肠源性内毒素在ConA诱导的小鼠肝炎模型中的作用及机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
【研究背景及目的】
     肝炎是全世界范围内发病率较高的肝脏疾病之一,可由多种原因引起,如病毒感染、自身免疫功能紊乱、酗酒、药物毒性、营养不良和胆汁淤积等,我国是肝炎高发国家,大部分肝炎是病毒感染引起,尤其是以HBV感染为主。病毒性肝炎的主要发病机制是病毒抗原进入机体后引起的免疫反应造成肝细胞损伤,以细胞免疫反应为主,主要的效应细胞是特异性细胞毒性T淋巴细胞。病人免疫状况不同导致肝炎的临床表现各异。急性肝损伤(Acute liver failure)是由急性重型病毒性肝炎引起的致死性很高的肝脏疾病,病死率高达40-80%。大多数慢性病毒性肝炎病人在接受长期药物治疗后最终仍会发展为肝硬化、肝癌,肝脏的慢性炎症是导致肝癌的重要原因,因此对病毒性肝炎的研究具有重要的临床意义。自身免疫性肝炎(AIH)是一种病因不明的肝脏慢性炎症疾病,在西方国家发病率较高,目前认为细胞免疫反应和体液免疫反应均参与了其发病机制,细胞毒性T细胞是主要的致病因素,多数患者最终发展为肝硬化甚至肝癌。
     刀豆蛋白A(ConA)是一种植物蛋白成分提取物,T淋巴细胞表面有其受体,为TCR、CD3等在内的糖蛋白的糖残基,肝脏是ConA作用的靶器官之一。由于肝内存在Kupffer细胞、T细胞等大量免疫细胞,因此尾静脉注射后ConA能够经血液循环特异性地与肝窦内T细胞表面的受体结合并引起T细胞活化,从而导致肝脏炎症及损伤。ConA诱导的小鼠肝炎主要表现为转氨酶的升高以及严重的肝脏病理损伤,可以很好地模拟病毒性肝炎、自身免疫性肝炎等各种主要由免疫因素介导的肝脏疾病。
     由于解剖学上的联系,肝脏长期暴露于较低浓度的肠道细菌及细菌产物的刺激下,并且肝脏是最主要的肠道菌群过滤器官。肝脏内有大量的免疫细胞如巨噬细胞、树突状细胞、T淋巴细胞以及B淋巴细胞,因此正常肝脏能够迅速有效地清除肠道来源的细菌及细菌产物。然而,当肝脏的功能受损时,肠源性细菌产物可通过门静脉或其侧支循环进入血液形成内毒素血症。肠源性内毒素是强有力的致炎因子,能够引起肝内大量免疫细胞的活化,从而引起肝内大量炎症因子的分泌,这些炎症因子加重了肝脏已有炎症的发生、发展。
     内毒素(LPS)通过其受体Toll样受体4(TLR4)发挥作用。TLR4与LPS结合后,通过MyD88通路和TRIF通路活化下游信号,前者可引起多种炎症介质的释放,后者则可引起I型和II型干扰素的释放。在肝脏中,TLR4也表达于Kupffer细胞、星状细胞、胆管上皮细胞、内皮细胞和树突状细胞,在多种肝脏疾病的发生发展中可能发挥重要作用。
     本课题拟应用ConA诱导的小鼠肝炎模型研究肠源性内毒素在免疫因素介导的肝炎中的作用,同时建立TLR4敲除的小鼠ConA肝炎模型,探讨肠源性内毒素LPS在本模型中的作用机制,为病毒性肝炎、自身免疫性肝炎等免疫因素介导肝炎的防治提供有潜在临床价值的实验数据。
     【实验方法】
     1.建立ConA诱导的小鼠肝炎模型,检测注射ConA后小鼠体内LPS水平;
     2.利用抗生素清除肠源性内毒素,比较抗生素处理组和对照组小鼠ConA引起的肝损伤程度和LPS水平的变化;
     3.用抗生素清除小鼠肠源性内毒素,比较抗生素处理组和对照组小鼠注射ConA后肝脏内T细胞的浸润情况以及CD4~+ T细胞的活化情况;
     4.用ELISA方法检测抗生素处理组和对照组小鼠注射ConA后血清中Th1和Th2相关细胞因子的表达情况;
     5.用Western Blot方法检测抗生素处理组和对照组小鼠注射ConA后肝脏组织中相关促进和抑制凋亡分子的表达情况;
     6.比较LPS受体Toll样受体4(TLR4)敲除小鼠和对照小鼠的ConA引起的肝损伤程度;
     7.用流式细胞仪检测TLR4敲除小鼠和对照小鼠肝脏内参与引起ConA肝炎的T细胞的浸润情况以及CD4~+ T细胞的活化情况;
     8.分离TLR4敲除小鼠和对照小鼠脾细胞以及分选纯化CD4~+ T细胞,体外实验验证ConA对CD4~+ T细胞活化的影响;
     9.用ELISA方法检测TLR4敲除小鼠和对照小鼠注射ConA后血清中Th1和Th2相关细胞因子的表达情况;用Real-time PCR方法检测Th1细胞分化调节分子T-bet的表达情况;
     10.用Western Blot方法检测TLR4敲除小鼠和对照小鼠注射ConA后肝脏组织中相关促进和抑制凋亡分子的表达情况;用Real-time PCR方法检测穿孔素Perforin和Granzyme B的表达情况。
     【实验结果】
     1.在ConA诱导的小鼠肝炎模型中存在血清LPS水平的升高;
     2.抗生素处理组小鼠在ConA注射后血清中LPS的升高明显低于对照组,并且利用抗生素清除肠源性LPS可明显减轻ConA引起的肝脏损伤及肝细胞凋亡;
     3.清除肠源性LPS能够明显降低ConA引起的肝内T细胞浸润以及CD4~+ T细胞的活化;
     4.清除肠源性LPS能够抑制ConA引起的Th1相关细胞因子的产生;
     5.清除肠源性LPS能够明显抑制ConA引起的肝细胞凋亡;
     6. TLR4缺失明显减轻ConA诱导的肝脏损伤和肝细胞的凋亡;
     7. TLR4缺失抑制T细胞的肝内浸润并能有效抑制CD4~+ T细胞的活化;
     8. TLR4缺失能够抑制ConA引起的Th1相关细胞因子的产生,而促进Th2相关细胞因子IL-10的产生;
     9. TLR4缺失能够明显抑制ConA引起的肝细胞凋亡;
     10.穿孔素/颗粒酶B途径可能参与了TLR4缺失对肝细胞凋亡的保护作用。
     【结论】
     本研究证明肠源性LPS在ConA诱导的免疫因素介导肝炎的发生发展中发挥了重要作用。肠源性LPS通过与其受体TLR4结合,促进ConA引起的肝内T细胞浸润以及肝脏中的CD4~+ T细胞的活化,继而促进一系列Th1相关细胞因子的生成,从而加重ConA引起的小鼠肝损伤;清除肠源性LPS和TLR4缺失小鼠在ConA处理后肝脏损伤较轻,并且肝内T细胞浸润明显减轻,CD4~+ T细胞的活化和体内Th1相关细胞因子水平明显低于对照组,而对Th1相关细胞因子有拮抗作用的Th2相关细胞因子IL-10有明显升高。清除肠源性LPS和TLR4缺失能够上调Mcl-1的表达而下调Bax的表达,并能够增强Erk1/2的磷酸化,从而减轻ConA引起的肝细胞凋亡,穿孔素/颗粒酶B途径可能参与了TLR4缺失对肝细胞凋亡的保护作用。我们的实验结果提示抑制肠道细菌的异常转位以及清除肠源性LPS可能会有效改善肝炎病人的肝功能,减轻肝脏炎症的发生发展。
Acute liver failure is a devastating liver disease associated with signi?cant mortality (40%-80%), characterized by the sudden onset in a patient of severe acute hepatitis. It can be caused by many kinds of reasons, such as virus infection, autoimmunity dysfunction, alcohol consumption, hepatotoxins intake and so on, however, the underlying pathophysiological mechanisms are not well understood. Development of new drugs depends primarily on the availability of suitable animal models.
