毛细管电泳—激光诱导荧光检测应用于单细胞分析和多药耐药性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文在自行搭建的毛细管电泳-激光诱导荧光检测(CE-LIF)装置上实现了单细胞水平分析,并应用到多药耐药性研究领域。选取白血病细胞系(K562)作为研究对象,开展了多药耐药性相关机理研究,考察了碳纳米管作为载体在药物运输中的可能性,并探讨了以多药耐药性研究为核心的单细胞分析在方法学和实际临床中的意义和应用前景。主要研究内容如下:
     第一,采用CE-LIF联合流式细胞仪高通量地对单个白血病细胞系母细胞系(K562S)细胞中的荧光物质罗丹明123进行了定量检测,并将CE-LIF与流式细胞仪的测定结果进行了关联。定量计算了罗丹明123对K562S细胞的转运速度以及表观渗透系数。
     第二,建立了CE-LIF表征单个K562细胞上渗透性糖蛋白(Pgp)的方法,同时引入多药耐药性参数来评价细胞系之间的多药耐药性差异。单细胞分析、多细胞分析和流式细胞仪得到的结果一致。
     第三,考察了氧化多壁碳纳米管作为药物转运载体的可能性,将氧化多壁碳纳米管与异硫氰酸荧光素反应生成荧光探针(CNTP)后,分别用CE-LIF和流式细胞仪检测CNTP在多药耐药性细胞K562A和K562S中的分布,结果表明CNTP可以被动透过细胞膜并停留在细胞中而不会被Pgp所泵出,说明氧化多壁碳纳米管有可能成为药物转运载体。
     第四,采用CE-LIF定量检测了CNTP在酵母细胞中的分布,定量获取了CNTP在酵母中流入时间和温度依赖曲线,定量计算了CNTP流入酵母的表观渗透系数,结果表明CNTP可以通过内吞的方式进入酵母细胞内,这将有助于评价氧化多壁碳纳米管对于细胞膜的渗透性
In this thesis, a home made capillary electrophoresis-laser-induced fluorescence (CE-LIF) system has been established for application in single cell analysis and multidrug resistance research to elucidate the relative mechanisms of multidrug resistance. Leukemia cell lines (K562) were selected as the target cell line of investigation and carbon nanotubes were investigated as drug transporter for anti-cancer research. The main research contents are as following:
     Firstly, a method of combination CE-LIF with flow cytometry was established for high throughput determination and quantitation of fluorophores Rhodamine 123 in single intact K562 parental cell line (K562S) cells. The results of CE-LIF and flow cytometry were correlated. The membrane properties of K562S cell including fluophor transport rate and apparent permeability coefficient were further quantitatively characterized.
     Secondly, a method was established to characterize P-glycoprotein on single K562 cells by CE-LIF. A resistance factor so called multidrug resistance multiple was introduced to evaluate the multidrug resistance difference between cell lines. The results of single cell analysis, multi-cell analysis and flow cytometry were consistent.
     Thirdly, the possibility of oxidized multi-walled carbon nanotubes as drug transporter was evaluated. They were derivatised with fluorescein isothiocyanate to form carbon nanotube probe (CNTP). Analyses of CNTP in K562 multidrug resistance cell (K562A) and K562S cell using both CE-LIF and flow cytometryshowed that CNTP could transverse the cellular membrane without being pumped out by P-glycoprotein.
     Fourthly, the distribution of CNTP in yeast was quantitatively determined by CE-LIF. The time and temperature dependent influx patterns of CNTP in yeast were obtained. The apparent permeability coefficient for influx of CNTP into yeast was calculated, which suggested that CNTP might permeate into yeast through endocytosis.
引文
1. Wilson EB. The Cell in Development and Heredity. New York: Macmillan; 1925.
    2. Marx JL. Drug-resistance of cancer-cells probed. Science, 1986; 234(4778):818-820.
    3. Ford JM, Hait WN. Pharmacology of drugs that alter multidrug resistance incancer. Pharmacol. Rev., 1990; 42(3):155-199.
    4. Woods LA, Roddy TP, Ewing AG. Capillary electrophoresis of single mammalian cells. Electrophoresis, 2004; 25(9 SI Sp. Iss. SI):1181-1187.
    5. Stuart JN, Sweedler JV. Single-cell analysis by capillary electrophoresis. Anal. Bioanal. Chem., 2003; 375(1):28-29.
    6. Lu X, Huang WH, Wang ZL, Cheng HK. Recent developments in single-cell analysis. Anal. Chim. Acta, 2004; 510(2):127-138.
    7. Liu BF, Xu B, Zhang G, Du W, Luo QM. Micro-separation toward systems biology. J. Chromatogr. A, 2006; 1106(1-2):19-28.
    8. Krutzik PO, Irish JM, Nolan GP, Perez OD. Analysis of protein phosphorylation and cellular signaling events by flow cytometry: techniques and clinical applications. Clin. Immunol., 2004; 110(3):206-221.
    9. Edstrom JE. Nucleotide analysis on the cyto-scale. Nature, 1953;
    172(4383):809-809.
    10. Huang WH, Hu S, Pang DW, Wang ZL, Cheng JK. Monitoring the secretion from single cells with temporal and spatial resolution. Chin. Sci. Bull., 2000;
    45(4):289-295.
    11. Wheeler AR, Throndset WR, Whelan RJ, et al. Microfluidic device for single-cell analysis. Anal. Chem., 2003; 75(14):3581-3586.
    12. Kennedy RT, Oates MD, Cooper BR, Nickerson B, Jorgenson JW. Microcolumn separations and the analysis of single cells. Science, 1989; 246(4926):57-63.
    13. Chen GY, Ewing AG. Chemical analysis of single cells and exocytosis. Crit. Rev. Neurobiol., 1997; 11(1):59-90.
    14. Cannon DM, Winograd N, Ewing AG. Quantitative chemical analysis of single cells. Annu. Rev. Biophys. Biomolec. Struct., 2000; 29:239-263.
    15. Yeung ES. Study of single cells by using capillary electrophoresis and native fluorescence detection. J. Chromatogr. A, 1999; 830(2):243-262.
    16. Zabzdyr JL, Lillard SJ. New approaches to single-cell analysis by capillaryelectrophoresis. Trac-Trends Anal. Chem., 2001; 20(9):467-476.
    17. Dovichi NJ, Hu S. Chemical cytometry. Curr. Opin. Chem. Biol., 2003; 7(5):603-608.
    18. Andersson H, van den Berg A. Microtechnologies and nanotechnologies for single-cell analysis. Curr. Opin. Biotechnol., 2004; 15(1):44-49.
    19. Wu HK, Wheeler A, Zare RN. Chemical cytometry on a picoliter-scale integrated microfluidic chip. Proc. Natl. Acad. Sci. U. S. A., 2004; 101(35):12809-12813.
    20. Culbertson CT. Single cell analysis on microfluidic devices. Methods Mol Biol, 2006; 339:203-216.
    21. Arcibal IG, Santillo MF, Ewing AG. Recent advances in capillary electrophoretic analysis of individual cells. Anal. Bioanal. Chem., 2006; In press.
