空间大容差末端执行器及其软捕获策略研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
空间在轨服务是一项意义深远的空间前沿技术。在轨服务可以实现航天器的在轨组装、日常维护、系统升级、燃料加注、零部件更换以及轨道转移等操作,从而延长航天器的使用寿命,甚至恢复失效航天器的设计功能。因此,在轨服务具有不可估量的经济价值和应用前景。在轨捕获是实现在轨服务操作的前提,而基于机械臂的在轨捕获以其灵巧性和广适性,是在轨捕获的主要手段。此外,随着空间技术的发展,空间站等大型空间设施的组装和日常维护将变得越来越频繁,而这些大型设施的组装和维护仅仅依靠宇航员是很难实现的,因此需要空间大型机械臂的辅助。为了提高大型机械臂对载荷操作的可靠性和效率,本文致力于对空间大型机械臂的末端执行器的方案和捕获策略研究,并力图研制一套性能优异的空间大型机械臂末端执行器,以提高在轨载荷捕获的可靠性和快速性。本文的主要研究工作如下:
     基于大型机械臂在轨操作载荷的特点和大型机械臂“大容差,软捕获”和“硬连接”的设计准则。本文以“大容差”和“软捕获”作为末端执行器的基本性能要求,提出了多种末端执行器设计方案,并对其中具有代表性和可行性的三指-三瓣式和钢丝索缠绕式这两类末端执行器进行了详细设计。通过对两类末端执行器容差能力的理论量化比较分析,并结合ADAMS动力学仿真对两类末端执行器基本性能的对比分析可知,钢丝索缠绕式末端执行器的性能要优于三指-三瓣式。此外,腱-鞘传动系统在钢丝索索缠绕式末端执行器捕获环节设计中的应用,可以使末端执行器外径最小化,而容差空间最大化;而且还能进一步提高钢丝索缠绕式末端执行器的软捕获能力。此外,对钢丝索索缠绕式末端执行器的外形进行了优化设计,提出了正方形横截面的末端执行器外形方案,在保证容差空间的前提下,使末端执行器的外形包络直径最小化。
     本文研制了基于腱-鞘传动的钢丝索缠绕式末端执行器。以“大容差”性能为前提,结合质量轻、体积小等技术要求,确定了末端执行器的容差空间。此外完成了末端执行器驱动系统的模块化设计以及传感器配置,并分析了捕获环节的腱-鞘传动系特性。通过分析腱-鞘传动系统的传递特性,并提出了多段腱-鞘传动系统的分析模型,对捕获环节的多曲率腱-鞘传动进行了分析,从而完成了腱-鞘传动系统的路径设计和材料选择;容差空间的分析则确定了末端执行执行器的整体外形尺寸和容差性能;传感器的配置则提高了末端执行器各环节的智能性和载荷捕获的独立性;模块化的驱动系统设计以及将三个环节的驱动系统外置,便于实现驱动系统的在轨维护和更换。此外,分析了末端执行器锁紧环节的展开性能,并建立了末端执行器捕获环节和拖动环节的动力学模型,为末端执行器在轨捕获策略的实施提供了理论基础。
     基于钢丝索缠绕捕获末端执行器的特点,提出了末端执行器的捕获接触分析模型和接触点预测模型,并对在轨漂浮载荷的动力学特性进行分析。通过腕关节力/力矩信息,结合末端执行器与目标接口的接触点分析模型,建立了腕关节力矩传感器测量的力/力矩与漂浮载荷运动之间的数学模型。由漂浮载荷的动力学分析可知,关键点的位移要远远大于载荷质心点的位移,影响关键点位移的主要因素是载荷的惯量,以及接触点到载荷质心的距离。基于漂浮载荷的动力学关系,提出基于试探性接触的漂浮载荷动力学参数辨识方法,为未来空间未知参数载荷的捕获提供理论依据。
     成本较高的地面微重力模拟装置难以模拟载荷的质量和惯量等参数,而质量和惯量等动力学参数对末端执行器的捕获操作影响较大。因此,基于动力学仿真是研究末端执行器捕获操作性能的主要手段。本文根据钢丝索缠绕式末端执行器的载荷捕获特点,提出变刚度柔顺捕获域的概念。此外,基于钢丝索的离散建模方法,建立了末端执行器捕获环节的ADAMS虚拟样机模型,并通过在不同位姿偏差状态下,对不同质量/惯量的漂浮载荷实施捕获仿真,以验证末端执行器的“大容差”和“软捕获”性能。在捕获仿真的基础上,对末端执行器的捕获模式和捕获策略进行分析和研究,寻找能提高末端执行器捕获效率和捕获可靠性的捕获策略。此外,提出了基于机械臂末端位置控制的固定载荷和机械臂重定位操作的捕获策略。为进一步验证末端执行器的基本性能,研制了吊丝悬挂方式的微重力模拟装置,用于容差能力测试及载荷捕获等试验。通过容差试验及载荷捕获试验结果,并结合动力学仿真结果,验证了所研制的末端执行器的性能达到设计标准,机构设计合理,达到预期目标。
On-Orbit Servicing is a leading and promising technology for space exploration.It is applied to the structure assembly, dialy maintance, system upgrading, refuelingspace vehicle, replacement of compenents and orbit transfer and so on. It is helpfulfor extending life of space vehicles and recovering the space vehicle in malfunction.The space manipulator with dexterity and multifunction is the predominant methodfor On-Orbit Servicing. Moreover, the construction and maintenance of lagre spaceinfrastructure will become frequent as the development of space exploration. Thelarge space manipulators will be imminently imployed to these construction andmaintenance, because the Extravehicular Activities of astronauts are insufficient. Inordert to promote the manipulation efficiency and reliability of large spacemanipulator, many end-effector design schemes and capture strategies are presentedand studied in this paper. Finally, an end-effector prototype with capabilities ofpromoting the reliability and rapidity of on-orbit capture is developed.