     Concanavalin A has high affinity toward the hepatic sinus, leading to T-cell activation in the liver. ConA-induced hepatitis is a well-known experimental murine model that can mimic many kinds of human T cell-mediated hepatitis, with significantly elevated levels of transaminase as well as severe liver injury. Previous studies have identified that in Concanavalin A-mediated hepatitis model activated T cells and NKT cells release a series of cytokins that play great roles in the liver injury. Different cytokins can be categorized as Th1 and Th2 associated cytokines by their biological function. Studies have illustrated that Th1 associated cytokines such as IL-12 and IFN-γare dominant factors inducing the development of Th1 cells. Conversely, IL-4 production directs the development of a Th2 response. Th1 cells mediate delayed type hypersensitivity responses and provide protection against intracellular pathogens and viruses, Th2 cells provide help to B cells and eradicate helminthes and other extra-cellular parasites. Th1/Th2 differentiation of T cells is largely dependent on the balance of GATA-3 and T-bet. The balance of Th1 and Th2 cells exerts an crucial role in keeping normal immunoregulation, however, in pathologic conditions such as allergic and autoimmune diseases, polarized Th1 and Th2 responses are found and believed to be critical to the outcome of these conditions.
     Emerging evidence suggests a strong interaction between the gut microbiota and human disease. Receiving~70% of its blood supply from the intestine through the portal circulation, the liver is the ?rst line of defense against gut-derived antigens. In order to cope with these latent systemic pathogens the liver contains a large number of resident immune cells such as macrophages, natural killer cells, dendritic cells, T and B lymphocytes. The resident macrophages of the liver, Kupffer cells, are able to take up ef?ciently endotoxin and phagocytose bacteria carried through portal vein blood, hepatocytes are also a major cell type involved in LPS uptake. Despite the constant exposure to low levels of gut-derived bacteria and bacterial products, there are no obvious inflammation in the healthy liver. However, when normal liver physiology is disrupted and inflammatory cells are activated, gut-derived factors likely augment or exacerbate certain liver diseases leading to enhanced tissue damage and propagation of inflammation via activation of TLR-signaling pathways.The role of gut-derived endotoxin in liver disease has excited much interest in investigators for a long time, and the critical role of gut-derived endotoxin as a cofactor in acute and chronic liver disease, both experimental and clinical, was already established more than 30-40 years ago. Our previous study also demonstrated that the endotoxin/TLR4 regulates the survival and proliferation of hepatocytes and their preneoplastic derivatives during chemically induced hepatocarcinogenesis.