    22. Jorgenson J, Lukacs K. Zone electrophoresis in open-tubular glass-capillaries. Anal. Chem., 1981; 53(8):1298-1302.
    23. Woods LA, Gandhi PU, Ewing AG. Electrically assisted sampling across membranes with electrophoresis in nanometer inner diameter capillaries. Anal. Chem., 2005; 77(6):1819-1823.
    24. Kennedy RT, Jorgenson JW. Quantitative-analysis of individual neurons by open tubular liquid-chromatography with voltammetric detetction. Anal. Chem., 1989; 61(5):436-441.
    25. Ewing AG, Wallingford RA, Olefirowicz TM. Capillary electrophoresis. Anal. Chem., 1989; 61(4):A292-&.
    26. Olefirowicz TM, Ewing AG. Capillary electrophoresis for sampling single nerve-cells. Chimia, 1991; 45(4):106-108.
    27. Krylov SN, Dovichi NJ. Single-cell analysis using capillary electrophoresis: Influence of surface support properties on cell injection into the capillary. Electrophoresis, 2000; 21(4):767-773.
    28. Chen SJ, Lillard SJ. Continuous cell introduction for the analysis ofindividual cells by capillary electrophoresis. Anal. Chem., 2001; 73(1):111-118.
    29. Krylov SN, Starke DA, Arriaga EA, et al. Instrumentation for chemical cytometry. Anal. Chem., 2000; 72(4):872-877.
    30. Sims CE, Meredith GD, Krasieva TB, Berns MW, Tromberg BJ, Allbritton NL. Laser-micropipet combination for single cell analysis. Anal. Chem., 1998; 70(21):4570-4577.
    31. Li HN, Sims CE, Wu HY, Allbritton NL. Spatial control of cellular measurements with the laser micropipet. Anal. Chem., 2001; 73(19):4625-4631.
    32. Han FT, Wang Y, Sims CE, et al. Fast electrical lysis of cells for capillary electrophoresis. Anal. Chem., 2003; 75(15):3688-3696.
    33. Hu S, Zhang L, Cook LM, Dovichi NJ. Capillary sodium dodecyl sulfate-DALT electrophoresis of proteins in a single human cancer cell. Electrophoresis, 2001; 22(17):3677-3682.
    34. Zhang ZR, Krylov S, Arriaga EA, Polakowski R, Dovichi NJ. One-dimensional protein analysis of an HT29 human colon adenocarcinoma cell. Anal. Chem., 2000; 72(2):318-322.
    35. Krylov SN, Arriaga E, Zhang ZR, Chan N, Palcic MM, Dovichi NJ. Single-cell analysis avoids sample processing bias. J. Chromatogr. B, 2000; 741(1):31-35.
    36. Hu S, Zhang ZR, Cook LM, Carpenter EJ, Dovichi NJ. Separation of proteins by sodium dodecylsulfate capillary electrophoresis in hydroxypropylcellulose sieving matrix with laser-induced fluorescence detection. J. Chromatogr. A, 2000; 894(1-2):291-296.
    37. Michels DA, Hu S, Schoenherr RM, Eggertson MJ, Dovichi NJ. Fully automated two-dimensional capillary electrophoresis for high sensitivity protein analysis. Mol. Cell. Proteomics, 2002; 1(1):69-74.
    38. Phillips TM. Analysis of single-cell cultures by immunoaffinity capillaryelectrophoresis with laser-induced fluorescence detection. Luminescence, 2001; 16(2):145-152.
    39. Oates MD, Cooper BR, Jorgenson JW. Quantitative amino-acid-analysis of individual snail neurons by open tubular liquid-chromatrography. Anal. Chem., 1990; 62(15):1573-1577.
    40. Hsieh S, Jorgenson JW. Determination of enzyme activity in single bovine adrenal medullary cells by separation of isotopically labeled catecholamines. Anal. Chem., 1997; 69(19):3907-3914.
    41. Mitulovic G, Stingl C, Smoluch M, et al. Automated, on-line two-dimensional nano liquid chromatography tandem mass spectrometry for rapid analysis of complex protein digests. Proteomics, 2004; 4(9):2545-2557.
    42. Xue QF, Yeung ES. Differences in the chemical-reactivity of individual molecules of an enzyme. Nature, 1995; 373(6516):681-683.
    43. Chen DY, Dovichi NJ. Single-molecule detection in capillary electrophoresis: Molecular shot noise as a fundamental limit to chemical analysis. Anal. Chem., 1996; 68(4):690-696.
    44. Fuller RR, Moroz LL, Gillette R, Sweedler JV. Single neuron analysis by capillary electrophoresis with fluorescence spectroscopy. Neuron, 1998; 20(2):173-181.
    45. Lillard SJ, Yeung ES, McCloskey MA. Monitoring exocytosis and release from individual mast cells by capillary electrophoresis with laser-induced native fluorescence detection. Anal. Chem., 1996; 68(17):2897-2904.
    46. Hellmich W, Greif D, Pelargus C, Anselmetti D, Ros A. Improved native UV laser induced fluorescence detection for single cell analysis in poly(dimethylsiloxane) microfluidic devices. J Chromatogr A, 2006; 113:195-200.
    47. Tan WH, Yeung ES. Simultaneous determination of enzyme-activity and enzyme quantity in sigle human erythrocytes. Anal. Biochem., 1995; 226(1):74-79.
    48. Xue QF, Yeung ES. Variability of intracellular lactate-dehydrogenase isoenzymes in sigle human erythrocytes. Anal. Chem., 1994; 66(7):1175-1178.
    49. Sun Y, Lu M, Yin XF, Gong XG. Intracellular labeling method for chip-based capillary electrophoresis fluorimetric single cell analysis using liposomes. J Chromatogr A, 2006( doi:10.1016/j.chrom).
    50. Gilman SD, Ewing AG. Analysis of single cells by capillary electrophoresis with on column derivatization and laser-induced fluorescence detection. Anal. Chem., 1995; 67(1):58-64.
    51. Gilman SD, Ewing AG. Postcolumn derivatization for capillary electrophoresis using naphthalene-2,3-dicarboxaldehyde and 2-mercaptoethanol. Anal. Method Instrum., 1995; 2(3):133-141.
    52. Dong Q, Wang XL, Zhu LL, Jin WR. Method of intracellular naphthalene-2,3-dicarboxaldehyde derivatization for analysis of amino acids in a single erythrocyte by capillary zone electrophoresis with electrochemical detection. J. Chromatogr. A, 2002; 959(1-2):269-279.
    53. Zurgil N, Sunray M, Shafran Y, Afrimzon E, Deutsch M. A novel approach for on line monitoring of apoptotic cell shrinkage in individual live lymphocytes. J. Immunol. Methods, 2003; 281(1-2):37-49.
    54. Gao N, Wang WL, Zhang XL, Jin WR, Yin XF, Fang ZL. High-throughput single-cell analysis for enzyme activity without cytolysis. Anal. Chem., 2006; 78(9):3213-3220.
    55. Weng QF, Jin WR. Assay of amino acids in individual human lymphocytes by capillary zone electrophoresis with electrochemical detection. Anal. Chim. Acta, 2003; 478(2):199-207.
    56. Jin WR, Jiang L. Study of uptake kinetics of vincristine for human erythrocytes by capillary zone electrophoresis with electrochemical detection. Anal. Chim. Acta, 2002; 461(1):117-121.
