肝癌放疗的实验研究:索拉非尼的放射增敏效应及硬化肝脏放射后的再生
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分:索拉非尼联合放射抗人肝细胞癌放射增敏效应的体外及体内实验研究
     目的:观察索拉非尼联合放射对人肝癌细胞株SK-Hep-1及其裸鼠移植瘤的抑瘤效应,明确索拉非尼与放射是否具有协同抗肝细胞癌效应并对两种方法联合应用的有效方式进行探讨。
     材料与方法:研究分体外及体内实验。体外实验中:(1)细胞增殖毒性试验。采用CCK-8法,测出索拉非尼作用SK-Hep-1细胞株48小时的半致死浓度(IC50),进而确定索拉非尼用于放射增敏实验的合适浓度。(2)克隆形成实验。分为3组,分别给予单纯放射、索拉非尼作用48小时后同步联合放射、放射后序贯应用索拉非尼作用48小时。根据各剂量点存活分数(SF),经多靶单击数学模型拟合,获得细胞存活曲线,将联合处理组与对照组进行参数D0、SF10%、SF1%比较,得出放射增敏比(SER)。体内实验中:(1)建立人肝癌细胞株SK-Hep-1裸鼠移植瘤模型。(2)荷瘤裸鼠分为3组:单纯放射组、30mg/kg索拉非尼灌胃7天后放射组、100mg/kg索拉非尼灌胃7天后放射组。放射剂量分别为单次0Gy、2Gy、4Gy、6Gy、8Gy、10Gy。观察各组肿瘤的生长延迟时间,比较肿瘤体积生长至原先2倍的生长延迟。经Gompertz模型拟合获得肿瘤的剂量效应曲线,将联合处理组与单纯放射组进行参数比较,计算出剂量修饰因子(DMF)。
     结果:体外实验中,索拉非尼作用48小时对SK-Hep-1增殖的IC50为9.5625μM,索拉非尼浓度选用1μM,用于联合放射组的克隆形成实验。多靶单击模型拟合得出,索拉非尼同步联合放射的SER(DO)、SER(SF10%)及SER(SF1%)分别为1.1、1.3、1.2。体内实验中,30mg/kg索拉非尼联合放射2Gy、4Gy、6Gy、8Gy后的TGD分别为5.3天、15.1天、19天、20.9天;100mg/kg索拉非尼联合放射2Gy、4Gy、6Gy、8Gy后的TGD分别为10.9天、16.6天、20.3天、22.6天。30mg/kg及100mg/kg索拉非尼联合放射的DMF分别为1.3至1.8,以100mg/kg索拉非尼联合放射更明显。
     结论:体外及体内实验结果显示,索拉非尼同步联合放射有放射增敏效应。
     第二部分:索拉非尼同步联合放射抗人肝细胞癌放射增敏机制的实验研究
     目的:第一部分实验结果表明,索拉非尼同步放射治疗人肝癌细胞株SK-Hep-1有放射增敏作用。本研究探讨索拉非尼放射增敏效应的机制。
     材料与方法:(1)SK-Hep-1细胞经1μM索拉非尼处理48小时后同步放射OGy、1Gy、2Gy、6Gy,应用Western blot法检测细胞蛋白VEGFR-2.ERK、NF-κB及Ku 70磷酸化及非磷酸化表达,与单纯放射组进行比较。(2)给予SK-Hep-1细胞OGy、1Gy、2Gy、4Gy、6Gy、8Gy放射后,应用ELISA法检测放射后0h、24h、48h、72h不同时期培养液内VEGF含量;并用RT-PCR检测在0Gy、1Gy、2Gy、6Gy、8Gy放射后24h、48h,细胞的VEGF mRNA表达,观察放射对人肝癌细胞分泌VEGF的影响、放射是否可以引起人肝癌细胞株过分泌VEGF。
     结果:(1)Western blot检测结果:单纯放射后,DNA修复蛋白Ku 70磷酸化水平略增高;1μM索拉非尼处理后,VEGFR-2及Ku 70磷酸化明显抑制;索拉非尼同步联合放射后,VEGFR-2、ERK及Ku 70蛋白的磷酸化均明显受抑制:NF-κB的磷酸化在索拉非尼联合6Gy放射后有轻度抑制。(2)ELISA检测结果:放射后,VEGF浓度整体上高于对照组,且增长幅度强于对照组;在24h及48h时以2Gy放射组显著,在72h时,放射组VEGF浓度均高于对照组,1,2,4,6Gy组增高显著(P<0.05),其中1Gy组最明显,8Gy组不明显(P>0.05)。在放射组中,以1、2、4、6Gy放射后48h-72h培养液中VEGF浓度为最高,放射剂量继续增加并不能引起VEGF的升高;72h时,8Gy组与对照组相比无显著差异,明显低于1、2、4、6Gy组。8Gy高剂量放射诱发VEGF增高的效应并不明显,可能与高剂量放射后细胞死亡增加显著有关。(3)RT-PCR结果SK-Hep-1细胞8Gy放射24h后VEGF mRNA表达增强,48h后更为明显;放射1Gy、2Gy、6Gy后48h,VEGF mRNA表达也明显上升;而对照组(0Gy)在24h及48h时VEGF mRNA表达无明显差异。用FR-2000型图像分析系统对电泳图像进行光密度扫描,计算得到VEGF mRNA的相对转录量(与β-Actin mRNA光密度值的比值),结果显示,VEGF mRNA的表达随放射剂量及放射后时间的延长,有加速升高的趋势,在8Gy放射后最为明显。结果提示,未放射时SK-Hep-1细胞培养液中VEGF浓度随时问延长的升高,是由于培养瓶中VEGF的长期蓄积;而受放射后VEGF的进行性加速升高,与放射诱导的VEGF mRNA表达增强有关。
     结论:索拉非尼放射增敏机制可能为:放射诱发SK-Hep-1细胞过高分泌VEGF,且通过上调DNA修复蛋白的表达加速DNA损伤修复;索拉非尼同步联合放射后,可通过抑制VEGFR-2、ERK1/2及Ku 70的磷酸化,从而抑制放射后肿瘤细胞DNA损伤的修复,起到放射增敏作用。在体索拉非尼的放射增敏机制可能是:索拉非尼抑制放射后肿瘤细胞DNA损伤的修复;同时,放射可引起人肝癌细胞过度分泌VEGF,增加肝细胞癌(HCC)的增殖;而索拉非尼单独或联合放射均可明显抑制VEGFR-2磷酸化,从而可以减少细胞膜VEGFR-2与胞外VEGF的活性结合,从而在体内可减少肿瘤新生血管形成,延缓或抑制肿瘤的生长。本实验研究结果提示,在临床使用放射治疗HCC时,同步联合应用索拉非尼有可能增强局部疗效,同时减少放射诱发的VEGF升高,降低复发及远地转移的几率
     第三部分:肝硬化大鼠模型建立及肝硬化自然消退中肝再生的研究
     目的:我们在对硬化肝脏放射后的肝再生进行实验研究时,需要在肝硬化形成后继续观察120天。为此我们建立一个适合长时期观察的肝硬化动物模型,并对肝硬化自然消退过程中的肝功能及肝再生进行研究,所得到的数据可以作为基础值,更好的理解、解释放射实验的结果。
     材料与方法:给予112只Wistar大鼠饮用0.03%硫代乙酰胺(TAA)29周,来建立肝硬化动物模型。肝硬化模型建立后,将TAA撤除,继续观察120天,每隔30天处死5只大鼠,获取肝脏和血液样本,观察硬化及肝再生的动态变化。(1)全自动生化仪检测血清ALT、AST、ALP及PA,观察肝功能变化;(2)三色染色观察胶原纤维含量、血清TGF-β1浓度、TGF-β1免疫组化染色表达及肝TGF-β1 mRNA表达、肝羟脯氨酸含量,以此观察肝硬化的动态变化;(3)肝脏指数、H&E染色分析肝细胞有丝分裂指数(MI)、流式细胞术检测肝细胞增殖分数(PI)、PCNA免疫组化染色表达及qRT-PCR检测肝脏PCNA mRNA表达,用于分析肝再生变化;(4)ELISA法检测血清肝再生相关生长因子HGF、VEGF、TGF-α及IL-6。
     结果:大鼠应用TAA29周后,经病理检测证实形成肝硬化,模型建立,建模率96%。模型建立时,表现为明显肝再生,伴肝功能不全。撤除TAA后,大鼠肝硬化出现白发消退,肝脏胶原纤维减少、羟脯氨酸含量下降、肝脏TGF-β1表达下调。在肝硬化消退时,伴随肝功能的改善。在肝硬化消退120天后,明显肝纤维化仍然可见。撤除TAA后,肝再生显著降低,肝细胞MI、PI、PCNA mRNA表达下降,免疫组化PCNA阳性染色比例下降,此外,血清HGF和VEGF也出现下降。
     结论:肝硬化大鼠动物模型可以经口服0.03%TAA29周后诱导形成。肝硬化能发生自发消退,消退过程中肝功能改善、肝再生下降。此模型形成的肝硬化可以维持120天以上,适合需长时期观察的研究使用。
     第四部分:硬化肝脏放射后肝损伤及肝再生的实验研究目的:研究肝硬化大鼠右半肝脏给予亚致死性放射后,是否能产生肝再生、是否能触发未放射的左半肝肝脏出现肝再生