     Basing on the characteristics of large space manipulator, the design guidelingswith large misalignment tolerance, soft capture and hard connecting for spaceend-effector schemes are proposed. And the basic requirements are largemisalignment tolerance and soft capture. According to these two requirements, manydesign schemes are presented. The three fingers-three petals and the steelcable-snared end-effector which are designed in detail are most representative andfeasible. According to the comparison of basic requirements through theory analysisof misalignment tolerance and the ADAMS dynamic simulation analysis, the steelcable-snared end-effector is superior to the three fingers-three petals end-effector.The tendon-sheath system is employed as the transmission mechanism of the capturesubassembly. It maximizes the capture space with strict limitation of outsideenveloped diameter. Moreover, the flexibility of the tendon-sheath system willenhance passive compliance of the capture subassembly to promote the soft capturecapability. The cross section with foursquare shape of the end-effector is proposed,and it will minimize the enveloped diameter and maximize the capture space.
     An end-effector prototype with cable-snared mechanism is developed. Itscapture space is determined by the precondition of large misalignment tolerancecombined with requirements of light-weight and small-volume. The modularizationdesign of actuator systems and sensor collocation are presented, and the features ofthe tendon-sheath are analysed. And then the tendon-sheath system with multi-curvatures are modeled and analysed. Therefore, the transmission route and material of the tendon-sheath system are designed and chosen. The outside shell dimensionand the misalignemnt tolerance performance are obtained by the analysis of thecapture space. The sensor collocation is beneficial to the intelligence andindependence of payload capture. There actuator units of the end-effector aremodularization design, and all of the three actuator units are fixed on the outsideshell of the end-effector, it is useful for the replacement and repair on orbit. Thedeployment of latching loop is analysed. And the dynamics models of the captureand rigidizing loop are modeled to offer a theory support for capture strategies.
     The contact model of the end-effecor is proposed based on the capture principleof the end-effector. And the motion of the free-floating target is analysed. Themathematical model of the relationship between the force/moment of the wrist jointand the motion of the free-floating target is constructed, according to the contactmodel of capture subassembly and the force/moment information of the wrist joint.The dynamics parametes identification method is obtained based on this model. Themodel and method of dynamics parameters identification is vital to the captureoperation of free-floating targets of which the dynamics parameters are unknown.