    57. Jin WR, Jiang L. Measurement of ascorbic acid in single human neutrophilsby capillary zone electrophoresis with electrochemical detection. Electrophoresis, 2002; 23(15):2471-2476.
    58. Weng QF, Xia FQ, Jin WR. Assay of histamine in single mast cells by capillary zone electrophoresis with electrochemical detection. Chin. Chem. Lett., 2002; 13(10):982-984.
    59. Weng QF, Jin WR. Determination of amino acids in single human lymphocytes after on-capillary derivatization by capillary zone electrophoresis with electrochemical detection. Chin. Chem. Lett., 2002; 13(10):979-981.
    60. Weng QF, Xia FQ, Jin WR. Measurement of histamine in individual rat peritoneal mast cells by capillary zone electrophoresis with electrochemical detection. J. Chromatogr. B, 2002; 779(2):347-352.
    61. Weng QF, Jin WR. Determination of free intracellular amino acids in single mouse peritoneal macrophages after naphthalene-2,3-dicarboxaldehyde derivatization by capillary zone electrophoresis with electrochemical detection. Electrophoresis, 2001; 22(13):2797-2803.
    62. Dong Q, Jin WR. Monitoring diclofenac sodium in single human erythrocytes introduced by electroporation using capillary zone electrophoresis with electrochemical detection. Electrophoresis, 2001; 22(13):2786-2792.
    63. Jin WR, Zhang J. Determination of diclofenac sodium by capillary zone electrophoresis with electrochemical detection. J. Chromatogr. A, 2000; 868(1):101-107.
    64. Jin WR, Li W, Xu Q. Quantitative determination of glutathione in single human erythrocytes by capillary zone electrophoresis with electrochemical detection. Electrophoresis, 2000; 21(4):774-779.
    65. Jin WR, Zhang J. Monitoring pyridoxine by capillary zone electrophoresis with electrochemical detection. Electroanalysis, 2000; 12(6):465-467.
    66. Jin WR, Dong Q, Ye XY, Yu DQ. Assay of glutathione in individual mouse peritoneal macrophages by capillary zone electrophoresis withelectrochemical detection. Anal. Biochem., 2000; 285(2):255-259.
    67. Wallingford RA, Ewing AG. Capillary zone electrophoresis with electrochemical detection in12.7-um diameter columns. Anal. Chem., 1988; 60(18):1972-1975.
    68. Kristensen HK, Lau YY, Ewing AG. Capillary electrophoresis of single cells-observation of two compartments of neurotransmitter vesicles. J. Neurosci. Methods, 1994; 51(2):183-188.
    69. Swanek FD, Chen GY, Ewing AG. Identification of multiple compartments of dopamine in a single cell by CE with scanning electrochemical detection. Anal. Chem., 1996; 68(22):3912-3916.
    70. Chien JB, Wallingford RA, Ewing AG. Estimation of free dopamine in the cytoplasm of the giant dopamine cell of planorbis-corneus by voltammetry and capillary electrophoresis. J. Neurochem., 1990; 54(2):633-638.
    71. Jin WR, Li XJ, Gao N. Simultaneous determination of tryptophan and glutathione in individual rat hepatocytes by capillary zone electrophoresis with electrochemical detection at a carbon fiber bundle-Au/Hg dual electrode. Anal. Chem., 2003; 75(15):3859-3864.
    72. Devadoss A, Burgess JD. Steady-state detection of cholesterol contained in the plasma membrane of a single cell using lipid bilayer-modified microelectrodes incorporating cholesterol oxidase. J. Am. Chem. Soc., 2004; 126(33):10214-10215.
    73. Zhang LY, Qv SF, Wang ZG, Cheng JK. Determination of dopamine in single rat pheochromocytoma cell by capillary electrophoresis with amperometric detection. J. Chromatogr. B, 2003; 792(2):381-385.
    74. Hsieh S, Dreisewerd K, van der Schors RC, et al. Separation and identification of peptides in single neurons by microcolumn liquid chromatography - Matrix-assisted laser desorption/ionization time-of flight mass spectrometry and postsource decay analysis. Anal. Chem., 1998; 70(9):1847-1852.
    75. Hofstadler SA, Severs JC, Smith RD, Swanek FD, Ewing AG. Analysis of single cells with capillary electrophoresis electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. Rapid Commun. Mass Spectrom., 1996; 10(8):919-922.
    76. Rubakhin SS, Garden RW, Fuller RR, Sweedler JV. Measuring the peptides in individual organelles with mass spectrometry. Nat. Biotechnol., 2000; 18(2):172-175.
    77. Rubakhin SS, Page JS, Monroe BR, Sweedler JV. Analysis of cellular release using capillary electrophoresis and matrix assisted laser desorption/ionization-time of flight-mass spectrometry. Electrophoresis, 2001; 22(17):3752-3758.
    78. Rubakhin SS, Greenough WT, Sweedler JV. Spatial profiling with MALDI MS: Distribution of neuropeptides within single neurons. Anal. Chem., 2003; 75(20):5374-5380.
    79. Li LJ, Garden RW, Romanova EV, Sweedler JV. In situ sequencing of peptides from biological tissues and single cells using MALDI-PSD/CID analysis. Anal. Chem., 1999; 71(24):5451-5458.
    80. Li LJ, Garden RW, Sweedler JV. Single-cell MALDI: a new tool for direct peptide profiling. Trends Biotechnol., 2000; 18(4):151-160.
    81. Neupert S, Predel R, Russell WK, Davies R, Pietrantonio PV, Nachman RJ. Identification of tick periviscerokinin, the first neurohormone of Ixodidae: Single cell analysis by means of MALDI-TOF/TOF mass spectrometry. Biochem. Biophys. Res. Commun., 2005; 338(4):1860-1864.
    82. Anderson AB, Ciriacks CM, Fuller KM, Arriaga EA. Distribution of zeptornole-abundant doxorubicin metabolites in subcellular fractions by capillary electrophoresis with laser-induced fluorescence detection. Anal. Chem., 2003; 75(1):8-15.
    83. Krylov SN, Zhang ZR, Chan N, Arriaga E, Palcic MM, Dovichi NJ. Correlating cell cycle with metabolism in single cells: Combination of imageand metabolic cytometry. Cytometry, 1999; 37(1):14-20.
    84. Hu S, Zhang L, Krylov S, Dovichi NJ. Cell cycle-dependent protein fingerprint from a single cancer cell: Image cytometry coupled with single-cell capillary sieving electrophoresis. Anal. Chem., 2003; 75(14):3495-3501.
    85. Hu S, Zhang L, Newitt R, et al. Identification of proteins in single-cell capillary electrophoresis fingerprints based on comigration with standard proteins. Anal. Chem., 2003; 75(14):3502-3505.
    86. Hu S, Michels DA, Fazal MA, Ratisoontorn C, Cunningham ML, Dovichi NJ. Capillary sieving electrophoresis/micellar electrokinetic capillary chromatography for two-dimensional protein fingerprinting of single mammalian cells. Anal. Chem., 2004; 76(14):4044-4049.
    87. Chang HT, Yeung ES. Determination of catecholamines in single adrenal-medullary cells by capillary electrophoresis and laser-induced native fluorescence. Anal. Chem., 1995; 67(6):1079-1083.