     材料与方法:将研究分成连续的两个实验。实验一中,肝硬化大鼠分成4组,即对照组(未放射)、5-0Gy、10-0Gy及15-0Gy组,后3组分别给予右半肝单次放射5Gy、10Gy及15Gy,左半肝不放射。将放射前定义为d0,放射后观察120天,每隔30天,分别于d30、d60、d90及d120每组处死5只大鼠,获取血清和肝脏标本进行肝损伤与肝再生评价。实验二的设计依赖于实验一结果。实验一结果显示,右半肝放射5Gy、10Gy、15Gy均能引起放射半肝及未放射半肝发生肝再生,以15Gy为最明显。实验二中,将肝硬化大鼠分成5组,分别为假照对照组(0-0 Gy)、15-0Gy、15-2.5Gy、15-5Gy及15-7.5Gy组,后4组选择15Gy作为初始刺激放射右半肝,并同时分别放射左半肝0Gy、2.5Gy、5Gy及7.5Gy。将放射前定义为d0,放射后观察150天,每隔30天,分别于d30、d60、d90、d120及d150每组处死5只大鼠,获取血清和肝脏标本进行肝损伤与肝再生评价。实验一及实验二的观察指标相同:(1)肝损伤:大鼠体重、血清ALT、AST、ALP及PA;(2)肝再生:肝脏指数、H&E染色分析肝细胞有丝分裂指数(MI)、流式细胞术检测肝细胞增殖分数(PI)、PCNA免疫组化染色表达及qRT-PCR检测肝脏PCNA mRNA表达、ELISA法检测血清肝再生相关生长因子HGF、VEGF、TGF-α及IL-6;(3)血清TGF-β1浓度、TGF-β1免疫组化染色表达及肝TGF-β1 mRNA表达。
     结果:单纯给予右半肝5Gy、10Gy、15Gy放射,或者给予右半肝15Gy放射同时左半肝放射2.5Gy、5 Gy、7.5Gy,均可引起肝再生,且在左右半肝均发生。肝再生指标中,PCNA免疫组化阳性染色比例、PCNA mRNA表达、PI、MI明显升高,以左半肝略显著;同时血清HGF、VEGF、IL-6浓度均显著升高。放射后肝功能受损,血清ALT、AST、ALP、TGF-β1升高,PA降低,肝组织中TGF-β1表达明显增高,以右半肝显著。随放射剂量及放射肝体积增加,肝再生与肝损伤表现更显著。实验中大鼠死亡率均不高于11.11%,实验使用的放射剂量及范围对肝硬化大鼠致死性不高。
     结论:硬化肝脏能耐受一定程度的放射,15Gy的亚致死性部分肝脏放射可以在放射肝及未放射肝,引起剂量和体积依赖性肝损伤与肝再生。组织学上,肝损伤在受到更高剂量放射的右半肝更明显,而肝再生在接受较低剂量的左半肝更显著。
Part I:Study on radiosensitization of sorafenib in treatment of hepatocellular carcinoma (HCC) in vitro and in vivo
     Objective:To investigate the radiosensitization of sorafenib in treatment of HCC cell line SK-Hep-1 and its transplanted tumor in nude mice.
     Material & Methods:The present study was designed into two experiments in vitro and in vivo. For experiment in vitro, cell proliferation toxicity was measured by using CCK-8 method to obtain 50% inhibition concentration (IC50) of sorafenib 48 hours after treating SK-Hep-1 cell line. Clone formation assay was applied to obtain survival fraction (SF) of each treatment, i.e., IR alone as control, IR synchronizing sorafenib 48 hours afer incubing cell line and IR followed by sorafenib. Based on multi-target single-hit model, cell survival curve was gained and theoretical IR doses of D0, SF10% and SF1% could be calculated. Sensitizing enhancement ratios (SERs) of sorafenib combing IR were obtained by compared with those of group control. For experiment in vivo, nude mice transplanted tumor model was established firstly. The mice were feeded vehicle,30mg/kg and 100mg/kg sorafenib respectively for 7 days, and the tumors were irradiated with doses of OGy,2Gy,4Gy,6Gy,8Gy and 10Gy on day 8 repectively. Tumor growth delay (TGD) was assessed. Dose response curve of transplanted tumor was obtained according to Gompertz model. Given growing to double of initial tumor volume before treatment, TGD of combination group was compared with that of IR alone group, then dose modify fraction (DMF) was calculated to evaluate synergetic anti-tumor effect of sorafenib and IR.
     Results:Cell proliferation toxicity assay presented IC50 of sorafenib 48 hours after treating SK-Hep-1 cell line was 9.5625μM and the concentration of 1μM, less than IC10, was used in clone formation experiment. According to multi-target single-hit model, cell survival curve of treatment with sorafenib combined with IR concurrently and theoretical IR doses of D0, SF10% and SF1% were gained. SER (DO)、SER(SF10%)and SER(SF1%) were 1.1138、1.2749、1.2017 repectively, which were more than 1 and radiosensitizing effect of sorafenib combined with IR concurrently was confirmed. In vivo, after irradiated with 2Gy、4Gy、6Gy、8Gy concurrently combined with 30mg/kg sorafenib, TGD were 5.3 days,15.1 days,19 days and 20.9 days, respectively. As to IR combined with 100mg/kg sorafenib, TGD were 10.9 days,16.6 days,20.3 days and 22.6 days, respectively. DMFs of 30mg/kg and 100mg/kg sorafenib combined IR were between 1.3 and 1.8. The stronger radiosensitization was shown in 100mg/kg sorafenib combined with IR.
     Conclusion:Sorafenib combined with IR concurrently presented radiosensitation in vitro and in vivo.
     Part II:The mechanism of radiosensitization of sorafinib in treatment of hepatocellular carcinoma (HCC)
     Objective:The previous data had shown the radiosensitization of sorafenib in treatment of HCC cell line. This study is to investigate the underlying mechanism.