     Toll like receptors (TLRs) recognize pathogen-associated molecular patterns and activate signaling pathways that lead to the induction of innate immune and inflammatory genes. In addition, there is accumulating evidence that TLRs contribute signi?cantly to activation of adaptive immune responses such as dendritic cell maturation and T- and B-cell responses,specially, the TH1-dependent immune responses. TLR4 is an important member of TLRs, which could sense endotoxin and activate transcription factors that initiate innate immunity. Previous study displayed that TLR4 was also expressed on T lymphocyte, playing a vital role in adaptive immunity. Recent studies have demonstrated the contribution of TLR4 signaling to the trapping of CD8~+ T cells within the murine liver. Moreover, other very recent studies indicate that direct interactions of gut-derived antigens signaling through Toll like receptor 4 on CD4~+ T cells contributes to their regulatory development and function. We hypothesize that gut-derived LPS and TLR4 may have some roles in ConA-induced hepatitis, which predominantly mediated by T lymphocytes in liver.
     In the current study, we report that there is a sustained LPS accumulation in ConA-induced hepatitis model. Deletion of gut microflora using antibiotics and TLR4 deficiency can decrease the accumulation of endotoxin efficiently and markedly suppress the liver injury induced by ConA. This attenuated hepatitis seen in both antibiotics-treatment mice and TLR4 knockout (TLR4~(-/-)) mice primarily results from the reduced infiltration of T lymphocytes and suppressed activation of CD4~+ T cells as well as decreased levels of Th1 cytokine production in response to ConA stimulation. Furthermore, deletion of gut microflora and TLR4 deficiency lighten liver injury induced by ConA through promoting the activation of Erk1/2, in addition, perforin/granzyme B mechanism may involve in the protection of TLR4 ablation. These results suggest that preventing plasma endotoxin accumulation could have a beneficial impact on liver function for patients with T cell-mediated hepatisis.
引文
1.彭文伟,李兰娟,乔光彦.传染病学(第六版).人民卫生出版社.2003.30-31
    2. Vaquero J, Blei AT. Etiology and management of fulminant hepatic failure. Curr Gastroenterol Rep 2003;5:39-47.
    3.叶任高,陆再英,谢毅,王辰.内科学(第六版).人民卫生出版社.2004.434.
    4. Krawitt EL. Autoimmune hepatitis. N Engl J Med 2006;354:54-66.
    5. Mizuhara H, O'Neill E, Seki N, Ogawa T, Kusunoki C, Otsuka K, Satoh S, Niwa M, Senoh H, Fujiwara H. T cell activation-associated hepatic injury: mediation by tumor necrosis factors and protection by interleukin 6. J Exp Med 1994;179:1529-1537.
    6. Gantner F, Leist M, Lohse AW, Germann PG, Tiegs G. Concanavalin A-induced T-cell-mediated hepatic injury in mice: the role of tumor necrosis factor. Hepatology 1995;21:190-198.
    7. Tiegs G, Hentschel J, Wendel A. A T cell-dependent experimental liver injury in mice inducible by concanavalin A. J Clin Invest 1992;90:196-203.
    8. Kremer M, Hines IN, Milton RJ, Wheeler MD. Favored T helper 1 response in a mouse model of hepatosteatosis is associated with enhanced T cell-mediated hepatitis. Hepatology 2006;44:216-227.
    9. Jaruga B, Hong F, Sun R, Radaeva S, Gao B. Crucial role of IL-4/STAT6 in T cell-mediated hepatitis: up-regulating eotaxins and IL-5 and recruiting leukocytes. J Immunol 2003;171:3233-3244.
    10. O'Garra A. Cytokines induce the development of functionally heterogeneous T helper cell subsets. Immunity 1998;8:275-283.
    11. Hou J, Schindler U, Henzel WJ, Ho TC, Brasseur M, McKnight SL. An interleukin-4-induced transcription factor: IL-4 Stat. Science 1994;265:1701-1706.
    12. Zheng W, Flavell RA. The transcription factor GATA-3 is necessary and sufficient for Th2 cytokine gene expression in CD4 T cells. Cell 1997;89:587-596.
    13. Szabo SJ, Kim ST, Costa GL, Zhang X, Fathman CG, Glimcher LH. A novel transcription factor, T-bet, directs Th1 lineage commitment. Cell 2000;100:655-669.
    14.何维,高晓明,曹雪涛,熊思东.医学免疫学.人民卫生出版社.2005.198.
    15. Son G, Kremer M, Hines IN. Contribution of gut bacteria to liver pathobiology. Gastroenterol Res Pract 2010;2010.
    16. Racanelli V, Rehermann B. The liver as an immunological organ. Hepatology 2006;43:S54-S62.
    17. Schwabe RF, Seki E, Brenner DA. Toll-like receptor signaling in the liver. Gastroenterology 2006;130:1886-1900.
    18. Scott MJ, Billiar TR. |?2-Integrin-induced p38 MAPK Activation Is a Key Mediator in the CD14/TLR4/MD2-dependent Uptake of Lipopolysaccharide by Hepatocytes. Journal of Biological Chemistry 2008;283:29433.
    19. Almeida J, Galhenage S, Yu J, Kurtovic J, Riordan SM. Gut flora and bacterial translocation in chronic liver disease. World J Gastroenterol 2006;12:1493-1502.