    88. Meredith GD, Sims CE, Soughayer JS, Allbritton NL. Measurement of kinase activation in single mammalian cells. Nat. Biotechnol., 2000; 18(3):309-312.
    89. Sims CE, Allbritton NL. Single-cell kinase assays: opening a window onto cell behavior. Curr. Opin. Biotechnol., 2003; 14(1):23-28.
    90. Allbritton NL, Meredith G, Sims C, Soughayer A. Measurement of kinase activation in single mammalian cells. Biophys. J., 2000; 78(1 PN Part 2):391A-391A.
    91. Xue QF, Yeung ES. Determination of lactate dehydrogenase isoenzymes in single lymphocytes from normal and leukemia cell lines. J. Chromatogr. B-Biomed. Appl., 1996; 677(2):233-240.
    92. Gao XJ, Chen TS, Xing D, Wang F, Pei YH, Wei XB. Single cell analysis of PKC activation during proliferation and apoptosis induced by laser irradiation. J. Cell. Physiol., 2006; 206(2):441-448.
    93. Rosenzweig Z, Yeung ES. Laser-based particle-counting microimmunoassayfor the analysis of single human erythrocytes. Anal. Chem., 1994; 66(10):1771-1776.
    94. Matsunaga H, Anazawa T, Yeung ES. Integrated on-capillary instrumentation for gene expression measurement directly from cells. Electrophoresis, 2003; 24(3):458-465.
    95. Han FT, Lillard SJ. In-situ sampling and separation of RNA from individual mammalian cells. Anal. Chem., 2000; 72(17):4073-4079.
    96. Han FT, Lillard SJ. Monitoring differential synthesis of RNA in individual cells by capillary electrophoresis. Anal. Biochem., 2002; 302(1):136-143.
    97. Hogan BL, Yeung ES. Determination of intracellular species at the level of a single. Anal. Chem., 1992; 64(22):2841-2845.
    98. Zhang H, Jin WR. Single-cell analysis by intracellular immuno-reaction and capillary electrophoresis with laser-induced fluorescence detection. J. Chromatogr. A, 2006; 1104(1-2):346-351.
    99. Jankowski JA, Tracht S, Sweedler JV. Assaying single cells with capillary electrophoresis. Trac-Trends Anal. Chem., 1995; 14(4):170-176.
    100.Shaner LM, Brown PR. Single cell analysis using capillary electrophoresis. J. Liq. Chromatogr. Relat. Technol., 2000; 23(7):975-997.
    101.Luzzi V, Sims CE, Soughayer JS, Allbritton NL. The physiologic concentration of inositol 1,4,5-trisphosphate in the oocytes of Xenopus laevis. J. Biol. Chem., 1998; 273(44):28657-28662.
    102.Malek A, Khaledi MG. Steroid analysis in single cells by capillary electrophoresis with collinear laser-induced fluorescence detection. Anal. Biochem., 1999; 270(1):50-58.
    103.Brotherick I, Shenton BK, Egan M, et al. Examination of multidrug resistance in cell lines and primary breast tumours by flow cytometry. Eur. J. Cancer, 1996; 32A(13):2334-2341.
    104.Stetler-Stevenson M. Flow cytometry in lymphoma diagnosis and prognosis: useful? Best Pract. Res. Clin. Haematol., 2003; 16(4):583-597.
    105.Bardet V, Tamburini M, Ifrah N, et al. Single cell analysis of phosphoinositide 3-kinase/Akt and ERK activation in acute myeloid leukemia by flow cytometry. Haematol-Hematol. J., 2006; 91(6):757-764.
    106.Chan SM, Olson JA, Utz PJ. Single-cell analysis of siRNA-mediated gene silencing using multiparameter flow cytometry. Cytom. Part A, 2006; 69A(2):59-65.
    107.Gavin MA, Torgerson TR, Houston E, et al. Single-cell analysis of normal and FOXP3-mutant human T cells: FOXP3 expression without regulatory T cell development. Proc. Natl. Acad. Sci. U. S. A., 2006; 103(17):6659-6664.
    108.Gabrijel M, Repnik UK, Kreft M, Grilc S, Jeras M, Zorec R. Quantification of cell hybridoma yields with confocal microscopy and flow cytometry. Biochem. Biophys. Res. Commun., 2004; 314(3):717-723.
    109.Saengkhae C, Loetchutinat C, Garnier-Suillerot A. Kinetic analysis of fluorescein and dihydrofluorescein effluxes in tumour cells expressing the multidrug resistance protein, MRP1. Biochem. Pharmacol., 2003; 65(6):969-977.
    110.Yue S, X.F. Y. Novel multi-depth microfluidic chip for single cell analysis. J Chromatogr A, 2006; 1117(2):228-233.
    111.El-Ali J, Sorger PK, Jensen KF. Cells on chips. Nature, 2006; 442(7101):403-411.
    112.Arbault S, Sojic N, Bruce D, Amatore C, Sarasin A, Vuillaume M. Oxidative stress in cancer prone xeroderma pigmentosum fibroblasts. Real-time and single cell monitoring of superoxide and nitric oxide production with microelectrodes. Carcinogenesis, 2004; 25(4):509-515.
    113.Troyer KP, Wightman RM. Dopamine transport into a single cell in a picoliter vial. Anal. Chem., 2002; 74(20):5370-5375.
    114.Chen P, Xu B, Tokranova N, Feng XJ, Castracane J, Gillis KD. Amperometric detection of quantal catecholamine secretion from individual cells on micromachined silicon chips. Anal. Chem., 2003; 75(3):518-524.
    115.Ward MW, Rehm M, Duessmann H, Kacmar S, Concannon CG, Prehn J. Real time single cell analysis of Bid cleavage and Bid translocation during caspase-dependent and neuronal caspase-independent apoptosis. J. Biol. Chem., 2006; 281(9):5837-5844.
    116.Duckmanton A, Kumar A, Chang YT, Brockes JP. A single-cell analysis of myogenic dedifferentiation induced by small molecules. Chem. Biol., 2005; 12(10):1117-1126.
    117.Stephens DJ, Allan VJ. Light microscopy techniques for live cell Imaging. Science, 2003; 300(5616):82-86.
    118.Uehara H, Osada T, Ikai A. Quantitative measurement of mRNA at different loci within an individual living cell. Ultramicroscopy, 2004; 100(3-4):197-201.
    119.Torisawa YS, Kaya T, Takii Y, Oyamatsu D, Nishizawa M, Matsue T. Scanning electrochemical microscopy-based drug sensitivity test for a cell culture integrated in silicon microstructures. Anal. Chem., 2003; 75(9):2154-2158.
    120.Roddy TP, Cannon DM, Meserole CA, Winograd N, Ewing AG. Imaging of freeze-fractured cells with in situ fluorescence and time-of-flight secondary ion mass spectrometry. Anal. Chem., 2002; 74(16):4011-4019.
    121.Mauthe RJ, Sideras-Haddad E, Turteltaub KW, Bench G. Quantitative imaging microscopy for the sensitive detection of administered metal containing drugs in single cells and tissue slices - a demonstration using platinum based chemotherapeutic agents. J. Pharm. Biomed. Anal., 1998; 17(4-5):651-663.
    122.Schuster KC, Reese I, Urlaub E, Gapes JR, Lendl B. Multidimensional information on the chemical composition of single bacterial cells by confocal Raman microspectroscopy. Anal. Chem., 2000; 72(22):5529-5534.