     Material & Methods:The methods of Western blotting, enzyme linked immunosorbent assay (ELISA) and RT-PCR were used to investigate molecular mechanism of radiosensitizing effect. SK-Hep-1 cell line was treated with 1μM sorafenib for 48 hours concurrently combined with IR of OGy, 1Gy,2Gy and 6Gy respectively. Then the cells were collected, from which the total protein was extracted. The expressions of VEGFR-2, ERK, NF-κB and Ku 70 were assessed with or without phosphorylation. ELISA was applied to measure concentration of VEGF in medium 0 hour,24 hours,48 hours and 72 hours after SK-Hep-1 being irradiated with single dose of OGy, 1Gy,2Gy,4Gy,6Gy and 8Gy respectively. Otherwise, expression of VEGF mRNA of these cells 24 hours and 48 hours after treated with IR of OGy, 1Gy, 2Gy,6Gy,8Gy was assayed also.
     Results:(1) The data of Western blotting showed the up-regulation of phosphorylation in DNA repair protein, Ku 70 with IR alone. Phosphorylations in VEGFR-2 and Ku 70 were inhibited obviously by treatment with 1μM sorafenib alone. The treatment of sorafenib combined with IR inhibited the expressions of phosphorylated VEGFR-2, ERK and Ku 70. (2) The results of ELISA assay presented that medium concentration of VEGF increased after IR higher than that of control group. The significant increase presented 24 hours and 48 hours after IR of 2 Gy. The concentrations of VEGF at 72 hours after IR of 1Gy,2Gy,4Gy and 6Gy were significantly higher than those of control group (P<0.05), the highest value after 1 Gy IR, while the difference was not notable after 8Gy IR (P>0.05). As a whole, concentration of VEGF rose with the increase of IR dose, but decreased with high IR dose of 8Gy, of which the reason was the decline of survival cells after 8Gy IR probably. (3) The data of RT-PCR showed expression of VEGF mRNA of Sk-hep-1 was enhanced 24 hours, especially 48 hours after IR. The increase of VEGF mRNA expression presented 48 hours after IR of 1Gy,2Gy,6Gy also. The expressions of VEGF mRNA in control group showed no significant difference between 24 hours and 48 hours after sham IR. VEGF relative transcription ratio was calculated with image analysis system compared with expression ofβ-Actin mRNA, indicating that expression of VEGF mRNA upregulated accelerated parallel to the increase of dose of IR and time after IR, most evident with 8Gy IR. The data implied that the concentration of medium VEGF after IR increased owing to IR-induced enhancement of VEGF mRNA expression.
     Conclusion:IR could stimulate VEGF secretion of SK-Hep-1 cell line and induce upregulation of DNA repair protein to accelerate repair of DNA damage. Sorafenib combined with IR was capable of inhibiting phosphorylations of VEGFR-2, ERK and Ku 70. These mechanisms resulted in radiosensitization of sorafenib.
     PartⅢ:A natural process of cirrhosis resolution and deceleration of liver regeneration after thioacetamide withdrawal in a rat model
     Objective:To establish a useful rat model with cirrhosis and evaluate liver injury and liver regeneration during cirrhosis resolution.
     Material & Methods:In a radiobiological study of partial liver irradiation on thioacetamide (TAA) induced cirrhotic liver in rat, the observation time was 120 days after TAA withdrawal. The natural process was recorded, focusing on cirrhosis and regeneration as the baseline to understand and interpret outcome. Cirrhosis in rats was induced by orally drinking 0.03% TAA water for 29 weeks. After establishment of cirrhosis model, the rats were observed for 120 days upon TAA withdrawal to investigate the dynamic changes of liver cirrhosis and regeneration. The endpoints were:(1). Histological change. (2). Liver functions. (3). Cirrhosis:Trichrome stain serum and in situ transforming growth factor beta-1 (TGF-β1), hydroxyproline content of liver. (4). Liver regeneration:liver index; hepatocyte mitotic index (MI); hepatocyte proliferation index (PI) by flow cytometry; PCNA labeling index (LI) by IHC and expression of PCNA mRNA. (5). Growth factors:serum HGF, VEGF, TGF-a and IL-6.
     Results:The cirrhosis model was established after 29 weeks. And upon TAA withdrawal, the cirrhosis presented resolution. Gradual improvement in liver functions was noted with decreasing ALT, AST and ALP, and increasing PA during cirrhosis resolution. The resolution of cirrhosis was evident by histological improvement with attenuation of collagen fiber and hydroxyproline and decrease of TGF-β1 IHC index, but cirrhosis was still existed on 120 days after TAA withdrawal. Significant deceleration of liver regeneration was demonstrated with TAA withdrawal, evidenced by decrease of hepatocyte MI and PI, reduced expression of PCNA mRNA and PCNA LI, and decreases of serum HGF and VEGF.
     Conclusion:Cirrhosis was induced by drinking 0.03% TAA water for 29 weeks in rats. Upon TAA withdrawal it was revealed that hepatic cirrhosis continuously resolved, but still existed up to 120 days, and liver regeneration significantly decelerated.
     PartⅣ:Hepatic Regeneration after Partial Liver Irradiation in Cirrhotic Rats
     Objective:To investigate if the right half liver were capable of regeneration after sublethal irradiation (IR) and if the IR would trigger regeneration of the left half liver in cirrhotic rat.
     Material & Methods:This study was designed into two experiments in turn. For experiment one, the cirrhotic rats were divided into control group (without IR), and 5 Gy, 10Gy and 15Gy groups. IR dose of 5 Gy, 10Gy and 15Gy were given as single dose to the right half liver of each group respectively with observations of the endpoints scheduled on 0-day (before IR),30 days,60 days,90 days and 120 days after IR. The results showed a dose-dependent liver proliferation could be stimulated by sublethal partial liver IR of 5Gy to 15Gy, in both irradiated and unirradiated part livers, most notable by 15 Gy. Consequently, the IR of 15 Gy was chosen as a initial stimulus delivered to the right half liver in the experiment two. For experiment two, the cirrhotic rats were divided into sham (OGy) group,2.5 Gy,5 Gy and 7.5 Gy groups according to the IR dose delivered to the left half liver with the right half liver irradiated by 15 Gy. The endpoints same as those in experiment one were observed every 30 days till 150 days after IR. The cirrhotic rats without radiation were chosen to serve as control. The following endpoints were evaluated:(1). Liver injury:Body weight and Serum ALT, AST, ALP and PA. (2). Liver regeneration:liver index; hepatocyte mitotic index (MI); hepatocyte proliferation index (PI); PCNA labeling index (LI); expression of PCNA mRNA; serum HGF, VEGF, TGF-α, IL-6; (3) Serum and in situ TGF-β1.
     Results:IR of 5 Gy, 10Gy and 15Gy to the right half liver as well as IR of 2.5 Gy, 5 Gy and 7.5 Gy to the left half liver with the right half liver irradiated by 15 Gy could induce hepatic regeneration in both right and left half livers with indicators of liver regeneration including positive staining of PCNA and PCNA mRNA expression, PI and MI, serum HGF, VEGF and IL-6 increasing after IR, and deteriorated liver injury with decrease of ALT, AST and ALP and increase of PA, expression of TGF-β1 in Serum and in situ. The IR-induced hepatic injury and liver regeneration increased accompanying with higher IR dose and whole liver irradiated.
     Conclusion:Dose-dependent and volume-dependent liver injury and liver proliferation could be stimulated by sublethal partial liver IR of 15Gy in both irradiated and unirradiated portion.
引文
[1]Llovet JM, Burroughs A, Bruix J. Hepatocellular carcinoma[J]. Lancet, 2003,362(9399):1907-1917.
    [2]Parkin DM, Bray F, Ferlay J, et al. Global cancer statistics,2002[J]. CA Cancer J Clin,2005,55(2):74-108.