     It is difficult for the micro-gravity simulation device with high cost to simulatethe mass and inertia parameters of the free-floating target on ground. Morever, thedynamic parametes are important for the capture operation. Therefore, the dynamicssimulation is the main method to study the capture operation and capture strategy.The capture field with variable stiffness is presented, according to the flexibility andstiffness change as the rotating ring rotates. The dynamics model and virtualprototype of the capture subassembly are proposed by a discrete model of threecapture cables in ADAMS. The end-effector performance of large misalignment andsoft capture are validated by capture simulation of free-floating target with differentparameters. And the capture mode and strategy are also studied by simulations tosearch for the capture strategy to promote the capture efficiency and reliability.Therefore, the capture strategy with trajectory tacking control is presented for themanipulation of fixed payload and self-relocation of the large manipulator. Amicro-gravity simulation decive is developed to test the capability of misalignmenttolerance and carry out the capture experiment. The performance of the end-effectorprototype meets the requirements, and it is validated by the dynamics simulations inADAMS software and the experiments on the micro-gravity simulation decive.
引文
[1]丰飞.空间非合作目标对接捕获机构的设计与研究[D].哈尔滨:哈尔滨工业大学,2008.
    [2]李岩,程龙.构建空间在轨维护与服务系统的初步设想[J].导弹与航天运载技术,2008年第5期:31-34.
    [3] Zimpfer D, Kachmar P, Tuohy S. Autonomous Rendezvous Capture andIn-Space Assembly: Past present and Future[C]//the1st Space ExplorationConference: Cotinuing the Voyage of Discovery. Florida: AIAA,2005:1-12.
    [4]梁斌,杜晓东,李成等.空间机器人非合作航天器在轨服务研究进展[J].机器人,2012,34(2):242-253.
    [5]翟光,仇越,梁斌,李成.在轨捕获技术发展综述[J].机器人,2008,30(5):467-480.
    [6] Fehse W. Autonomous Redezvous and Docking of Spacecraft[M]. New York:Cambridge University Press,2003:20-28.
    [7]朱仁璋.航天器交会对接技术[M].北京:国防工业出版社,2007.
    [8] Al-Shibli M M. Modeling and Control of a Free-Flying Space RobotInteracting with a Target Satellite[D]. Quebec, Canada: Concordia University,2005:1-10.
    [9] Sullivan B R. Technical and Economic Feasibility of Telerobotic On-OrbitSatellite Servicing[D]. Maryland, United States: University of Maryland,2005:1-65.
    [10]陈小前,袁建平,姚雯等.航天器在轨服务技术[M].北京:中国宇航出版社,2009:23-104.
    [11] Donald M. On-orbit Servicing of Space Systems[M]. Florida, United States:Krieger Publishing Company,1993.
    [12] Cook J, Aksamentov V, Hoffman T. ISS Interface Mechanism and TheirHeritage[C]//AIAA SPACE2011Conference&Exposition. California:AIAA,2011:1-58.
    [13] Polites M E. Technology of Automated Rendezvous and Capture in Space[J].Journal of Spacecraft and Rockets,1999,36(2):280-291.
    [14]张丽艳. ATV, HTV与ISS交会对接技术[J].载人航天,2010年第1期:1-4.
    [15] Nishizaka T J. Survey of Docking Mechanism Applicable to SpacecraftSystems[C]//AIAA4th Annual Meeting and Technical Display. California,United States: AIAA,1967:1-7.
    [16] Brayton W D. Dynamic Analysis of the Probe and Drogue DockingMechanism[J]. Journal of Spacecraft:1966,3(5):700-706.
    [17]溥科.“杆-锥式”式对接机构掠影[J].国际太空,2011年第9期:1-4.
    [18] Cislaghi M, Santini C. The Russian Docking System and the AutomatedTransfer Vehicle: a Safe Integrated Concept[C]//3rd International Associationfor the Advancement of Space Safety. Rome, Italy:2008:1-42.
    [19] Swan W L Jr. Apollo-Soyuz Test Project Docking System[C]//10th AerospaceMechanisms Symposium. California, United States: NASA ConferencePublicaiton,1976:26-37.
    [20]陈宝东,郑云青,邵济明等.对接机构分系统研制[J].上海航天,2011,28(6):1-6.