    123.Song JM, Kasili PM, Griffin GD, Vo-Dinh T. Detection of cytochrome c in a single cell using an optical nanobiosensor. Anal. Chem., 2004;76(9):2591-2594.
    124.Kasili RM, Cullum BM, Griffin GD, Vo-Dinh T. Nanosensor for in vivo measurement of the carcinogen benzo[a]pyrene in a single cell. J. Nanosci. Nanotechnol., 2002; 2(6):653-658.
    125.Kaplan D. Enzymatic amplification staining for single cell analysis: applied to in situ hybridization. J. Immunol. Methods, 2003; 283(1-2):1-7.
    126.Tamaki E, Sato K, Tokeshi M, Sato K, Aihara M, Kitamori T. Single-cell analysis by a scanning thermal lens microscope with a microchip: Direct monitoring of cytochrome c distribution during apoptosis process. Anal. Chem., 2002; 74(7):1560-1564.
    127.Gottesman MM. How cancer-cells evade chemotherapy - 16 th Richard-and-Hinda-Rosenthal-Foundation award lecture. Cancer Res., 1993; 53(4):747-754.
    128.Leylandjones B, Dalton W, Fisher GA, Sikic BI. Reversal of multidrug-resistance to cancer-chemotherapy. Cancer, 1993; 72(11 SU Suppl. S):3484-3488.
    129.Szakacs G, Paterson JK, Ludwig JA, Booth-Genthe C, Gottesman MM. Targeting multidrug resistance in cancer. Nat. Rev. Drug Discov., 2006; 5(3):219-234.
    130.Gottesman MM, Fojo T, Bates SE. Multidrug resistance in cancer: role of ATP-dependent transporters. Nat. Rev. Cancer, 2002; 2(1):48-58.
    131.Phillips-NAT-lab. The Wondrous World of Carbon Nanotubes - a review of current carbon nanotube technologies ; 2003.
    132.Wang Y, Wu J, Wei F. A treatment method to give separated multi-walled carbon nanotubes with high purity, high crystallization and a large aspect ratio. Carbon, 2003; 41(15):2939-2948.
    133.Valcarcel M, Simonet BM, Cardenas S, Suarez B. Present and future applications of carbon nanotubes to analytical science. Anal. Bioanal. Chem., 2005; 382(8):1783-1790.
    134.Son SJ, Bai X, Nan A, Ghandehari H, Lee SB. Template synthesis of multifunctional nanotubes for controlled release. J. Control. Release, 2006; 114(2):143-152.
    135.Portney NG, Ozkan M. Nano-oncology: drug delivery, imaging, and sensing. Anal. Bioanal. Chem., 2006; 384(3):620-630.
    136.Cuenca AG, Jiang HB, Hochwald SN, Delano M, Cance WG, Grobmyer SR. Emerging implications of nanotechnology on cancer diagnostics and therapeutics. Cancer, 2006; 107(3):459-466.
    137.Kam NW, Jessop TC, Wender PA, Dai H. Nanotube molecular transporters: internalization of carbon nanotube-protein conjugates into Mammalian cells. J. Am. Chem. Soc., 2004; 126(22):6850-6851.
    138.Kam N, Liu ZA, Dai HJ. Carbon nanotubes as intracellular transporters for proteins and DNA: An investigation of the uptake mechanism and pathway. Angew. Chem. Int. Ed., 2006; 45(4):577-581.
    139.Kam N, Dai HJ. Carbon nanotubes as intracellular protein transporters: Generality and biological functionality. J. Am. Chem. Soc., 2005; 127(16):6021-6026.
    140.Bianco A, Hoebeke J, Godefroy S, et al. Cationic carbon nanotubes bind to CpG oligodeoxynucleotides and enhance their immunostimulatory properties. J. Am. Chem. Soc., 2005; 127(1):58-59.
    141.Pantarotto D, Briand JP, Prato M, Bianco A. Translocation of bioactive peptides across cell membranes by carbon nanotubes. Chem. Commun., 2004(1):16-17.
    142.Pantarotto D, Singh R, McCarthy D, et al. Functionalized carbon nanotubes for plasmid DNA gene delivery. Angew. Chem. Int. Ed., 2004; 43(39):5242-5246.
    143.Kam N, O'Connell M, Wisdom JA, Dai HJ. Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction. Proc. Natl. Acad. Sci. U. S. A., 2005;102(33):11600-11605.
    144.Kam N, Liu Z, Dai HJ. Functionalization of carbon nanotubes via cleavable disulfide bonds for efficient intracellular delivery of siRNA and potent gene silencing. J. Am. Chem. Soc., 2005; 127(36):12492-12493.
    145.Stuart JN, Sweedler JV. Capillary electrophoresis and the single cell: The how and why. LC GC Eur., 2003; 16(7):427-429.
    1. Malkia A, Murtomaki L, Urtti A, Kontturi K. Drug permeation in biomembranes in vitro and in silico prediction and influence of physicochemical properties. Eur. J. Pharm. Sci., 2004; 23(1):13-47.
    2. Artursson P, Palm K, Luthman K. Caco-2 monolayers in experimental and theoretical predictions of drug transport. Adv. Drug Deliv. Rev., 2001; 46(1-3):27-43.
    3. Ponce YM, Perez M, Zaldivar VR, Diaz HG, Torrens F. A new topological descriptors based model for predicting intestinal epithelial transport of drugs in caco-2 cell culture. J. Pharm. Pharm. Sci., 2004; 7(2):186-199.
    4. Krutzik PO, Irish JM, Nolan GP, Perez OD. Analysis of protein phosphorylation and cellular signaling events by flow cytometry: techniques and clinical applications. Clin. Immunol., 2004; 110(3):206-221.
    5. Brotherick I, Shenton BK, Egan M, et al. Examination of multidrug resistance in cell lines and primary breast tumours by flow cytometry. Eur. J. Cancer, 1996; 32A(13):2334-2341.
    6. Stetler-Stevenson M. Flow cytometry in lymphoma diagnosis and prognosis: useful? Best Pract. Res. Clin. Haematol., 2003; 16(4):583-597.
    7. Pilarski LM, Szczepek AJ, Belch AR. Deficient drug transporter function of bone marrow-localized and leukemic plasma cells in multiple myeloma. Blood, 1997; 90(9):3751-3759.
    8. Licht T, Haskins M, Henthorn P, et al. Drug selection with paclitaxel restores expression of linked IL-2 receptor gamma-chain and multidrug resistance (MDR1) transgenes in canine bone marrow. Proc. Natl. Acad. Sci. U. S. A., 2002; 99(5):3123-3128.
    9. Canonico B, Zamai L, Burattini S, et al. Evaluation of leukocyte stabilisation in TransFix (R)-treated blood samples by flow cytometry and transmission electron microscopy. J. Immunol. Methods, 2004; 295(1-2):67-78.
    10. Gabrijel M, Repnik UK, Kreft M, Grilc S, Jeras M, Zorec R. Quantification of cell hybridoma yields with confocal microscopy and flow cytometry. Biochem. Biophys. Res. Commun., 2004; 314(3):717-723.