    [3]Liang SX, Zhu XD, Lu HJ, et al. Hypofractionated three-dimensional conformal radiation therapy for primary liver carcinoma[J]. Cancer,2005,103(10):2181-2188.
    [4]Matsuzaki Y, Osuga T, Saito Y, et al. A new, effective, and safe therapeutic option using proton irradiation for hepatocellular carcinoma[J]. Gastroenterology, 1994,106(4):1032-1041.
    [5]Tsujii H, kamada T, Baba M, et al. Clinical advantages of carbon-ion radiotherapy. New J Physics 10 (2008) 075009
    [6]Russo SM, Tepper JE, Baldwin AS, et al. Enhancement of radiosensitivity by proteasome inhibition:implications for a role of NF-κB[J]. Int J Radiat Oncol Biol Phys,2001,50(1):183-193.
    [7]Munshi A, Kurland JF, Nishikawa T, et al. Inhibition of constitutively activated nuclear factor-κB radiosensitizes human melanoma cells[J]. Mol Cancer Ther, 2004,3(8):985-992.
    [8]Klopp AH, Spaeth EL, Dembinski JL, et al. Tumor Irradiation Increases the Recruitment of Circulating Mesenchymal Stem Cells into the Tumor Microenvironment[J]. Cancer Res,2007,67(24):11687-11695.
    [9]Chung YL, Jian JJ, Cheng SH, et al. Sublethal Irradiation InducesVascular Endothelial Growth Factor and Promotes Growth of Hepatoma Cells:Implications for Radiotherapyof Hepatocellular Carcinoma[J]. Clin Cancer Res,2006,12(9): 2706-2715.
    [10]Higgins GM, Anderson RM. Experimental pathology of the liver. I. Restoration of the liver of the white rat following partial surgical removal[J]. Arch Pathol, 1931,12:186-202.
    [11]Nelson Fausto, Kimberly J. Mechanisms of liver regeneration and their clinical implications[J]. J Hepatobiliary Pancreat Surg,2005,12:181-189.
    [12]Geraci JP, Mariano MS. Radiation hepatology of the rat:parenchymal and nonparenchymal cell injury[J]. Radiat Res,1993,136,205-213.
    [13]Andrews AE, Goff JB. Regeneration of the liver after radiation therapy demonstrated by liver scanning[J]. J Ark Med Soc,1973,70:109-110.
    [14]Dawson LA, McGinn CJ, Normolle D, Ten Haken RK, Walker S, Ensminger W, et al. Escalated focal liver radiation and concurrent hepatic artery fluorodeoxyuridine for unresectable intrahepatic malignancies[J]. J Clin Oncol, 2000,18:2210-2218.
    [15]Zhao JD, Jiang GL, Hu WG, et al. Hepatocyte regeneration after partial liver irradiation in rats[J]. Exp Toxicol Pathol,2009,61(5):511-8.
    [16]Llovet JM, Bruix J. Systematic review of randomized trials for unresectable hepatocellular carcinoma:Chemoembolization improves survival[J]. Hepatology, 2003,37:429-442.
    [1]Llovet JM, Burroughs A, Bruix J. Hepatocellular carcinoma[J]. Lancet, 2003,362(9399):1907-1917.
    [2]Parkin DM, Bray F, Ferlay J, et al. Global cancer statistics,2002[J]. CA Cancer J Clin,2005,55(2):74-108.
    [3]Liang SX, Zhu XD, Lu HJ, et al. Hypofractionated three-dimensional conformal radiation therapy for primary liver carcinoma[J]. Cancer,2005,103(10):2181-2188.
    [4]Matsuzaki Y, Osuga T, Saito Y, et al. A new, effective, and safe therapeutic option using proton irradiation for hepatocellular carcinoma[J]. Gastroenterology, 1994,106(4):1032-1041.
    [5]Tsujii H, kamada T, Baba M, et al. Clinical advantages of carbon-ion radiotherapy. New J Physics 10 (2008) 075009
    [6]American cancer society, surveillance research,2008. Available at http://www.cancer.org. Selected Cancers. Cancer Facts & Figures 2008,17.
    [7]Bruix J, Hessheimer AJ, Forner A, et al. New aspects of diagnosis and therapy of hepatocellular carcinoma[J]. Oncogene,2006,25(27):3848-3856.
    [8]Available at:http://www.nccn.org/professionals/physician_gls/PDF/hepatobiliary.pdf.
    [9]Russo SM, Tepper JE, Baldwin AS, et al. Enhancement of radiosensitivity by proteasome inhibition:implications for a role of NF-κB[J]. Int J Radiat Oncol Biol Phys,2001,50(1):183-193.
    [10]Munshi A, Kurland JF, Nishikawa T, et al. Inhibition of constitutively activated nuclear factor-KB radiosensitizes human melanoma cells[J]. Mol Cancer Ther, 2004,3(8):985-992.
    [11]Klopp AH, Spaeth EL, Dembinski JL, et al. Tumor Irradiation Increases the Recruitment of Circulating Mesenchymal Stem Cells into the Tumor Microenvironment[J]. Cancer Res,2007,67(24):11687-11695.
    [12]Chung YL, Jian JJ, Cheng SH, et al. Sublethal Irradiation InducesVascular Endothelial Growth Factor and Promotes Growth of Hepatoma Cells:Implications for Radiotherapyof Hepatocellular Carcinoma[J]. Clin Cancer Res, 2006,12(9):2706-2715.
    [13]Scott M. Wilhelm, Christopher CalRer, LiYa Tang,et al. BAY 43-9006 Exhibits Broad Spectrum Oral Antitumor Activity and Targets the RAF/MEK/ERK Pathway and Receptor Tyrosine Kinases Involved in Tumor Progression and Angiogenesis[J]. CANCER RESEARCH,2004,64:7099-7109
    [14]Li Liu, Yichen Cao, Charles Chen, et al. Sorafenib Blocks the RAF/MEK/ERK Pathway, Inhibits Tumor Angiogenesis, and Induces Tumor Cell Apoptosis in Hepatocellular Carcinoma Model PLC/PRF/5[J]. Cancer Res,2006,66(24): 11851-11858
    [15]沈瑜,糜福顺,主编.肿瘤放射生物学[M].北京:中国医药科技出版社,2002年:254.
    [16]John P. Plastaras, Seok-Hyun Kim, Yingqiu Y. Liu, et al. Cell Cycle-Dependent and Schedule-Dependent Antitumor Effects of Sorafenib Combined with Radiation[J]. Cancer Res,2007,67(19):9443-9454
    [17]Wenyin Shi, Christian Teschendorf,Nicholas Muzyczka, et al. Gene therapy delivery of endostatin enhances the treatment efficacy of radiation[J]. Radiotherapy and Oncology,2003,66:1-9
    [18]Cividalli A, Arcangeli G, Cruciani G, et al. Enhancement of radiation response by paclitaxel in mice according to different treatment schedules[J]. Int J Radiat Oncol Biol Phys,1998,40(5):1163~1170
    [19]郑秀龙,沈瑜,金一尊主编.肿瘤治疗增敏药[M].上海:上海科学技术文献出版社,2002年:173.
    [20]冯炎,刘泰福,桑梅仙,等.分割放射中小肠上皮细胞亚致死性损伤修复的特点[J].上海医科大学学报,1991,18(1):23-26.
    [21]Jenkins S, Hilding H, Carter C, Brink C. Plasma and tumor exposure of the raf kinase inhibitor, BAY 43-9006, in tumor-bearing NCr mice:Internal archive; 2004. Report No. MRC-01267.
    [22]Ratkowsky, D.A., 著.洪再吉等译.非线性回归模型-统一的实用方法[M].南京大学出版社,1996.