    20. Seki E, De Minicis S, sterreicher CH, Kluwe J, Osawa Y, Brenner DA, Schwabe RF. TLR4 enhances TGF-|? signaling and hepatic fibrosis. Nature medicine 2007;13:1324-1332.
    21. Adachi Y, Moore LE, Bradford BU, Gao W, Thurman RG. Antibiotics prevent liver injury in rats following long-term exposure to ethanol. Gastroenterology 1995;108:218-224.
    22. Yu LX, Yan HX, Liu Q, Yang W, Wu HP, Dong W, Tang L, Lin Y, He YQ, Zou SS, Wang C, Zhang HL, Cao GW, Wu MC, Wang HY. Endotoxin accumulation prevents carcinogen-induced apoptosis and promotes liver tumorigenesis in rodents. Hepatology 2010;52:1322-1333.
    23. Akira S, Takeda K. Toll-like receptor signalling. Nat Rev Immunol 2004;4:499-511.
    24. Schnare M, Barton GM, Holt AC, Takeda K, Akira S, Medzhitov R. Toll-like receptors control activation of adaptive immune responses. Nat Immunol 2001;2:947-950.
    25. John B, Crispe IN. TLR-4 regulates CD8+ T cell trapping in the liver. J Immunol 2005;175:1643-1650.
    26. Himmel ME, Hardenberg G, Piccirillo CA, Steiner TS, Levings MK. The role of T-regulatory cells and Toll-like receptors in the pathogenesis of human inflammatory bowel disease. Immunology 2008;125:145-153.
    27. Rakoff-Nahoum S, Paglino J, Eslami-Varzaneh F, Edberg S, Medzhitov R.Recognition of commensal microflora by toll-like receptors is required for intestinal homeostasis. Cell 2004;118:229-241.
    28. Hengartner MO. The biochemistry of apoptosis. Nature 2000;407:770-776.
    29. Youle RJ, Strasser A. The BCL-2 protein family: opposing activities that mediate cell death. Nat Rev Mol Cell Biol 2008;9:47-59.
    30. Kyriakis JM, Avruch J. Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation. Physiol Rev 2001;81:807-869.
    31. Lewis TS, Shapiro PS, Ahn NG. Signal transduction through MAP kinase cascades. Adv Cancer Res 1998;74:49-139.
    32.何维,高晓明,曹雪涛,熊思东.医学免疫学.人民卫生出版社.2005.199.
    33. Schwabe RF, Seki E, Brenner DA. Toll-like receptor signaling in the liver. Gastroenterology 2006;130:1886-1900.
    34. Seki E, Brenner DA. Toll-like receptors and adaptor molecules in liver disease: update. Hepatology 2008;48:322-335.
    35. Nolan JP, Leibowitz AI. Endotoxins in liver disease. Gastroenterology 1978;75:765-766.
    36. Fukui H, Brauner B, Bode JC, Bode C. Plasma endotoxin concentrations in patients with alcoholic and non-alcoholic liver disease: reevaluation with an improved chromogenic assay. J Hepatol 1991;12:162-169.
    37. Lin RS, Lee FY, Lee SD, Tsai YT, Lin HC, Lu RH, Hsu WC, Huang CC, Wang SS, Lo KJ. Endotoxemia in patients with chronic liver diseases: relationship to severity of liver diseases, presence of esophageal varices, and hyperdynamic circulation. J Hepatol 1995;22:165-172.
    38. Chan CC, Hwang SJ, Lee FY, Wang SS, Chang FY, Li CP, Chu CJ, Lu RH, Lee SD. Prognostic value of plasma endotoxin levels in patients with cirrhosis. Scand J Gastroenterol 1997;32:942-946.
    39. Such J, Frances R, Munoz C, Zapater P, Casellas JA, Cifuentes A, Rodriguez-Valera F, Pascual S, Sola-Vera J, Carnicer F, Uceda F, Palazon JM, Perez-Mateo M. Detection and identification of bacterial DNA in patients with cirrhosis and culture-negative, nonneutrocytic ascites. Hepatology 2002;36:135-141.
    40.何维,高晓明,曹雪涛,熊思东.医学免疫学.人民卫生出版社.2005.197-198.
    41. Lartigue A, Colliou N, Calbo S, Francois A, Jacquot S, Arnoult C, Tron F, Gilbert D, Musette P. Critical role of TLR2 and TLR4 in autoantibody production and glomerulonephritis in lpr mutation-induced mouse lupus. J Immunol 2009;183:6207-6216.