    11. Saengkhae C, Loetchutinat C, Garnier-Suillerot A. Kinetic analysis of fluorescein and dihydrofluorescein effluxes in tumour cells expressing the multidrug resistance protein, MRP1. Biochem. Pharmacol., 2003; 65(6):969-977.
    12. Zhang H, Jin WR. Determination of different forms of human interferon-gamma in single natural killer cells by capillary electrophoresis with on-capillary immunoreaction and laser-induced fluorescence detection. Electrophoresis, 2004; 25(7-8):1090-1095.
    13. Li HL, Xue G, Yeung ES. Selective detection of individual DNA molecules by capillary polymerase chain reaction. Anal. Chem., 2001; 73(7):1537-1543.
    14. Chiu DT, Lillard SJ, Scheller RH, et al. Probing single secretory vesicles with capillary electrophoresis. Science, 1998; 279(5354):1190-1193.
    15. Jankowski JA, Tracht S, Sweedler JV. Assaying single cells with capillary electrophoresis. Trac-Trends Anal. Chem., 1995; 14(4):170-176.
    16. Yeung ES. Study of single cells by using capillary electrophoresis and native fluorescence detection. J. Chromatogr. A, 1999; 830(2):243-262.
    17. Meredith GD, Sims CE, Soughayer JS, Allbritton NL. Measurement of kinase activation in single mammalian cells. Nat. Biotechnol., 2000; 18(3):309-312.
    18. Hu S, Zhang L, Cook LM, Dovichi NJ. Capillary sodium dodecyl sulfate-DALT electrophoresis of proteins in a single human cancer cell. Electrophoresis, 2001; 22(17):3677-3682.
    19. Anderson AB, Ciriacks CM, Fuller KM, Arriaga EA. Distribution of zeptornole-abundant doxorubicin metabolites in subcellular fractions by capillary electrophoresis with laser-induced fluorescence detection. Anal. Chem., 2003; 75(1):8-15.
    20. Woods LA, Roddy TP, Ewing AG. Capillary electrophoresis of single mammalian cells. Electrophoresis, 2004; 25(9 SI Sp. Iss. SI):1181-1187.
    21. Loetchutinat C, Saengkhae C, Marbeuf-Gueye C, Garnier-Suillerot A. New insights into the P-glycoprotein-mediated effluxes of rhodamines. Eur. J. Biochem., 2003; 270(3):476-485.
    22. Baracca A, Sgarbi G, Solaini G, Lenaz G. Rhodamine 123 as a probe of mitochondrial membrane potential: evaluation of proton flux through F-0 during ATP synthesis. Biochim. Biophys. Acta-Bioenerg., 2003; 1606(1-3):137-146.
    23. Yumoto R, Murakami T, Nakamoto Y, Hasegawa R, Nagai J, Takano M. Transport of rhodamine 123, a P-glycoprotein substrate, across rat intestine and Caco-2 cell monolayers in the presence of cytochrome P-450 3A-relatedcompounds. J. Pharmacol. Exp. Ther., 1999; 289(1):149-155.
    24. Hjerten S. High-performance electrophoresis-elimination of electroendosmosis and solute adsorption. J. Chromatogr., 1985; 347(2):191-198.
    25. Hamilton KO, Yazdanian MA, Audus KL. Modulation of P-glycoprotein activity in Calu-3 cells using steroids and beta-ligands. Int. J. Pharm., 2001; 228(1-2):171-179.
    26. Lan LB, Ayesh S, Lyubimov E, Pashinsky I, Stein WD. Kinetic parameters for reversal of the multidrug pump as measured for drug accumulation and cell killing. Cancer Chemother. Pharmacol., 1996; 38(2):181-190.
    27. Ingels F, Beck B, Oth M, Augustijns P. Effect of simulated intestinal fluid on drug permeability estimation across Caco-2 monolayers. Int. J. Pharm., 2004;
    274(1-2):221-232.
    28. Stormer E, Perloff MD, Von Moltke LL, Greenblatt DJ. Methadone inhibits rhodamine123 transport in Caco-2 cells. Drug Metab. Dispos., 2001; 29(7):954-956.
    29. Li AP. Screening for human ADME/Tox drug properties in drug discovery. Drug Discov. Today, 2001; 6(7):357-366.
    30. Ungell AB. Caco-2 replace or refine? Drug Discov. Today: Technologies, 2004; 1(1):423-430.
    31. Eytan GD, Regev R, Oren G, Hurwitz CD, Assaraf YG. Efficiency of P-glycoprotein-mediated exclusion of rhodamine dyes from multidrug-resistant cells is determined by their passive transmembrane movement rate. Eur. J. Biochem., 1997; 248(1):104-112.
    32. Zhang L, Zheng Y, Chow M, Zuo Z. Investigation of intestinal absorptionand disposition of green tea catechins by Caco-2 monolayer model. Int. J. Pharm., 2004; 287(1-2):1-12.
    33. Stein WD. Kinetics of the multidrug transporter (P-glycoprotein) and its reversal. Physiol. Rev., 1997; 77(2):545-590.
    34. Winssinger N, Ficarro S, Schultz PG, Harris JL. Profiling protein function with small molecule microarrays. Proc. Natl. Acad. Sci. U. S. A., 2002; 99(17):11139-11144.
    35. Jessani N, Humphrey M, McDonald WH, et al. Carcinoma and stromal enzyme activity profiles associated with breast tumor growth in vivo. Proc. Natl. Acad. Sci. U. S. A., 2004; 101(38):13756-13761.
    1. Gottesman MM. How cancer-cells evade chemotherapy - 16 th Richard-and-Hinda-Rosenthal-Foundation award lecture. Cancer Res., 1993; 53(4):747-754.
    2. Gottesman MM, Fojo T, Bates SE. Multidrug resistance in cancer: role of ATP-dependent transporters. Nat. Rev. Cancer, 2002; 2(1):48-58.
    3. Szakacs G, Paterson JK, Ludwig JA, Booth-Genthe C, Gottesman MM. Targeting multidrug resistance in cancer. Nat. Rev. Drug Discov., 2006; 5(3):219-234.
    4. Marx JL. Drug-resistance of cancer-cells probed. Science, 1986; 234(4778):818-820.
    5. Leylandjones B, Dalton W, Fisher GA, Sikic BI. Reversal of multidrug-resistance to cancer-chemotherapy. Cancer, 1993; 72(11 SU Suppl. S):3484-3488.
    6. Ford JM, Hait WN. Pharmacology of drugs that alter multidrug resistance in cancer. Pharmacol. Rev., 1990; 42(3):155-199.
    7. Scheper RJ, Broxterman HJ, Scheffer GL, et al. Overexpression of A M(R) 110,000 vesicular protein in non-P-glycprotein-mediated multidrug resistance. Cancer Res., 1993; 53(7):1475-1479.
    8. Kaufmann SH, Karp JE, Jones RJ, et al. Topoisomerase-II levels and drug-sensitivity in adult acute myelogenous leukemia. Blood, 1994; 83(2):517-530.
    9. Den Boer ML, Pieters R, Kazemier KM, et al. Different expression of glutathione S-transferase alpha, mu and pi in childhood acute lymphoblastic and myeloid leukaemia. Br. J. Haematol., 1999; 104(2):321-327.