    [1]Poon RT, Ho JW, Tong CS, et al. Prognostic significance of serum vascular endothelial growth factor and endostatin in patients with hepatocellular carcinoma[J]. Br J Surg,2004,91 (10):1354-1360.
    [2]Llovet JM. Updated treatment approach to hepatocellular carcinoma[J]. J Gatroenterol,2005,40(3):225-235.
    [3]Rhee TK, Young JY, Larson AC, et al. Effect of transcatheter arterial embolization on levels of hypoxia-inducible factor-1 alpha in rabbit VX2 liver tumors[J]. J Vasc Interv Radiol,2007,18(5):639-645.
    [4]Sergio A, Cristofori C, Cardin R, et al. Transcatheter Arterial Chemoembolization(TACE) in Hepatocellular Carcinoma(HCC):The Role of Angiogenesis and Invasiveness[J]. Am J Gastroenterol,2008,103(4):914-921.
    [5]Klopp AH, Spaeth EL, Dembinski JL, et al. Tumor Irradiation Increases the Recruitment of Circulating Mesenchymal Stem Cells into the Tumor Microenvironment[J]. Cancer Res,2007,67(24):11687-11695.
    [6]Chung YL, Jian JJ, Cheng SH, et al. Sublethal Irradiation InducesVascular Endothelial Growth Factor and Promotes Growth of Hepatoma Cells:Implications for Radiotherapy of Hepatocellular Carcinoma[J]. Clin Cancer Res, 2006,12(9):2706-2715.
    [7]Russo SM, Tepper JE, Baldwin AS, et al. Enhancement of radiosensitivity by proteasome inhibition:implications for a role of NF-κB[J]. Int J Radiat Oncol Biol Phys,2001,50(1):183-193.
    [8]Munshi A, Kurland JF, Nishikawa T, et al. Inhibition of constitutively activated nuclear factor-KB radiosensitizes human melanoma cells[J]. Mol Cancer Ther, 2004,3(8):985-992.
    [9]Available at:http://www.nccn.org/professionals/physician_gls/PDF/hepatobiliary.pdf.
    [10]J.萨姆布鲁克,D.W.拉塞尔.分子克隆实验指南[M].北京:科学出版社,2002:1716.
    [11]Thorgeirsson SS, Grisham JW. Molecular pathogenesis of human hepatocellular carcinoma[J]. Nat Genet,2002,31(4):339-346.
    [12]Semela D, Dufour JF. Angiogenesis and hepatocellular carcinoma[J]. J Hepatol, 2004,41 (5):864-880.
    [13]Hwang YH, Choi JY, Kim S, et al. Over-expression of c-raf-1 proto-oncogene in liver cirrhosis and hepatocellular carcinoma[J]. Hepatol Res,2004,29(2):113-121.
    [14]Schmidt CM, McKillop IH, Cahill PA, et al. Increased MAPK expression and activity in primary human hepatocellular carcinoma[J]. Biochem Biophys Res Commun,1997,236(1):54-58.
    [15]Wilhelm SM, Carter C, Tang L, et al. BAY 43-9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression snd angiogenesis[J]. Cancer Res, 2004,64(19):7099-7109.
    [16]Liu L, Cao YC, Chen C, et al. Sorafenib Blocks the RAF/MEK/ERK Pathway, Inhibits Tumor Angiogenesis, and Induces Tumor Cell Apoptosis in Hepatocellular Carcinoma Model PLC/PRF/5[J]. Cancer Res, 2006,66(24):11851-11858.
    [17]Chenivesse X, Franco D, Brechot C, et al. MDR1(multidrug resistance) gene expression in human primary liver cancer and cirrhosis[J]. J Hepatol, 1993,18(2):168-172.
    [18]Soini Y, Virkajarvi N, Raunio H, et al. Expression of P-glycoprotein in hepatocellular carcinoma:A potential marker of prognosis [J]. J Clin Pathol, 1996:49(6):470-473.
    [19]Jiang W, Lu Z, He Y, et al. Dihydropyrinidine dehydrogenase activity in hepatocellular carcinoma:Implication in 5-fluorouracil-based chemotherapy[J]. Clin Cancer Res,1997,3(3):395-399.
    [20]Pei J, Zhang C, Gokhale PC, et al. Combination with liposome-entrapped, ends-modified raf antisense oligonucleotide (LErafAON) improves the anti-tumor efficacies of cisplatin, epirubicin, mitoxantrone, docetaxel and gemcitabine[J]. Anticancer Drugs,2004,15(3):243-253.
    [21]Richly H, Kupsch P, Passage K, et al. Results of a phase Ⅰ trial of BAY 43-9006 in combination with doxorubicin in patients with primary hepatic cancer[J]. Int J Clin Pharmacol Ther,2004,42(11):650-651.
    [22]黄文林,朱孝峰,主编.信号转导[M].北京:人民卫生出版社,2005:304.
    [23]Ahn KS, Sethi G, Aggarwal BB. Nuclear factor-kappa B:from clone to clinic[J]. Curr Mol Med,2007,7 (7):619-637.
    [24]Perkins ND, Felzien LK, Betts JC, et al. Regulation of NF-κB by Cyclin-Dependent Kinases Associated with the p300 Coactivator[J]. Science, 1997,275(5299):523-527.
    [25]Jeggo PA. DNA-PK:at the cross-roads of biochemistry and genetics[J]. Mutat Res,1997,384(l):1-14.
    [1]Schuppan D, Afdhal NH. Liver Cirrhosis[J]. Lancet,2008,371:838-851
    [2]Muller A, Machnik F, Zimmermann T, et al. Thioacetamide-induced cirrhosis-like liver lesions in rats--usefulness and reliability of this animal model[J]. Exp Pathol, 1988,34:229-236
    [3]Liu EH, Chen MF, Yeh TS, et al. A useful model to audit liver resolution from cirrhosis in rats using functional proteomics[J]. Journal of Surgical Research, 2007,138:214-223
    [4]Iredale JP, Benyon RC, Pickering J, et al. Mechanism of spontaneous resolution of rat liver fibrosis:Hepatic stellate cell apoptosis and reduced hepatic expression of metalloproteinase inhibitors[J]. J Clin Invest,1998,102:538-549
    [5]Waters NJ, Waterfield CJ, Farrant RD, et al. Metabonomic deconvolution of embedded toxicity:application to thioacetamide hepato-and nephrotoxicity[J]. Chem Res Toxicol,2005,18:639-654
    [6]Torres MI, Fernandez MI, Gil A, et al. Dietary nucleotides have cytoprotective properties in rat liver damaged by thioacetamide[J]. Life Sci,1998,62:13-22
    [7]Zimmermann T, Muller A, Machnik G, et al. Biochemical and morphological studies on production and regression of experimental liver cirrhosis induced by thioacetamide in Uje:WIST rats[J]. Z Versuchstierkd,1987,30:165-180
    [8]Yeh TS, Ho YP, Huang SF, et al. Thalidomide salvages lethal hepatic necro inflammation and accelerates recovery from cirrhosis in rats[J]. J Hepatol,2004, 41:606-612
    [9]Fontana L, Moreira E, Torres MI, et al. Dietary nucleotides correct plasma and liver microsomal fatty acid alterations in rats with liver cirrhosis induced by oral intake of thioacetamide[J]. Journal of Hepatology,1998,28:662-669
    [10]. Fontana L, Moreira E, Torres MI, et al. Serum amino acid changes in rats with thioacetamide-induced liver cirrhosis[J]. Toxicology,1996,106:197-206
    [11]David P, Alexandre E, Chenard-Neu MP, et al. Failure of liver cirrhosis induction by thioacetamide in Nagase analbuminaemic rats[J]. Laboratory Animals,2002, 36:158-164
    [12]Seong J, Han KH, Park YN, et al. Lethal hepatic injury by combined treatment of radiation plus chemotherapy in rats with thioacetamide-induced liver cirrhosis[J]. Int J Radiation Oncology Biol Phys,2003,57:282-288
    [13]Rube CE, Uthe D, Schmid KW, et al. Dose-dependent induction of transforming growth factor (TGF-) in the lung tissue of fibrosis-prone mice after thoracic irradiation[J]. Int J Radiat Oncol Biol Phys,2000,47:1033-1042
    [14]Martin M, Lefaix JL, Delanian S. TGF-β1 and radiation fibrosis:a master switch and a specific therapeutic target? [J]. Int J Radiat Oncol Biol Phys,2000,47:277
    [15]Wolf HK, Michalopoulos GK. Hepatocyte regeneration in acute fulminant and nonfulminant hepatitis:a study of proliferating cell nuclear antigen expression[J]. Hepatology,1992,15:707-713
    [16]Fausto N, Campbell JS, K.J. Riehle. Liver regeneration [J]. Hepatology,2006, 43:s45-53
    [17]Schnur J, Ola'h J, Szepesi A, et al. Throacelamideinduced hepatic fibrosis in transforming growth factor beta-1 transgenic mice[J]. Eur J Gastroenterol Hepatol,2004,16:127-133
    [18]Gressner AM, Weiskirchen R, Breitkopf K, et al. Roles of TGF-b in hepatic fibrosis[J]. Front Biosci,2002,7:d793-807
    [1]Llovet JM, Burroughs A, Bruix J. Hepatocellular carcinoma[J]. Lancet,2003, 362:1907-1917.
