009,10:276-290
    [165]王毅,姚骥,张征锋,等.基于玉米综合QTL图谱的比较分析及株高QTL的统合分析[J].科学通报.2006,51(15):1176-1186
    [166]应存山(主编).中国稻种资源.北京:中国农业出版社.1993
    [167]Tanksley S D, McCouch S R. Seed banks and molecular maps:unlocking genetic potential from the wild. Science.1997,277 (5329):1063-066
    [168]Li D-J(李德军), Sun C-Q(孙传清),Fu Y-C(付永彩), et al. Identification of QTL for yield in Jiangxi Dongxiang wild rice by QTL. Chin Sci Bull (科学通报).2002,47(1]):854-858(in Chinese) [169] Xiao X-C(肖晓春),Wang Y-J(王云基),Xiao S-J (肖诗锦). et al. Breeding of new cytoplasmic male sterile line"Dong B11A"from Dongxiang wild rice. Acta Agric Jiangxi (江西农业学报).2001,13(2):8-11 (inChinese)
    [170]Yu S-W(余守武).Wan Y(万勇), Hu B-L(胡标林).et al. The inheritance of the fertility restoration for cytoplasmic male sterility in Dongxiang wild rice (O. rufipogon). MolPlant Breed (分子植物育种).2005,3(6):761-767(in Chinese)
    [171]Yu L-Q(余丽琴). Chen D-Z(陈大洲)Li M-M(黎毛毛),et al. Current status and conservation of dongxiang wild rice.In:Yang [222]QW(杨庆文)Chen DZ(陈大洲)eds. Studies and Applications of Wild Rice in China (中国野生稻研究与利用).Beijing:China Meteorological Press.2004,pp 67-70 (in Chinese)
    [172]Liu F-X(刘凤霞),Sun C-Q(孙传清),Tan L-B(谭禄宾),et al. Identification of QTL for cold tolerance at booting and flowering stage in Jiangxi Dong xiang wild rice. Chin Sci Bull (科学通报).2003,48(17):1864-1867(in Chinese)
    [173]Chen D-Z(陈大洲),Zhong P-A(钟平安),Xiao Y-Q(肖叶青)et al. Identification of QTLs for cold tolerance at seeding stage in Dong xiang wild rice (Oryza rufipogon Griff.) by SSR markers. Acta Agric Univ Jiangxiensis(江西农业大学学报).2002,24(6):753-756 (in Chinese)
    [174]谢建坤,陈大洲,肖叶青,等.应用微卫星标记分析东乡野生稻遗传多样性初探.中国农业科学.2003.36(8):873-878
    [175]孔德利,谢建坤,庄杰云,等.东乡野生稻原位圃遗传多样性的微卫星标记分析.农业生物技术学报.2006,14(5):742-746
    [176]谢建坤,胡标林,万勇,等.东乡野生稻与栽培稻苗期抗旱性的比较。生态学报.2010,30(6): 1665-1674
    [177]张朝阳,许桂芳.利用隶属函数法对4种地被植物的耐热性综合评价[J].草业科学.2009,26(2):57-60
    [178]周广生,梅方竹,周竹青,等.小麦不同品种耐湿性生理指标综合评价及其预测[J].中国农业科学.2003,36(11):1378-1382
    [179]He Z X.The fuzzy mathematics and its application.Tianjin:Tianjin science and technology press.1985,67-70
    [180]Shen L,Courtois B,McNally K L,et al.Evaluation of nea isogenic lines of rice introgressed with QTLs for root depth through marker-aided selection.Theor Appl Genet,2001,103(1):75-83
    [181]穆平,李自超,李春平,等.水、旱稻根系性状与抗旱性相关分析及其QTL定位.科学通报[J].2003,48(20):2162-2169
    [182]Hittalmani S, Huang N, Courtois B, Venuprasad R, Shashidhar H E,Zhuang J Y, Zheng K L, Liu G F, Wang G C, Sidhu J S,Srivantaneeyakul S, Singh V P, Bagali P G, Prasanna H C, McLaren G,Khush G S. Identification of QTL for growth- and grain yield-related traits in rice across nine locations of Asia. Theoretical and Applied Genetics,2003,107:679-690.
    [183]庄杰云,郑康乐.水稻产量性状遗传机理及分子标记辅助高产育种.生物技术通报.1998,(1):1-9
    [184]郭龙彪,罗立军,邢永忠,等.水稻汕优63重组自交系重要农艺性状的QTL和互作分析.农业生物技术学报.2002,10(4):327-333
    [185]邢永忠,徐才国,华金平,等.水稻穗部性状的QTL与环境互作分析.遗传学报.2001,28(5):439-446
    [186]Kumar R,Venuprasad R,Atlin G.Genetic analysis of rainfed lowland rice drought tolerance under naturally-occurring stress in eastern India:heritability and QTL dffects.Field Crops Res.2007,103:42-52
    [187]WANG Xiao-shan,HAN Jian-guo. Changes of proline content,activity,and active isoforms of antioxidative enzymes in two alfalfa cultivars under salt stress. Agricultural Sciences in China.2009,8(4):431-440
    [188]LIU Yong-zhong,TANG Bin,ZHENG Yong-lian,MA Ke-jun,XU Shang-zhong and QIU Fa-zhan Screening methods for waterlogging tolerance at maize(zea mays L.)seedling stage.Agricultural Sciences in China.2010,9(3):362-369
    [189]Zhang RP(张荣萍),Ma J(马均),Wang HZ(王贺正),et al. Effects of different irrigation regimes on some physiology characteristics and grain yield in paddy rice during grain filling. Acta Agronomica Sinica(作物学报).2008,34(3):486-495
    [190]付光玺,朱伟,杨露露,等.节水灌溉对水稻抗逆生理性状的影响[J].中国农学通报.2009,25(02):105-108
    [191]Li H S Experimenttal Principle and Technique for Plant Physiology and Biochemistry. Beijing: Higher Education Press.2000(in Chinese)
    [192]Lutts S, Kinet J M. NaCL effects on proline metabolism in rice (Oryza sativa L) seedling [J].Physiol Plant.1999,(105):450-458
    [193]李锋,李木英,潘晓华,等.不同水稻品种幼苗适应低磷胁迫的根系生理生化特性[J].中国水稻科学.2004,18(1):48-52
    [194]戴高兴,彭克勤,萧浪涛,等.聚乙二醇模拟干旱对耐低钾水稻幼苗丙二醛、脯氨酸含量和超氧化物歧化酶活性的影响[J].中国水稻科学.2006,20(5):557-559
    [195]刘娥娥,宗会,郭振飞,等.干旱、盐和低温胁迫对水稻幼苗脯氨酸含量的影响[J].热带亚热带植物学报.2000,8(3):235-238

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700