    1. Lumsden AB, Henderson JM, Kutner MH. 1988. Endotoxin levels measured by a chromogenic assay in portal, hepatic and peripheral venous blood in patients with cirrhosis. Hepatology 8:232–36
    2. Catala M, Anton A, Portoles MT. 1999. Characterization of the simultaneous binding of Escherichia coli endotoxin to Kupffer and endothelial liver cells by ?ow cytometry. Cytometry 36:123–30
    3. Calne RY, Sells RA, Pena JR, Davis DR, Millard PR, et al. 1969. Induction of immunological tolerance by porcine liver allografts. Nature 223:472–76
    4. Thompson AJ, Locarnini SA. 2007. Toll-like receptors, RIG-I-like RNA helicases and the antiviral innate immune response. Immunol. Cell Biol. 85:435–45
    5. Abreu MT, Fukata M, Arditi M. 2005. TLR signaling in the gut in health and disease. J. Immunol.174:4453–60
    6. Tu Z, Bozorgzadeh A, Crispe IN, Orloff MS. 2007. The activation state of human intrahepatic lymphocytes. Clin. Exp. Immunol. 149:186–93
    7. Norris S, Collins C,DohertyDG, Smith F,McEnteeG, et al. 1998. Resident human hepatic lymphocytes are phenotypically different from circulating lymphocytes. J. Hepatol. 28:84–90
    8. Crispe IN. 1996. Isolation of mouse intrahepatic lymphocytes. Curr. Protoc. Immunol. 3:22–28
    9. LanierLL. 2008.Up on the tightrope: natural killer cell activation and inhibition.Nat. Immunol. 9:495–502
    10. JinushiM,TakeharaT,TatsumiT, KantoT,Groh V, et al. 2003. Expression and role ofMICA andMICB in human hepatocellular carcinomas and their regulation by retinoic acid. Int. J. Cancer 104:354–61
    11. Lodoen M, Ogasawara K, Hamerman JA, Arase H, Houchins JP, et al. 2003. NKG2D-mediated natural killer cell protection against cytomegalovirus is impaired by viral gp40 modulation of retinoic acid early inducible 1 gene molecules. J. Exp. Med.197:1245–53
    12. Nguyen KB, Salazar-Mather TP, Dalod MY, Van Deusen JB, Wei XQ, et al. 2002. Coordinated and distinct roles for IFN-αβ, IL-12, and IL-15 regulation ofNK cell responses to viral infection. J. Immunol.169:4279–87
    13. Dao T, Mehal WZ, Crispe IN. 1998. IL-18 augments perforin-dependent cytotoxicity of liver NK-T cells. J. Immunol. 161:2217–22
    14. Dunn C, BrunettoM, Reynolds G, Christophides T, Kennedy PT, et al. 2007. Cytokines induced during chronic hepatitis B virus infection promote a pathway for NK cell-mediated liver damage. J. Exp. Med.204:667–80
    15. Halder RC, Seki S, Weerasinghe A, Kawamura T, Watanabe H, Abo T. 1998. Characterization of NK cells and extrathymicTcells generated in the liver of irradiatedmice with a liver shield. Clin. Exp. Immunol.114:434–47
    16. Geissmann F, Cameron TO, Sidobre S,Manlongat N, KronenbergM, et al. 2005. Intravascular immune surveillance by CXCR6+ NKT cells patrolling liver sinusoids. PLoS Biol. 3:e113
    17. Bendelac A. 1995. Positive selection of mouse NK1+ T cells by CD1-expressing cortical thymocytes. J. Exp. Med. 182:2091–96
    18. Long X, Deng S, Mattner J, Zang Z, Zhou D, et al. 2007. Synthesis and evaluation of stimulatory properties of Sphingomonadaceae glycolipids. Nat. Chem. Biol. 3:559–64
    19. Kinjo Y, Tupin E, Wu D, Fujio M, Garcia-Navarro R, et al. 2006. Natural killer T cells recognize diacylglycerol antigens from pathogenic bacteria. Nat. Immunol. 7:978–86
    20. Vilarinho S, Ogasawara K, Nishimura S, Lanier LL, Baron JL. 2007. Blockade of NKG2D on NKT cells prevents hepatitis and the acute immune response to hepatitis B virus. Proc. Natl. Acad. Sci. USA
    21. Johnson CL,OwenDM,GaleMJr. 2007. Functional and therapeutic analysis of hepatitis C virusNS3.4A protease control of antiviral immune defense. J. Biol. Chem. 282:10792–803
    22. Ferreon JC, Ferreon AC, Li K, Lemon SM. 2005. Molecular determinants of TRIF proteolysis mediated by the hepatitis C virus NS3/4A protease. J. Biol. Chem. 280:20483–92
    23. Yang Y, Liang Y, Qu L, Chen Z, Yi M, et al. 2007. Disruption of innate immunity due to mitochondrial targeting of a picornaviral protease precursor. Proc. Natl. Acad. Sci. USA 104:7253–58
    24. Tseng CT, Klimpel GR. 2002. Binding of the hepatitis C virus envelope protein E2 to CD81 inhibits natural killer cell functions. J. Exp. Med. 195:43–49
    25. Frevert U, Engelmann S, Zougbede S, Stange J, Ng B, et al. 2005. Intravital observation of Plasmodium berghei sporozoite infection of the liver. PLoS Biol. 3:e192
    26. Baer K, Roosevelt M, Clarkson AB Jr, van Rooijen N, Schnieder T, Frevert U. 2007. Kupffer cells are obligatory for Plasmodium yoelii sporozoite infection of the liver. Cell. Microbiol. 9:397–412