    [2]Parkin DM, Bray F, Ferlay J, et al. Global cancer statistics,2002. CA Cancer J
    Clin 2005;55:74-108.
    [3]Liu MT, Li SH, Chu TC, Hsieh CY, Wang AY, Chang TH, et al. Three-dimensional conformal radiation therapy for unresectable hepatocellular carcinoma patients who had failed with or were unsuited for transcatheter arterial chemoembolization[J]. Jpn J Clin Oncol,2004,34:532-539.
    [4]Zhou ZH, Liu LM, Chen WW, Meng ZQ, Lin JH, Chen Z, et al. Combined therapy of transcatheter arterial chemoembolization and three-dimensional conformal radiotherapy for hepatocellular carcinoma[J]. Br J Radiol 2007, 80:194-201.
    [5]Liang SX, Zhu XD, Xu ZY, Zhu J, Zhao JD, Lu HJ, et al. Radiation-induced liver disease in three-dimensional conformal radiation therapy for primary liver carcinoma:The risk factors and hepatic radiation tolerance[J]. Int J Radiat Oncol Biol Phys,2006,65:426-434.
    [6]Higgins GM, Anderson RM. Experimental pathology of the liver. Ⅰ. Restoration of the liver of the white rat following partial surgical removal[J]. Arch Pathol,1931, 12:186-202.
    [7]Nelson Fausto, Kimberly J. Mechanisms of liver regeneration and their clinical implications[J]. J Hepatobiliary Pancreat Surg,2005,12:181-189.
    [8]Geraci JP, Mariano MS. Radiation hepatology of the rat:parenchymal and nonparenchymal cell injury. Radiat Res,1993,136:205-213.
    [9]Andrews AE, Goff JB. Regeneration of the liver after radiation therapy demonstrated by liver scanning[J]. J Ark Med Soc,1973,70:109-110.
    [10]Dawson LA, McGinn CJ, Normolle D, Ten Haken RK, Walker S, Ensminger W, et al. Escalated focal liver radiation and concurrent hepatic artery fluorodeoxyuridine for unresectable intrahepatic malignancies[J]. J Clin Oncol, 2000,18:2210-2218.
    [11]Zhao JD, Jiang GL, Hu WG, et al. Hepatocyte regeneration after partial liver irradiation in rats. Exp Toxicol Pathol[J].2009,61(5):511-8.
    [12]Llovet JM, Bruix J. Systematic review of randomized trials for unresectable hepatocellular carcinoma:Chemoembolization improves survival[J]. Hepatology, 2003,37:429-442.
    [13]Muller A, Machnik F, Zimmermann T, et al. Thioacetamide-induced cirrhosis-like liver lesions in rats--usefulness and reliability of this animal model. Exp Pathol,1988,34:229-236
    [14]Liu EH, Chen MF, Yeh TS, et al. A useful model to audit liver resolution from cirrhosis in rats using functional proteomics[J]. Journal of Surgical Research 2007, 138:214-223
    [15]Iredale JP, Benyon RC, Pickering J, et al. Mechanism of spontaneous resolution of rat liver fibrosis:Hepatic stellate cell apoptosis and reduced hepatic expression of metalloproteinase inhibitors[J]. J Clin Invest,1998,102:538-54
    [16]Jimenez W, Claria J, Arroyo V, et al. Review article. Carbon tetrachloride induced cirrhosis in rats:A useful tool for investigating the pathogenesis of ascites in chronic liver disease[J]. J Gastroenterol Hepatol,1992,7:990-997.
    [17]Richter HB, Franke H, Dargel R. Expression of tenascin, fibronectin, and laminin in rat liver fibrogenesis—a comparative immunohistochemical study with two models of liver injury [J]. Exp Toxicol Pathol,1998,50:315-322.
    [18]Naofumi Nagasue, Hirofumi, et al.. Human liver regeneration after major hepatic resection[J].Ann. Surg.,1987,206(1):30-39.
    [19]Ohara K, Okumura T, Tsuji H, et al. Radiation tolerance of cirrhotic livers in relation to the preserved functional capacity:analysis of patients with hepatocellular carcinoma treated by focused proton beam radiotherapy[J]. Int J Radiat Oncol Biol Phys,1997,38:367-72.
    [20]Fausto N, Campbell JS, K.J. Riehle. Liver regeneration[J]. Hepatology,2006, 43:s45-53
    [21]Assy N, Minuk GY. Liver regeneration:methods for monitoring and their applications[J]. J Hepatol,1997,26:945-952.
    [22]Czaja MJ. Liver regeneration following hepaticinjury. In:Strain AJ, Diehl AM, editors. Liver growth and repair. London:Chapman and Hall; 1998. p.28-49.
    [23]Daniel Palmes, Hans-Ullrich Spiegel. Animal models of liver regeneration[J]. Biomaterials,2004,25:1601-1611
    [24]Rube CE, Uthe D, Schmid KW, et al. Dose-dependent induction of transforming growth factor(TGF-) in the lung tissue of fibrosis-prone mice after thoracic irradiation[J]. Int J Radiat Oncol Biol Phys,2000,47:1033-42.
    [25]Martin M, Lefaix JL, Delanian S. TGF-β1 and radiation fibrosis:a master switch and a specific therapeutic target?[J]. Int J Radiat Oncol Biol Phys,2000,47:277.
    [26]Zimmermann A. Liver regeneration:the emergence of new pathways[J]. Med Sci Monit,2002,8:53-63.
    [27]Fausto N, Campbell JS, Riehle KJ. Liver regeneration[J]. Hepatology,2006, 43:45-53.
    [28]Nostrant TT, Miller DL, Appelman HD, et al. Acinar distribution of liver cell regeneration after selective zonal injury in the rat[J]. Gastroenterology,1978, 75:181-6.
    [1]Llovet JM, Burroughs A, Bruix J. Hepatocellular carcinoma[J]. Lancet, 2003,362(9399):1907-17.