    [21] Hardt M, Mas C, Ayuso A, et al. Validation of Space Vehicle Docking withthe Internaitonal Berthing&Docking Mechanism and a KUKARobot[C]//14th European Space Mechanisms&TribologySymposium-ESMATS2011. Constance, Germany:2011:113-120.
    [22] John L. Goodman, Jack P. Brazzel, David A. Chart. Challenge of OrionRendezvous Development[C]//AIAA Guidance Navigation and ControlConference and Exhibit. South Carolina: AIAA,2007:1-30.
    [23] George P F. Overview of the NASA Docking System and the InternationalDocking System Standard[C]//AIAA Houston Section Annual TechnicalSymposium. AIAA,2011:1-19.
    [24] James L L, Monty B C, Thang D L. Androgynous, Reconfigurable ClosedLoop Feedback Controlled Low Impact Docking System with Load SensingElectromagnetic Capture Ring: United States, US6354540B1[P].2002-03-12.
    [25] Rivera D E, Motaghedi P. Modeling and Simulation of the MichiganAerospace Autonomous Satellite Docking System II[C]//Proceedings of SPIEVol.5799. Washiton:2005:83-91.
    [26] Bonometti J. A boom Redezvous alternative docking approach[C]//Space2006Conference and exposition. Calfornia: AIAA,2006:1-13.
    [27] Motaghedi P, Stamm S.6DOF Testing of the Orbital Express CaptureSystem[C]//Proceedings of SPIE Vol.5799. Bellingham, WA:2005:66-81.
    [28] Ringelberg J. Docking assembly techniques and challenges[C]//AIAASPACE2007Conference&Exposition. Calfornia: AIAA,2007:1-13.
    [29]朱仁璋,王鸿芳,泉浩芳等.载人航天器系统述评(续)[J].载人航天,2010年第1期:48-58.
    [30] Marcotte B. Canadian ISS Program Involvement[J]. Acta Astronautica,2004(54):785-786.
    [31] Caron M. On-Orbit Operation Support from the Canadian Space AgencyFlight Control Room[C]//SpaceOps2008Conference. New York: AIAA,2008:1-12.
    [32] King D. Space Servicing: Past, Present and Future[C]//Proceedings of the6thInternational Symposium on Artificial Intelligence and Robotics&Automation in Space i-SAIRAS. Quebec, Canada:2001:1-8.
    [33] Abramovici A. The Special Purpose Dexterous Manipulator(SPDM) SystemsEngineering Effort[J]. Journal of Reducing Space Mission Cost1,1998:177-200.
    [34] Ogilvie A, Allport J, Hannah M, Lymer J. Autonomous Robotic Operationsfor On-Orbit Satellite Servicing[C]//Proceedings of SPIE, Vol.6958.2008:1-12.
    [35] Currie N J, Peacock B. International Space Station Robotic SystemOperations-A Human Factors Perspective[C]//Proceedings of the HumanFactors and Ergonomics Society Annual Meeting.2002,46(1):26-30.
    [36] Laryssa P, Lindsay E. International Space Station Robotics: A ComparativeStudy of ERA, JEMRMS and MSS[C]//the7th Workshop on Advanced SpaceTechnologies for Robotics Automation-ASTRA2002. Noordwijk, TheNetherlands:2002:1-8.
    [37] Sachdev S, Harvey W. Canada and the International Space Station Program:Overview and Status Since IAC2005[C]//International AstronauticalFederation-Space Station Symposium IAC-06. Paris, France:2006:1-6.
    [38] Aikenhead B A, Daniel R G, Davis F M. Canadarm and the Spce Shuttle[J].Journal of Vacuum Science,1983, A1(2):136-132.
    [39] Sachddev S S. Canadarm-a Review of its Flight[J]. Journal of VacuumScience,1986, A4(3):268-272.
    [40] Hiltz M, Rice C, Boyle K, et al. Canadarm:20Years of Mission Successthrough Adaptation[C]//Proceedings of the6th International Symposium onArtificial Intelligence and Robotics&Automation in Space. Quebec: CSA,2001:1-8.