    10. Kim RS, Beck WT. Differences between drug-sensitive and drug-resistant human leukemic CEM cells in C-jun expression, AP-1 DNA-binding activity, and formation of jun/fos family, and their association with internucleosomal DNA ladders after treatment with VM-26. Cancer Res., 1994; 54(18):4958-4966.
    11. Minn AJ, Rudin CM, Boise LH, Thompson CB. Eexpression of BCL-X(L) can cofer a multidrug-resistance phenotype. Blood, 1995; 86(5):1903-1910.
    12. Dolis D, Moreau C, Zachowski A, Devaux PF. Aminophospholipid translocase and proteins involved in transmembrane phospholipid traffic. Biophys. Chem., 1997; 68(1-3):221-231.
    13. Gottesman MM, Pastan I. Biochemistry of multidrug-resistance mediated by the multidrug transporter. Annu. Rev. Biochem., 1993; 62:385-427.
    14. Brotherick I, Shenton BK, Egan M, et al. Examination of multidrug resistance in cell lines and primary breast tumours by flow cytometry. Eur. J. Cancer, 1996; 32A(13):2334-2341.
    15. Donnenberg V, Burckart G, Donnenberg A. P-glycoprotein (P-gp) function in T cells: implications for organ transplantation. Clin. Applied Immunol. Reviews, 2003(4):15-30.
    16. Troost J, Albermann N, Haefeli WE, Weiss J. Cholesterol modulates P-glycoprotein activity in human peripheral blood mononuclear cells. Biochem. Biophys. Res. Commun., 2004; 316(3):705-711.
    17. Sorrentino BR. Gene therapy to protect haematopoietic cells from cytotoxiccancer drugs. Nat. Rev. Cancer, 2002; 2(6):431-441.
    18. Edstrom JE. Nucleotide analysis on the cyto-scale. Nature, 1953; 172(4383):809-809.
    19. Matioli GT, Niewisch HB. Electrophoresis of hemoglobin in single erythrocytes. Science, 1965; 150(3705):1824-&.
    20. Marchalo,J.J., Nossal G. Electrophoretic analysis of antibody produced by single cells. Proc. Natl. Acad. Sci. U. S. A., 1968; 61(3):860-&.
    21. Kennedy RT, Oates MD, Cooper BR, Nickerson B, Jorgenson JW. Microcolumn separations and the analysis of single cells. Science, 1989; 246(4926):57-63.
    22. Wallingford RA, Ewing AG. Capillary zone electrophoresis with electrochemical detection in12.7-um diameter columns. Anal. Chem., 1988; 60(18):1972-1975.
    23. Mauthe RJ, Sideras-Haddad E, Turteltaub KW, Bench G. Quantitative imaging microscopy for the sensitive detection of administered metal containing drugs in single cells and tissue slices - a demonstration using platinum based chemotherapeutic agents. J. Pharm. Biomed. Anal., 1998; 17(4-5):651-663.
    24. Skelton TP, Zeng CX, Nocks A, Stamenkovic I. Glycosylation provides both stimulatory and inhibitory effects on cell surface and soluble CD44 binding to hyaluronan. J. Cell Biol., 1998; 140(2):431-446.
    25. Yasumoto K, Yokoyama K, Takahashi K, Tomita Y, Shibahara S. Functional analysis of microphthalmia-associated transcription factor in pigment cell-specific transcription of the human tyrosinase family genes. J. Biol. Chem., 1997; 272(1):503-509.
    26. Pohlig G, Fendrich G, Knecht R, et al. Purification, characterization and biological evaluation of recombinant leech-derived tryptase inhibitor (rLDTI) expressed at high level in the yeast Saccharomyces cerevisiae. Eur. J. Biochem., 1996; 241(2):619-626.
    27. Tong W, Yeung ES. Monitoring single-cell pharmacokinetics by capillary electrophoresis and laser-induced native fluorescence. J. Chromatogr. B, 1997; 689(2):321-325.
    28. Sims CE, Meredith GD, Krasieva TB, Berns MW, Tromberg BJ, Allbritton NL. Laser-micropipet combination for single cell analysis. Anal. Chem., 1998; 70(21):4570-4577.
    29. Woods LA, Roddy TP, Ewing AG. Capillary electrophoresis of single mammalian cells. Electrophoresis, 2004; 25(9 SI Sp. Iss. SI):1181-1187.
    30. Krylov SN, Zhang ZR, Chan N, Arriaga E, Palcic MM, Dovichi NJ. Correlating cell cycle with metabolism in single cells: Combination of image and metabolic cytometry. Cytometry, 1999; 37(1):14-20.
    31. Michels DA, Hu S, Schoenherr RM, Eggertson MJ, Dovichi NJ. Fully automated two-dimensional capillary electrophoresis for high sensitivity protein analysis. Mol. Cell. Proteomics, 2002; 1(1):69-74.
    32. Lu X, Huang WH, Wang ZL, Cheng HK. Recent developments in single-cell analysis. Anal. Chim. Acta, 2004; 510(2):127-138.
    33. Zhang H, Jin WR. Analysis of amino acids in individual human erythrocytes by capillary electrophoresis with electroporation for intracellular derivatization and laser-induced fluorescence detection. Electrophoresis, 2004; 25(3):480-486.
    34. Stetler-Stevenson M. Flow cytometry in lymphoma diagnosis and prognosis:useful? Best Pract. Res. Clin. Haematol., 2003; 16(4):583-597.
    35. Marbeuf-Gueye C, Ettori D, Priebe W, Kozlowski H, Garnier-Suillerot A. Correlation between the kinetics of anthracycline uptake and the resistance factor in cancer cells expressing the multidrug resistance protein or the P-glycoprotein. Biochim. Biophys. Acta-Mol. Cell Res., 1999; 1450(3):374-384.
    1. Kam N, Liu ZA, Dai HJ. Carbon nanotubes as intracellular transporters for proteins and DNA: An investigation of the uptake mechanism and pathway. Angew. Chem. Int. Ed., 2006; 45(4):577-581.
    2. Kam N, O'Connell M, Wisdom JA, Dai HJ. Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction. Proc. Natl. Acad. Sci. U. S. A., 2005; 102(33):11600-11605.
    3. Kam NW, Jessop TC, Wender PA, Dai H. Nanotube molecular transporters: internalization of carbon nanotube-protein conjugates into Mammalian cells. J. Am. Chem. Soc., 2004; 126(22):6850-6851.
    4. LaVan DA, McGuire T, Langer R. Small-scale systems for in vivo drug delivery. Nat. Biotechnol., 2003; 21(10):1184-1191.
    5. Martin CR, Kohli P. The emerging field of nanotube biotechnology. Nat. Rev. Drug Discov., 2003; 2(1):29-37.
    6. Son SJ, Reichel J, He B, Schuchman M, Lee SB. Magnetic nanotubes for magnetic-field-assisted bioseparation, biointeraction, and drug delivery. J. Am. Chem. Soc., 2005; 127(20):7316-7317.
    7. Bianco A, Prato M. Can carbon nanotubes be considered useful tools for biological applications? Adv. Mater., 2003; 15(20):1765-1768.
    8. Pastorin G, Wu W, Wieckowski S, et al. Double functionalisation of carbon nanotubes for multimodal drug delivery. Chem. Commun., 2006; 11:1182-1184.