    [2]Parkin DM, Bray F, Ferlay J, et al. Global cancer statistics,2002. CA Cancer J Clin,2005,55:74-108
    [3]McGlynn KA, Tsao L, Hsing AW, et al. International trends and patterns of primary liver cancer[J]. Int J Cancer,2001,94:291-296
    [4]El Serag HB, Mason AC. Rising incidence of hepatocellular carcinoma in the United States[J]. N Engl J Med,1999,340:745-750
    [5]Llovet JM, Bruix J. Systematic review of randomized trials for unresectable hepatocellular carcinoma:Chemoembolization improves survival[J]. Hepatology, 2003,37:429-442
    [6]Llovet JM. Updated treatment approach to hepatocellular carcinoma[J]. J Gatroenterol.2005,40(3):225-35
    [7]American cancer society, surveillance research,2008. Available at http://www.cancer.org. Selected Cancers. Cancer Facts & Figures 2008,17
    [8]O'neil BH, Venook AP. Hepatocellular carcinoma:the role of the North American GI Steering Committee Hepatobiliary Task Force and the advent of effective drug therapy[J]. The Oncologist,2007,12(12):1425-1432
    [9]Bruix J, Hessheimer AJ, Forner A, et al. New aspects of diagnosis and therapy of hepatocellular carcinoma[J]. Oncogene,2006,25:3848-3856
    [10]Bruix J, Sherman M. Management of hepatocellular carcinoma[J]. Hepatology, 2005,42:1208-1236
    [11]Primary liver cancer in Japan. Clinicopathologic features and results of surgical treatment. Liver Cancer Study Group of Japan[J]. Ann Surg,1990,211(3):277-87.
    [12]Takenaka K, Kawahara N, Yamamoto K, et al. Results of 280 liver resections for hepatocellular carcinoma[J]. Arch Surg,1996,131:71-6
    [13]Tateishi R, Shiina S, Teratani T, et al. Percutaneous radiofrequency ablation for hepatocellular carcinoma. An analysis of 1000 cases[J]. Cancer,2005,103: 1201-1209
    [14]Garcia-Retortillo M, Forns X, Llovet JM, et al. Hepatitis C recurrence is more severe after living donor compared to cadaveric liver transplantation[J]. Hepatology,2004,40:699-707
    [15]Ryu M, Shimamura Y, Kinoshita T, et al. Therapeutic results of resection, transcatheter arterial embolization and percutaneous transhepatic ethanol injection in 3225 patients with hepatocellular carcinoma:a retrospective multicenter study[J]. Jpn J Clin Oncol,1997,27:251-7
    [16]Bruix J, Sherman M, Llovet JM, et al. Clinical management lf hepatocellular carcinoma. Conclusions of the Barcelona-2000 EASL conference. European Association for the Study of the Liver[J]. J Hepatol,2001,35:421-30
    [17]Nerenstone S, Friendman M. Medical treatment of hepatocellular carcinoma[J]. Gastroenterol Clin North Am,1987,16:603-612
    [18]Liang SX, Zhu XD, Lu HJ, Pan CY, Li FX, Huang QF, et al. Hypofractionated three-dimensional conformal radiation therapy for primary liver carcinoma[J]. Cancer,2005,103(10):2181-8.
    [19]Matsuzaki Y, Osuga T, Saito Y, et al. A new, effective, and safe therapeutic option using proton irradiation for hepatocellular carcinoma[J]. Gastroenterology, 1994,106(4):1032-41.
    [20]Tsujii H, kamada T, Baba M, et al. Clinical advantages of carbon-ion radiotherapy[J]. New J Physics 10 (2008) 075009
    [21]Llovet J, Ricci S, Mazzaferro V, et al. For the SHARP Investigators Study Group. Sorafenib improves survival in advanced Hepatocellular Carcinoma(HCC): Results of a Phase Ⅲ randomized placebo-controlled trial(SHARP trial). J Clin Oncol 2007:ASCO annual meeting proceedings; 25 Suppl 18:LBA1.
    [22]Available at:http://www.nccn.org/professionals/physician_gls/PDF/hepato-biliary.pdf.
    [23]Downward J. Targeting RAS signaling pathways in cancer therapy[J]. Nat Rev Cancer,2003,3:11-22
    [24]Folkman J. Tumor angiogenesis:therapeutic implications[J]. N Engl J Med, 1971,285(21):1182-86
    [25]Saphir A. Angiogenesis:the unifying concept in cancer? [J]. J Natl Cancer Inst, 1997,89(22):1658-9
    [26]Burke PA, DeNardo SJ. Antiangiogenic agents and their promising potential in combined therapy. Crit Rev Oncol Hematol[J].2001,39(1-2):155-71
    [27]Thorgeirsson SS, Grisham JW. Molecular pathogenesis of human hepatocellular carcinoma[J]. Nat Genet,2002,31 (4):339-46
    [28]Semela D, Dufour JF. Angiogenesis and hepatocellular carcinoma[J]. J Hepatol, 2004,41 (5):864-80
    [29]Schmidt CM, McKillop IH, Cahill PA, et al. Increased MAPK expression and activity in primary human hepatocellular carcinoma[J]. Biochem Biophys Res Commun,1997,236:54-8
    [30]Wiesenauer CA, Yip-Schneider MT, Wang Y, et al. Multiple anticancer effects of blocking MEK-ERK signalling in hepatocellular carcinoma[J]. J Am Coll Surg, 2004,198:410-21
    [31]Wilhelm SM, Carter C, Tang L, et al. BAY 43-9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression snd angiogenesis[J]. Cancer Res, 2004,64(19):7099-109
    [32]Hwang YH, Choi JY, Kim S, et al. Over-expression of c-raf-1 proto-oncogene in liver cirrhosis and hepatocellular carcinoma[J]. Hepatol Res,2004,29:113-21
    [33]Li Liu, Yichen Cao, Charles Chen, et al. Sorafenib Blocks the RAF/MEK/ERK Pathway, Inhibits Tumor Angiogenesis, and Induces Tumor Cell Apoptosis in Hepatocellular Carcinoma Model PLC/PRF/5[J]. Cancer Res,2006,66(24): 11851-11858
    [34]Abou-Alfa GK, Schwartz L, Ricci S, et al. Phase II study of sorafenib in patients with advanced hepatocellular carcinoma[J]. J clin oncol.2006,24(26):4293-300
    [35]Poon RT, Ho JW, Tong CS, et al. Prognostic significance of serum vascular endothelial growth factor and endostatin in patients with hepatocellular carcinoma[J]. Br J Surg.2004,91 (10):1354-60
    [36]Rhee TK, Young JY, Larson AC, et al. Effect of transcatheter arterial embolization on levels of hypoxia-inducible factor-1 alpha in rabbit VX2 liver tumors[J]. J Vasc Interv Radiol,2007,18(5):639-45
    [37]Sergio A, Cristofori C, Cardin R, et al. Transcatheter Arterial Chemoembolization(TACE) in Hepatocellular Carcinoma(HCC):The Role of Angiogenesis and Invasiveness[J]. Am J Gastroenterol.2008,103(4):914-21
    [38]Chenivesse X, Franco D, Brechot C, et al. MDR1(multidrug resistance) gene expression in human primary liver cancer and cirrhosis[J]. J Hepatol, 1993s,18:168-172
    [39]Soini Y, Virkajarvi N, Raunio H, et al. Expression of P-glycoprotein in hepatocellular carcinoma:A potential marker of prognosis[J]. J Clin Pathol, 1996:49:470-473
    [40]Jiang W, Lu Z, He Y, et al. Dihydropyrinidine dehydrogenase activity in hepatocellular carcinoma:Implication in 5-fluorouracil-based chemotherapy [J]. Clin Cancer Res,1997,3:395-399
    [41]Pei J, Zhang C, Gokhale PC, et al. Combination with liposome-entrapped, ends-modi Wed raf antisense oligonucleotide(LErafAON) improves the anti-tumor eYcacies of cisplatin, epirubin, mitoxantrone, docetaxel and gemcitabine[J]. Anticancer Drugs,2004,15:243-253
    [42]Richly H, Kupsch P, Passage K, et al. Results of a phase I trial of BAY 43-9006 in combination with doxorubicin in patients with primary hepatic cancer[J]. Int J Clin Pharmacol Ther,2004,42:650-651
    [43]Russo SM, Tepper JE, Baldwin AS, et al. Enhancement of radiosensitivity by proteasome inhibition:implications for a role of NF-nB[J]. Int J Radiat Oncol Biol Phys 2001;50:183-93.