    [41] Schmidt H F. Latch Mechanism for the Space Telescope[C]//15th AerospaceMechanisms Symposium. Alabama, United States: NASA ConferencePublication2181,1981:331-340.
    [42] Quiocho L J, Briscoe T J, Schliesing J A, et al. SRMS Assisted Docking andUndocking for the Orbiter Repair Maneuver[C]//AIAA Guidance Navigationand Control Conference and Exhibit. Calfornia: AIAA,2005:1-8.
    [43] John H. The Structure of Canadarm[EB/OL].(2012-09-09)[2011-11-07].http://www.asc-csa.gc.ca/eng/canadarm/description.asp.
    [44] Daniell R G, Sachedev S S. The Design and Development of an End-effectorfor the Shuttle Remote Manipulator System[C]//16th Aerospace MechanismSymposium. Florida: NASA Conference Publicaiton2221,1982:45-61.
    [45] Jorgensen G, Bains E. SRMS History, Evolution and LessonsLearned[C]//AIAA2011Conference and Exposition. Long Beach, California:AIAA,2011:4-5.
    [46] Phung K. Nguyen, Michael Hiltz. RMS Operation Support: From the SpaceShuttle to the Space Station[C]//Proceeding of the6th InternationalSymposium on Artificial Intelligence and Robotics&Automation in Spacei-SAIRAS2001. Quebec, Canada:2001:1-8.
    [47] Kauderer A. Canadarm2and the Mobile Servicing System:Subsystems[EB/OL].(2012-09-12)[2010-10-23]. http://www. nasa. Gov/mission_pages/station/structure/elements/subsystems. html.
    [48] Gossain D M, Sachedev S S. Self-Relocating Manipulator: United States,4585388[P].1996-04-29.
    [49] John H. Canadarm and Canadarm2-Comparative Table[EB/OL].(2012-09-09)[2002-12-31].http://www.asc-csa.gc.ca/eng/iss/canadarm2/c1-c2.asp.
    [50] Vandersluis R, Quittner E. An End-effector and Grapple Fixture: Canada,1294997[P].1987-09-28.
    [51] Rose D. International Space Station Familiarization[R]. Houston, Texas:Mission Operations Directorate Space Flight Tranining Division Document,1998:8-4-8-6.
    [52] Walker B, Vandersluis R. Design, Testing and Evalution of Latching EndEffector[C]//29th Aerospace Mechanisms Symposium. Texas: AIAA,1995:1-16.
    [53] KAUDERER A. Space shuttle mission STS-129press kit [R/OL].(2010-01-29)[2012-09-15].http://www.nasa.gov/pdf/398418main_sts129_press_kit.pdf.
    [54] McGuire J, Roberts B. Hubble Robotic Servicing and De-orbit Mission: RiskReduction and Mitigation[C]//AIAA SPACE2007Conference&Expositon.Calfornia: AIAA,2007:2007-6255-1-2007-6255-38.
    [55] Oda M, Nishida S, Inaba N, et al. A Feasibility study of Robotic Servicing forthe Hubble Space Telescope[C]//Proceedings of the8th InternationalSymposium on Artificial Intelligence, Robotics and Automation inSpace-iSAIRAS. Munich, Germany:2005:1-6.
    [56] Cepollina F J, Burns R D, Holz J M, et al. Method and Associated Apparatusfor Capturing, Servicing and De-orbiting Earth Satellites Using Robotics:United States, US2008/0011904A1[P].2008-01-17.
    [57] Quitner E, Vandersluis R, Rakhsha J, et al. System and Concept Design of theSSRMS Latching End Effector[C]//Proceedings of the3rd European SpaceMechanisms&Tribology Symposium. Madrid, Spain:1987:93-103.
    [58] Kumar R, Hayes R. System Requirements and Design Features of SpaceStation Remote Manipulator System Mechanisms[C]//25th AerospaceMechanisms Symposium. California, United States: NASA ConferencePublication,1991:15-30.
    [59] Stott R, Schoonejans P, Didot F, et al. Current Status of the European RoboticArm(ERA), its Launch on the Russian Multi-purpose LaboratoryModule(MLM) and its Operation on the ISS[C]//Proceedings of the9th ESAWorkshop on Advanced Space Technologies for Robotics and AutomationASTRA2006. Noordwijk, The Netherlands:2006:1-7.