    27. Usynin I, Klotz C, Frevert U. 2007. Malaria circumsporozoite protein inhibits the respiratory burst in Kupffer cells. Cell. Microbiol. 9:2610–28
    28. Pradel G, Frevert U. 2001. Malaria sporozoites actively enter and pass through rat Kupffer cells prior to hepatocyte invasion. Hepatology 33:1154–65
    29. O’Connell PJ, Morelli AE, Logar AJ, Thomson AW. 2000. Phenotypic and functional characterization of mouse hepatic CD8α+ lymphoid-related dendritic cells. J. Immunol. 165:795–803
    30. Pillarisetty VG, Katz SC, Bleier JI, Shah AB, Dematteo RP. 2005. Natural killer dendritic cells have both antigen presenting and lytic function and in response to CpG produce IFN-γvia autocrine IL-12. J. Immunol. 174:2612–18
    31. AbeM, Tokita D, Raimondi G, Thomson AW. 2006. Endotoxin modulates the capacity of CpG-activated liver myeloid DC to direct Th1-type responses. Eur. J. Immunol. 36:2483–93
    32. De Creus A, AbeM, Lau AH, Hackstein H, Raimondi G, Thomson AW. 2005. Low TLR4 expression by liver dendritic cells correlates with reduced capacity to activate allogeneicTcells in response to endotoxin. J. Immunol. 174:2037–45
    33. Averill L, LeeWM, KarandikarNJ. 2007.Differential dysfunction in dendritic cell subsets during chronic HCV infection. Clin. Immunol. 123:40–49
    34. Callery MP, Mangino MJ, Flye MW. 1991. Arginine-speci?c suppression of mixed lymphocyte culture reactivity by Kupffer cells—a basis of portal venous tolerance. Transplantation 51:1076–80
    35. Roland CR, Walp L, Stack RM, Flye MW. 1994. Outcome of Kupffer cell antigen presentation to a clonedmurineTh1 lymphocyte depends on the inducibility of nitric oxide synthase by IFN-γ. J. Immunol.153:5453–64
    36. Knolle P, Schlaak J, Uhrig A, Kempf P, Meyer zum Buschenfelde KH, Gerken G. 1995. Human Kupffer cells secrete IL-10 in response to lipopolysaccharide (LPS)challenge. J. Hepatol. 22:226–29
    37. Miyagawa-Hayashino A, Tsuruyama T, Egawa H, Haga H, Sakashita H, et al. 2007. FasL expression in hepatic antigen-presenting cells and phagocytosis of apoptoticTcells by FasL+ Kupffer cells are indicators of rejection activity in human liver allografts. Am. J. Pathol. 171:1499–508
    38. Burgio VL, Ballardini G, Artini M, Caratozzolo M, Bianchi FB, Levrero M. 1998. Expression of costimulatory molecules by Kupffer cells in chronic hepatitis of hepatitis C virus etiology. Hepatology 27:1600–6
    39. Tu Z, Bozorgzadeh A, Pierce RH, Kurtis J, Crispe IN, Orloff MS. 2008. TLR-dependent cross talk between human Kupffer cells and NK cells. J. Exp. Med. 205:233–44
    40. Knolle PA, Limmer A. 2001. Neighborhood politics: the immunoregulatory function of organ-resident liver endothelial cells. Trends Immunol. 22:432–37
    41. Knolle PA,Uhrig A,Hegenbarth S, Loser E, Schmitt E, et al. 1998. IL-10 down-regulatesTcell activation by antigen-presenting liver sinusoidal endothelial cells through decreased antigen uptake via the mannose receptor and lowered surface expression of accessory molecules. Clin. Exp. Immunol. 114:427–33
    42. Limmer A,Ohl J,KurtsC, LjunggrenHG, Reiss Y, et al. 2000. Ef?cient presentation of exogenous antigen by liver endothelial cells to CD8+ T cells results in antigen-speci?c T-cell tolerance. Nat. Med. 6:1348–54
    43. Limmer A, Ohl J, Wingender G, Berg M, Jungerkes F, et al. 2005. Cross-presentation of oral antigens by liver sinusoidal endothelial cells leads to CD8 T cell tolerance. Eur. J. Immunol. 35:2970–81
    44. Friedman SL. 2008.Hepatic stellate cells: protean,multifunctional, and enigmatic cells of the liver. Physiol. Rev. 88:125–72
    45. Paik YH, Schwabe RF, Bataller R, Russo MP, Jobin C, Brenner DA. 2003. Toll-like receptor 4 mediates in?ammatory signaling by bacterial lipopolysaccharide in human hepatic stellate cells.Hepatology 37:1043–55
    46. Seki E, DeMinicis S, Osterreicher CH, Kluwe J, Osawa Y, et al. 2007. TLR4 enhances TGF-βsignaling and hepatic ?brosis. Nat. Med. 13:1324–32
    47. Winau F, Hegasy G, Weiskirchen R, Weber S, Cassan C, et al. 2007. Ito cells are liver-resident antigen-presenting cells for activating T cell responses. Immunity 26:117–29
    48. Yu MC, Chen CH, Liang X,Wang L, Gandhi CR, et al. 2004. Inhibition of T-cellresponses by hepatic stellate cells via B7-H1-mediated T-cell apoptosis in mice. Hepatology 40:1312–21
    49. NussenzweigM, Steinman R. 1980. Contribution of dendritic cells to stimulation of themurine syngeneic MLR. J. Exp. Med. 151:1196–212
    50. Warren A, Le Couteur DG, Fraser R, Bowen DG, McCaughan GW, Bertolino P. 2006. T lymphocytes interact with hepatocytes through fenestrations in murine liver sinusoidal endothelial cells. Hepatology 44:1182–90