    9. Bianco A, Kostarelos K, Partidos CD, Prato M. Biomedical applications of functionalised carbon nanotubes. Chem. Commun., 2005(5):571-577.
    10. Pantarotto D, Singh R, McCarthy D, et al. Functionalized carbon nanotubes for plasmid DNA gene delivery. Angew. Chem. Int. Ed., 2004;43 (39):5242-5246.
    11. Bianco A, Hoebeke J, Godefroy S, et al. Cationic carbon nanotubes bind to CpG oligodeoxynucleotides and enhance their immunostimulatory properties. J. Am. Chem. Soc., 2005; 127(1):58-59.
    12. Wu W, Wieckowski S, Pastorin G, et al. Targeted delivery of amphotericin B to cells by using functionalized carbon nanotubes. Angew. Chem. Int. Ed., 2005; 44(39):6358-6362.
    13. Kam N, Dai HJ. Carbon nanotubes as intracellular protein transporters: Generality and biological functionality. J. Am. Chem. Soc., 2005; 127(16):6021-6026.
    14. Panhuis M. Vaccine delivery by carbon nanotubes. Chem. Biol., 2003; 10(10):897-898.
    15. Gottesman MM, Fojo T, Bates SE. Multidrug resistance in cancer: role of ATP-dependent transporters. Nat. Rev. Cancer, 2002; 2(1):48-58.
    16. Persidis A. Cancer multidrug resistance. Nat. Biotechnol., 1999; 17(1):94-95.
    17. Simon SM, Schindler M. Cell biologyical mechanisms of multidrug-resistance in tumors. Proc. Natl. Acad. Sci. U. S. A., 1994;91(9):3497-3504.
    18. Swerts K, De Moerloose B, Dhooge C, Laureys G, Benoit Y, Philippe J. Prognostic significance of multidrug resistance-related proteins in childhood acute lymphoblastic leukaemia. Eur. J. Cancer, 2006; 42(3):295-309.
    19. Hamilton KO, Backstrom G, Yazdanian MA, Audus KL. P-glycoprotein efflux pump expression and activity in Calu-3 cells. J. Pharm. Sci., 2001; 90(5):647-658.
    20. Wang Y, Wu J, Wei F. A treatment method to give separated multi-walled carbon nanotubes with high purity, high crystallization and a large aspect ratio. Carbon, 2003; 41(15):2939-2948.
    21. Pan CS, Xu SY, Hu LG, et al. Using oxidized carbon nanotubes as matrix for analysis of small molecules by MALDI-TOF MS. J. Am. Soc. Mass Spectrom., 2005; 16(6):883-892.
    22. Doorn SK, Fields RE, Hu H, et al. High resolution capillary electrophoresis of carbon nanotubes. J. Am. Chem. Soc., 2002; 124(12):3169-3174.
    23. Doorn SK, Strano MS, O'Connell MJ, et al. Capillary electrophoresis separations of bundled and individual carbon nanotubes. J. Phys. Chem. B, 2003; 107(25):6063-6069.
    1. Valcarcel M, Simonet BM, Cardenas S, Suarez B. Present and future applications of carbon nanotubes to analytical science. Anal. Bioanal. Chem., 2005; 382(8):1783-1790.
    2. Pastorin G, Wu W, Wieckowski S, et al. Double functionalisation of carbon nanotubes for multimodal drug delivery. Chem. Commun., 2006;11:1182-1184.
    3. Bianco A, Kostarelos K, Partidos CD, Prato M. Biomedical applications of functionalised carbon nanotubes. Chem. Commun., 2005(5):571-577.
    4. Kam N, O'Connell M, Wisdom JA, Dai HJ. Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction. Proc. Natl. Acad. Sci. U. S. A., 2005; 102(33):11600-11605.
    5. Balasubramanian K, Burghard M. Chemically functionalized carbon nanotubes. Small, 2005; 1(2):180-192.
    6. Son SJ, Reichel J, He B, Schuchman M, Lee SB. Magnetic nanotubes for magnetic-field-assisted bioseparation, biointeraction, and drug delivery. J. Am. Chem. Soc., 2005; 127(20):7316-7317.
    7. Kam N, Dai HJ. Carbon nanotubes as intracellular protein transporters: Generality and biological functionality. J. Am. Chem. Soc., 2005; 127(16):6021-6026.
    8. Pantarotto D, Singh R, McCarthy D, et al. Functionalized carbon nanotubes for plasmid DNA gene delivery. Angew. Chem. Int. Ed., 2004; 43 (39):5242-5246.
    9. Panhuis M. Vaccine delivery by carbon nanotubes. Chem. Biol., 2003; 10(10):897-898.
    10. Suarez B, Simonet BM, Cardenas S, Valcarcel M. Separation of carbon nanotubes in aqueous medium by capillary electrophoresis. J. Chromatogr. A, 2006; 1128(1-2):282-289.
    11. Doorn SK, Fields RE, Hu H, et al. High resolution capillary electrophoresis of carbon nanotubes. J. Am. Chem. Soc., 2002; 124(12):3169-3174.
    12. Doorn SK, Strano MS, O'Connell MJ, et al. Capillary electrophoresis separations of bundled and individual carbon nanotubes. J. Phys. Chem. B, 2003; 107(25):6063-6069.
    13. Kam NW, Jessop TC, Wender PA, Dai H. Nanotube molecular transporters: internalization of carbon nanotube-protein conjugates into Mammalian cells. J. Am. Chem. Soc., 2004; 126(22):6850-6851.
    14. Disney MD, Zheng J, Swager TM, Seeberger PH. Detection of bacteria with carbohydrate-functionalized fluorescent polymers. J. Am. Chem. Soc., 2004; 126(41):13343-13346.
    15. Wang Y, Wu J, Wei F. A treatment method to give separated multi-walled carbon nanotubes with high purity, high crystallization and a large aspect ratio. Carbon, 2003; 41(15):2939-2948.
    16. Pan CS, Xu SY, Hu LG, et al. Using oxidized carbon nanotubes as matrix for analysis of small molecules by MALDI-TOF MS. J. Am. Soc. Mass Spectrom., 2005; 16(6):883-892.
    17. Armstrong DW, Girod M, He LF, et al. Mechanistic aspects in the generation of apparent ultrahigh efficiencies for colloidal (microbial) electrokinetic separations. Anal. Chem., 2002; 74(21):5523-5530.
    18. Kam N, Liu ZA, Dai HJ. Carbon nanotubes as intracellular transporters for proteins and DNA: An investigation of the uptake mechanism and pathway. Angew. Chem. Int. Ed., 2006; 45(4):577-581.
    19. Zhao XJ, Hilliard LR, Mechery SJ, et al. A rapid bioassay for single bacterial cell quantitation using bioconjugated nanoparticles. Proc. Natl. Acad. Sci. U. S. A., 2004; 101(42):15027-15032.
    20. Szakacs G, Paterson JK, Ludwig JA, Booth-Genthe C, Gottesman MM.Targeting multidrug resistance in cancer. Nat. Rev. Drug Discov., 2006; 5(3):219-234.
    21. Martin CR, Kohli P. The emerging field of nanotube biotechnology. Nat. Rev. Drug Discov., 2003; 2(1):29-37.
    22. Ferrari M. Cancer nanotechnology: Opportunities and challenges. Nat. Rev. Cancer, 2005; 5(3):161-171.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700