    [60] ESA. European Robotic Arm [EB/OL].(2012-09-16)[2012-07-31].http://www.esa.int/esaHS/ESAQEI0VMOC_iss_0.html.
    [61] Bounmans R, Heemskerk C. The European Robotic Arm for the InternationalSpace Station[J]. Robotics and Autonomous System,23(1998),1998:17-27.
    [62] ESA. European Robotic Arm Factsheet[EB/OL].(2012-09-16)[2011-12-30].http://wsn.spaceflight.esa.int/docs/Factsheets/7%20ERA%20LR.pdf.
    [63] Meiboom F P. ERA’s Development Programme[J]. On Station,2000No.4:22-24.
    [64] Verhoeven D, Leonard P M. ERA’s Joint Subsystem[J]. On Station,2000No.4:26-27
    [65] Heemskerk C J M, Visser M, Vrancken D. Extending ERA’s Capabilities toCapture and Transport Large Payloads[C]//Proceedings of the9th ESAWorkshop on Advanced Space Technologies for Robotics and AutomationASTRA2006. Noordwijk, The Netherlands:2006:1-8.
    [66] Lambooy P J, Mandersloot M and Bentall R H. Some Mechanical DesignAspects of the European Robotic Arm[C]//29th Aerospace MechanismsSymposium. Texas: AIAA,1995:17-29.
    [67] Ikeuchi M, Oda M. Space Robotics in Japan[C]//AIAA/NASA FirstInternational Symposium on Space Automation and Robotics. Arilington,Virginia: AIAA,1988:1-7.
    [68] Nevills A. Space Shuttle Mission STS-124[R/OL].(2012-09-20)[2008-06-20].http://www.nasa.gov/pdf/228145main_sts124_presskit2.pdf.
    [69] MDA. JEM END EFFECTOR [EB/OL].(2012-09-20)[2012-01-01].http://is.mdacorporation.com/mdais_Canada/Offerings/Offerings_JEMEE.aspx.
    [70] Lukashevich V. Bruan Orbiter[R/OL].(2012-09-18)[2006], http://www.Buran.ru/htm/bighand.htm.
    [71] Lozino-Lozinsky, Bratukhin A G. Aerosapce Systems: Book of TechnicalPapers[M]. Moscow, Rusia: Publishing House of Moscow Aviation Institute,1997.
    [72] Rubinger B, Fulford P, Gregoris L, et al. Self-Adapting Robotic AuxiliaryHand(SARAH) for SPDM Operations on the International SpaceStation[C]//Proceedings of the6th International Symposium on ArtificialIntelligence and Robotics&Automation in Space i-SAIRAS2001. Quebec,Canada:2006:1-4.
    [73] Sommer B. Automation and Robotics in the German Space ProgramUnmanned On-orbit Servicing(OOS)&the TECSAS Mission[C]//8thInternational Symposium on Artificial Intelligence, Robotics and Automationin Space. Munich, Germany:2005:1-30.
    [74] Rouleau G, Rekleitis I, L’Archevêque R, et al. Autonomous Capture of aTumbling Satellite[C]//Proceedings of the2006IEEE InternationalConference on Robotics and Automation. Florida, United States: IEEE,2006:3855-3860.
    [75] Gosselin C M, Laliberte T,. Underactuated Mechanical Finger with ReturnActuation: United States,5762390[P].1998-06-09.
    [76] Laliberte T, Gosselin C. Actuation System for Highly UnderactuatedGripping Mechanism: United States, US6505870B1[P].2003-06-14.
    [77]赵杰.空间智能机器人多传感器集成手爪系统的研究[D].哈尔滨:哈尔滨工业大学,1996.
    [78]朱映远.空间机器人手爪及其抓握策略的研究[D].哈尔滨:哈尔滨工业大学,2007:22-30.
    [79]杨亮.空间机器人捕获手爪的研究[D].北京:北京邮电大学,2008.
    [80] Xu W F, Liang B, Xu Y S, et al. A Ground Experiment System ofFree-floating Robot for Capturing Space Target[J]. Journal of IntelligentRobot System,2007,48(2007):20.