    [44]Anupama Munshi, John F. Kurland, Takashi Nishikawa, et al. Inhibition of constitutively activated nuclear factor-KB radiosensitizes human melanoma cells[J]. Mol Cancer Ther,2004,3(8):985-992
    [45]AH. Klopp, EL. Spaeth, JL. Dembinski, et al. Tumor Irradiation Increases the Recruitment of Circulating Mesenchymal Stem Cells into the Tumor Microenvironment[J]. Cancer Res,2007,67(24):11687-95
    [46]Yih-Lin Chung, James Jer-Min Jian, Skye Hongiun Cheng, et al. Sublethal Irradiation Induces Vascular Endothelial Growth Factor and Promotes Growth of Hepatoma Cells:Implications for Radiotherapyof Hepatocellular Carcinoma[J]. Clin Cancer Res,2006,12(9):2706-2715
    [47]John P. Plastaras, Seok-Hyun Kim, Yingqiu Y. Liu, et al. Cell Cycle-Dependent and Schedule-Dependent Antitumor Effects of Sorafenib Combined with Radiation[J]. Cancer Res,2007,67(19):9443-9454
    [1]Schuppan D, Ruehl M, Somasundaram R, Hahn EG. Matrix as a modulator of hepatic fibrogenes is[J]. Semin Liver Dis 2001;21:351-72.
    [2]Czaja MJ. Liver regeneration following hepaticinjury. In:Strain AJ, Diehl AM, editors. Liver growth and repair[M]. London:Chapman and Hall; 1998. p.28-49.
    [3]Diehl AM. Nutrition, hormones, metabolism, and liver regeneration[J]. Semin Liver Dis 1991;11:315-20.
    [4]Frerichs FT. Klinik der Leberkrankheiten [German]. Braunschweig 1861, Auflage 2.
    [5]Bruccoleri A, Gallucci R, Germolec DR, et al. Induction of early immediate genes by tumor necrosis factor alpha contribute to liver repair following chemical-induced hepatotoxicity[J]. Hepatology,1997;25:133-41.
    [6]Liu KX, Kato Y, Yamazaki M, et al. Decrease in the hepatic clearance of hepatocyte growth factor in carbon tetrachloride-intoxicated rats[J]. Hepatology, 1993;17:651-60.
    [7]Voros K, Albert M, Vetesi F, et al. Hepaticultrasonograp hic findings in experimental carbon tetrachloride intoxication of the dog[J]. Acta Vet Hung,1997; 45:137-50.
    [8]Alp MH, Hickman R. The effect of prostaglandins, branchedchain amino acids and other drugs on the outcome of experimental acute porcine hepatic failure[J]. J Hepatol,1987;4:99-107.
    [9]Kawakami S, Tsubouchi H, Nakagawa S, et al. Expression of hepatocyte growth factor in normal and carbon tetrachloride-treated monkeys[J]. Hepatology, 1994;20:1255-60.
    [10]Koniaris LG, Zimmers-Koniaris T, Hsiao EC, et al. Cytokine-responsive gene-2/IFNinducible protein-10 expression in multiple models of liver andbile duct injury suggests a role in tissue regeneration[J]. J Immunol,2001,167:399-406.
    [11]Grun M, Liehr H, Rasenack U. Significance of endotoxaemia in experimental "galactosamine-hepatitis" in the rat[J]. Acta Hepatogastroenterol,1977,24:64-81.
    [12]Diaz-Buxo JA, Blumenthal S, Hayes D, et al. Galactosamine-induced fulminant hepatic necrosis in unanesthetized canines[J]. Hepatology,1997,25:950-7.
    [13]Ho DW, Fan ST, To J, et al. Selective plasma filtration for treatment of fulminant hepatic failure induced by d-galactosamine in a pig model[J]. Gut,2002, 50:869-76.
    [14]Blitzer BL, Waggoner JG, Jones EA, et al. A model of fulminant hepaticfailure in the rabbit[J]. Gastroenterology,1978,74:664-71.
    [15]Albrecht J, Hilgier W. Arginine in thioacetamide-induced hepatogenic encephalopathy in rats:activation of enzymes of arginine metabolism to glutamate[J]. Acta Neurol Scand,1986,73:498-501.
    [16]Metzner C, Hartig W, Matkowitz R, et al. Value of various amino acid mixtures for the treatment of chronic liver damage [German] [J]. Infusionsther Klin Ernahr, 1987,14:256-60.
    [17]Gardner CR, Laskin JD, Dambach DM, et al. Reduced hepatotoxicity of acetaminophen in mice lacking inducible nitric oxide synthase:potential role of tumor necrosis factor-alpha and interleukin-10[J]. Toxicol Appl Pharmacol,2002, 184:27-36.
    [18]Leonard TB, Morgan DG, Dent JG. Ranitidine-acetaminophen interaction: effects on acetaminophen-induced hepatotoxicity in Fischer 344 rats[J]. Hepatology, 1985,5:480-7.
    [19]Francavilla A, Makowka L, Polimeno L, et al. A dog model for acetaminophen-induced fulminant hepatic failure[J]. Gastroenterology,1989,96: 470-8.
    [20]Miller DJ, Hickman R, Fratter R, et al. An animal model of fulminant hepaticfailure:a feasibility study[J]. Gastroenterology,1976,71:109-13.
    [21]Shakoori AR, Cheema IA, Rani A, et al. Evaluation of liver function after thioacetamide treatment of partially hepatectomized rabbits[J]. Acta Physiol Pharmacol Latinoam,1984,34:301-12.
    [22]Diehl AM. Effect of ethanol on tumor necrosis factor signaling during liver regeneration[J]. Clin Biochem,1999,32:571-8.
    [23]Morales-Gonzalez JA, Gutierrez-Salinas J, Yanez L, et al. Morphological and biochemical effects of a low ethanol dose on rat liver regeneration:role of route and timing of administration[J]. Dig Dis Sci,1999,44:1963-74.
    [24]Nostrant TT, Miller DL, Appelman HD, et al. Acinar distribution of liver cell regeneration after selective zonal injury in the rat[J]. Gastroenterology,1978, 75:181-6.
    [25]Maddison JE, Dodd PR, Johnston GA, et al. Brain gamma-aminobutyric acid receptor binding is normal in rats with thioacetamide-induced hepatic encephalopathy despite elevated plasma gamma-aminobutyric acid-like activity[J]. Gastroenterology,1987,93:1062-8.
    [26]Tsukamoto H, Matsuoka M, French SW. Experimental models of hepaticfibrosis: a review[J]. Semin Liver Dis,1990,10:56-65.
    [27]Bisgaard HC, Thorgeirsson SS. Hepatic regeneration. The role of regeneration in pathogenesis of chronic liver diseases[J]. Clin Lab Med,1996,16:325-39.
    [28]Akerman PA, Cote PM, Yang SQ, et al. Long-term ethanol consumption alters the hepatic response to the regenerative effects of tumor necrosis factor alpha[J]. Hepatology,1993,17:1066-73.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700