    51. Ando K, Guidotti LG, Cerny A, Ishikawa T, Chisari FV. 1994. CTL access to tissue antigen is restricted in vivo. J. Immunol. 153:482–88
    52. Bertolino P, Bowen DG, McCaughan GW, Fazekas de St Groth B. 2001. Antigen-speci?c primary activation of CD8+ T cells within the liver. J. Immunol. 166:5430–38
    53. Wuensch SA, Pierce RH,Crispe IN. 2006. Local intrahepaticCD8+ Tcell activation by a nonself-antigen results in full functional differentiation. J. Immunol. 177:1689–97
    54. Klein I, Crispe IN. 2006. Complete differentiation of CD8+ T cells activated locally within the transplanted liver. J. Exp. Med. 203:437–48
    55. Qian S, Lu L, Fu F, Li Y, Li W, et al. 1997. Apoptosis within spontaneously accepted mouse liver allografts: evidence for deletion of cytotoxic T cells and implications for tolerance induction. J. Immunol. 158:4654–61
    56. Lee YC, Lu L, Fu F, LiW, Thomson AW, et al. 1999.Hepatocytes and liver nonparenchymal cells induce apoptosis in activated T cells. Transplant. Proc. 31:784
    57. Bertolino P, Trescol-BiemontMC, Rabourdin-Combe C. 1998.Hepatocytes induce functional activation of naive CD8+ T lymphocytes but fail to promote survival. Eur. J. Immunol. 28:221–36
    58. Bertolino P, Trescol-BiemontMC, Thomas J, de St Groth BF, PihlgrenM, et al. 1999. Death by neglect as a deletional mechanism of peripheral tolerance. Int. Immunol. 11:1225–38
    59. Limmer A, Sacher T, Alferink J, Kretschmar M, Schonrich G, et al. 1998. Failure to induce organspeci?c autoimmunity by breaking of tolerance: importance of the microenvironment. Eur. J. Immunol. 28:2395–406
    60. Chen CH, Kuo LM, Chang Y, Wu W, Goldbach C, et al. 2006. In vivo immune modulatory activity of hepatic stellate cells in mice. Hepatology 44:1171–81
    61. BergM,WingenderG,DjandjiD,Hegenbarth S,Momburg F, et al. 2006.Cross-presentation of antigens from apoptotic tumor cells by liver sinusoidal endothelial cells leads to tumor-speci?c CD8+ T cell tolerance. Eur. J. Immunol. 36:2960–70
    62. Diehl L, Schurich A,Grochtmann R,Hegenbarth S, Chen L, Knolle PA. 2008. Tolerogenicmaturation of liver sinusoidal endothelial cells promotes B7-homolog 1-dependent CD8+ T cell tolerance. Hepatology 47:296–305
    63. Yoneyama H, Matsuno K, Zhang Y, Murai M, Itakura M, et al. 2001. Regulation by chemokines of circulating dendritic cell precursors, and the formation of portal tract-associated lymphoid tissue, in a granulomatous liver disease. J. Exp. Med. 193:35–49
    64. Yoneyama H, Ichida T. 2005. Recruitment of dendritic cells to pathological niches in in?amed liver. Med. Mol. Morphol. 38:136–41
    65. Grant AJ, Goddard S, Ahmed-Choudhury J, Reynolds G, Jackson DG, et al. 2002. Hepatic expression of secondary lymphoid chemokine (CCL21) promotes the development of portal-associated lymphoid tissue in chronic in?ammatory liver disease. Am. J. Pathol. 160:1445–55
    66. DiCarloE,Magnasco S,D’AntuonoT,TenagliaR, SorrentinoC. 2007.The prostate-associated lymphoid tissue (PALT) is linked to the expression of homing chemokinesCXCL13 andCCL21. Prostate 67:1070–80
    67. Mosenson JA,McNulty JA. 2006.Characterization of lymphocyte subsets over a
    24-hour period in Pineal-Associated Lymphoid Tissue (PALT) in the chicken. BMC Immunol. 7:1
    68. Radziewicz H, Ibegbu CC, Fernandez ML, Workowski KA, Obideen K, et al. 2007. Liver in?ltrating lymphocytes in chronic human hepatitis C virus infection display an exhausted phenotype with high levels of PD-1 and low levels of CD127 expression. J. Virol. 81:2545–53
    69. GruenerNH,Lechner F, JungMC,DiepolderH,GerlachT, et al. 2001. Sustained dysfunction of antiviral CD8+ T lymphocytes after infection with hepatitis C virus. J. Virol. 75:5550–58
    70. Day CL, KaufmannDE, Kiepiela P, Brown JA,Moodley ES, et al. 2006. PD-1 expression onHIV-speci?c T cells is associated with T-cell exhaustion and disease progression. Nature 443:350–54
    71. Barber DL,Wherry EJ,Masopust D, Zhu B, Allison JP, et al. 2006. Restoring function in exhausted CD8 T cells during chronic viral infection. Nature 439:682–87
    72. Godkin A, JeanguetN,ThurszM,Openshaw P,ThomasH. 2001.Characterization ofnovelHLA-DR11-restricted HCV epitopes reveals both qualitative and quantitative differences in HCV-speci?c CD4+ T cell responses in chronically infected and nonviremic patients. Eur. J. Immunol. 31:1438–46
    73. Wedemeyer H, He XS, NascimbeniM, Davis AR, Greenberg HB, et al. 2002. Impaired effector function of hepatitis C virus-speci?c CD8+ T cells in chronic hepatitis C virus infection. J. Immunol. 169:3447–58