    [81]张庆利,倪风雷,朱映远等.三指手空间机器人末端执行器的柔顺抓握策略[J].机器人,2011,33(4):427-433.
    [82] Mokuno M, Kawano I, Suzuki T. In-orbit Demonstration of RendezvousLaser Radar for Unmanned Autonomous Rendezvous Docking[J]. IEEETransactions on Aerospace and Electronics Systems,2004,40(2):617-626.
    [83] Green A. Intelligent Tracking Control of Fixed-base and Free-Flting FlexibleSpace Robots[D]. Ottawa, Canada: Carleton University,2007.
    [84] Xu Y, Kanade T. Space robotics: Dynamics and Control[M]. Boston: KluwerAcademic Publishers,1993:77-100.
    [85] Papadopoulos E G. On the Dynamics and Control of Space Manipulator[D].Boston, Massachusetts: Massachusetts Institute od Technology,1990.
    [86] Nokleby S B. Singularity Analysis of the Canadarm2[J]. Journal ofMechanism and Machine Theory,2007,42(2007):442-454.
    [87] Huang P. F. Dynamic and Control of Robot for Capturing Objects inSpace[D]. Hong Kong: Chinese University of Hong Kong,2005.
    [88]张晓东.空间柔性机械臂控制策略研究[D].北京:北京邮电大学,2009:93-120.
    [89] Lichter M D, Ueno H, Dubowsky S. Vibration Estimation of Flexible SpaceStructures Using Ranger Imaging Sensors[J]. the International Journal ofRobotics Research,2006,25(10),1001-1012.
    [90] Torres M A, Dubowsky S, Pisoni A C. Vibration Control of DeploymentStructures’ Long-reach Space Manipulators: the P-PEDMethod[C]//Proceedings of the1996IEEE International Conference onRobotics and Automation. Minnesota, USA: IEEE,1996:2498-2504.
    [91] Om Prakash II. Multivariable Control of the Space Shuttle RemoteManipulator System Using H2and H∞Optimization[D]. Boston:Massachusetts Institute of Technology,1991:116-118.
    [92] Foran F L. Hardware/Software Integration&Verification for the MobileServicing System of the International Space Station[J]. Acta Astronautic,1999,44(7-12):391-398.
    [93] Termote U G, Schulten D J, Lieuw R M, et al. Eurosim and its Application inthe European Robotic Arm Programme[J]. Space,2000,2000(Q1):59-66.
    [94] Currie N J, Peacock B. International Space Station Robotics SystemOperations-a Human Factors Perspective[C]//Proceedings of the HumanFactors and Ergonomics Society Annual Meeting. Maryland, USA:2002,46(1):26-30.
    [95] Breedveld P, Buiёl E F T, Stassen H G, et al. Comparison of Manual ControlMethods for Space Manipulator Positioning Tasks[J]. Control EngineeringPractice,1998,6(1998):1447-1457.
    [96] Rembala R, Aziz S. Increasing the Utilization of the ISS Mobile ServicingSystem through Ground Control[J]. Acta Astronautica,2007,61:691-698.
    [97]张广玉,陈志刚,赵学增.10自由度全物理对接动力学仿真器[J].宇航学报,2005,26(增刊):10-15.
    [98]齐乃民,张文辉,高九州等.空间微重力环境地面模拟试验方法综述[J].航天控制,2011,29(3):95-100.
    [99]徐文福,梁斌,李成等空间机器人微重力模拟实验系统研究综述[J].机器人,2009,31(1):88-96.
    [100] Hart M G. PDRS Operation Checklist-STS-124FlightSupplement-Mission[R]. Houston, Texas: Operations Directorate EVA,Robotics&Crew Systems Operation Division,2008:1-83.
    [101] Beghith K, Kabanza F. Roman Tutor: A Robot Manipulation TutoringSimulation[C]//15th International Conference on Automated Planning&Scheduling(ICAPS2005). California, USA: American Association forArtificial Intelligence Press,2005:20-23.
    [102] Reyes A D L, Mooty A, Morris P, et al. AMS Installation[R]. Seattle, USA:Boeing David Miller/MAGIK Team,2008:1-10.