    74. Puig M, Mihalik K, Tilton JC, Williams O, Merchlinsky M, et al. 2006. CD4+ immune escape and subsequentT-cell failure following chimpanzee immunization against hepatitisCvirus.Hepatology 44:736–45
    75. Janssen EM,DroinNM, Lemmens EE, PinkoskiMJ, Bensinger SJ, et al. 2005. CD4+ T-cell help controls CD8+ T-cell memory via TRAIL-mediated activation-induced cell death. Nature 434:88–93
    76. Iwai Y, Terawaki S, Ikegawa M, Okazaki T, Honjo T. 2003. PD-1 inhibits antiviral immunity at the effector phase in the liver. J. Exp. Med. 198:39–50
    77. Dong H, Zhu G, Tamada K, Flies DB, van Deursen JM, Chen L. 2004. B7-H1 determines accumulation and deletion of intrahepatic CD8+ T lymphocytes. Immunity 20:327–36
    78. Bertolino P, Trescol-BiemontMC, Rabourdin-Combe C. 1998.Hepatocytes induce functional activation of naive CD8+ T lymphocytes but fail to promote survival. Eur. J. Immunol. 28:221–36
    79. Lauer GM. 2005.Hepatitis C virus-speci?c CD8+ T cells restricted by donor HLA alleles following liver transplantation. Liver Transpl. 11:848–50
    80. Bowen DG, Zen M, Holz L, Davis T, McCaughan GW, Bertolino P. 2004. The site of primary T cell activation is a determinant of the balance between intrahepatic tolerance and immunity. J. Clin. Invest. 114:701–12
    81. Calne RY,White HJ, Binns RM, Herbertson BM, Millard PR, et al. 1969. Immunosuppressive effects of the orthotopically transplanted porcine liver. Transplant. Proc. 1:321–24
    82. Welsh KI, Batchelor JR,Maynard A, BurgosH. 1979. Failure of long surviving, passively enhanced kidney allografts to provoke T-dependent alloimmunity. II. Retransplantation of (AS X AUG)F1 kidneys from AS primary recipients into (AS XWF)F1 secondary hosts. J. Exp. Med. 150:465–70
    83. Ng IO, Chan KL, ShekWH, Lee JM, FongDY, et al. 2003.High frequency ofchimerismin transplanted livers. Hepatology 38:989–98
    84. Qian S,Demetris AJ,MuraseN, Rao AS, Fung JJ, Starzl TE. 1994.Murine liver allograft transplantation: tolerance and donor cell chimerism. Hepatology 19:916–24
    85. Starzl TE, Demetris AJ, Trucco M, Ramos H, Zeevi A, et al. 1992. Systemic chimerism in human female recipients of male livers. Lancet 340:876–77
    86. Yang R, Liu Q, Grosfeld JL, Pescovitz MD. 1994. Intestinal venous drainage through the liver is a prerequisite for oral tolerance induction. J. Pediatr. Surg. 29:1145–48
    87. Gorczynski RM. 1992. Immunosuppression induced by hepatic portal venous immunization. Immunol. Lett. 33:67–77
    88. Polakos NK, Cornejo JC, Murray DA, Wright KO, Treanor JJ, et al. 2006. Kupffer cell-dependent hepatitis occurs during in?uenza infection. Am. J. Pathol. 168:1169–78
    89. John B, Crispe IN. 2004. Passive and active mechanisms trap activated CD8+ T cells in the liver. J. Immunol. 172:5222–29
    90. John B, Crispe IN. 2005. TLR-4 regulates CD8+ T cell trapping in the liver. J. Immunol. 175:1643–50
    91. John B, Klein I, Crispe IN. 2007. Immune role of hepatic TLR-4 revealed by orthotopic mouse liver transplantation. Hepatology 45:178–86
    92. PolakosNK,Klein I, RichterMV, ZaissDM,GiannandreaM, et al. 2007. Early intrahepatic accumulation of CD8+ T cells provides a source of effectors for nonhepatic immune responses. J. Immunol. 179:201–10
    93. Bertolino P, BowenDG, BenselerV. 2007.Tcells in the liver: there is life beyond the graveyard.Hepatology 45:1580–82
    94. Crispe IN. 2003. Hepatic T cells and liver tolerance. Nat. Rev. Immunol. 3:51–62
    95. Demirkiran A, Bosma BM, Kok A, Baan CC, Metselaar HJ, et al. 2007. Allosuppressive donor CD4+CD25+ regulatory T cells detach from the graft and circulate in recipients after liver transplantation. J. Immunol. 178:6066–72
    96. San SegundoD, Fabrega E, Lopez-HoyosM, Pons F. 2007. Reduced numbers of blood natural regulatory T cells in stable liver transplant recipients with high levels of calcineurin inhibitors. Transplant. Proc. 39:2290–92
    97. Demirkiran A, Kok A, Kwekkeboom J, Kusters JG, Metselaar HJ, et al. 2006. Low circulating regulatory T-cell levels after acute rejection in liver transplantation. Liver Transpl. 12:277–84
    98. Codarri L, Vallotton L, Ciuffreda D, Venetz JP, GarciaM, et al. 2007. Expansionand tissue in?ltration of an allospeci?c CD4+CD25+CD45RO+IL-7Rαhigh cell population in solid organ transplant recipients. J. Exp. Med. 204:1533–41
    99. Li W, Carper K, Liang Y, Zheng XX, Kuhr CS, et al. 2006. Anti-CD25 mAb administration prevents spontaneous liver transplant tolerance. Transplant. Proc. 38:3207–8

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700