    [103] Ueda S, Kasai T, Uematsu H. HTV Guidance, Navigation and ControlSystem Design for Safe Robotic Capture[C]//AIAA/AAS AstrodynamicsSpecialist Conference and Exhibit. Hawaii: AIAA,2008:6767-1-6767-18.
    [104] Sawada H, Szuki S, Oda M. A Contact Dynamics Analysis of Spacecraft andRigidizing[C]//Proceedings of the9th International Symposium on ArtificialIntelligence, Robotics and Automation in Space i-SAIRAS2008. Hollywood,United States:2008:1-6.
    [105] Tsuchihashi A, Noguchi N, Kuraoka K. End Effector: United States,1955654[P].1990-9-11.
    [106] Wang J G, Mukherji R, Ficocelli M, et al. Modeling and Simulation ofRobotic System for Servicing Hubble Space Telescope[C]//Proceedings ofthe2006IEEE/RSJ International Conference on Intelligent Robots andSystems. Beijing, China:2006:1026-1031.
    [107] Wang J G, Mukherji R, Ficocelli M, et al. Contact Dynamics Simulation forRobotics Servicing of Hubble Space Telescope[C]//Proceedings of SPIEVol.6221.2006:622103-1-622103-9.
    [108] Machida K. Precise Space Telerobotic System Using3-fingers MultisensoryHand[C]//Proceedings of1995IEEE International Conference on Roboticand Automation. Nagoya, Japan,1995:32-38.
    [109] Matsumoto K. Truss Structure Telemanipulation Experiment UsingETS-VII[C]//Proceedings of the3th International Symposium on ArtificialIntelligence, Robotics and Automation in Space. California,1995:275-278.
    [110] Hirzinger G, Brunner B, et al. Sensor-based Space Robotics-ROTEX and itsTelerobotic Features[J]. IEEE Transactions on Robotics and Automation,1993,9(5):649-663.
    [111] Brunner B, Hirzinger G, Landzettel K, et al. Multisensory Shared Autonomyand Tele-Sensor-Programming-Key Issues in the Space Robot TechnologyExperiment ROTEX[C]//Proceedings of the1993IEEE/RSJ InternationalConference on Intelligent Robots and System. Yokohama, Japan,1993:2123-2139.
    [112] McGuire J. Robotic Refueling Mission: Paving the Way for In-Space RoboticRefueling and Repair[C]//2nd International Workshop on On-Orbit SatelliteServicing. Maryland, United States:2012:1-17.
    [113] Roberts B J. Using the International Space Station as a Precursor to In-OrbitRobotic Servicing[C]//AIAA SPACE2010Conference&Exposition.California, United States: AIAA,2010:2010-8898.1-2010-8898.8.
    [114]魏承.空间柔性机器人在轨抓取与转移目标动力学与控制[D].哈尔滨:哈尔滨工业大学,2010:49-56.
    [115] Wei C, Liu T X, Zhao Y. Grasping Strategy in Space Robot CapturingFloating Target[J]. Chinese Journal of Aeronautics,2010,23(5):591-598.
    [116]张庆利.空间机器人的末端作用器及抓捕策略的研究[D].哈尔滨:哈尔滨工业大学,2011:70-88.
    [117]谭益松.空间大型末端执行器研制及其操作策略研究[D].哈尔滨:哈尔滨工业大学,2011:77-87.
    [118] Liu H, Tan Y S, Liu Y W, et al. Development of Chinese Large-scaleend-effector[J]. Journal of Central South University of Technology,2011,2011(18):600-609.
    [119]介党阳.空间大型机械臂末端执行器抓捕控制及载运轨迹研究[D].哈尔滨:哈尔滨工业大学,2011:71-93.
    [120] Licata R, Parisch M, Ruiz Urien I J, et al. Robotics Assembly of large spaceApplication to XEUS[C]//the7th ESA Workshop on Advanced SpaceTechnologies for Robotics and Automation-ASTRA2002. Noordwijk, TheNetherlands:2002:1-8.
    [121] Akin D L, Lane C, Roberts B J, et al. Weisman. Robotic Capabilities forComplex Space Operations[C]//AIAA Space2001-Conference andExposition. Albuquerque: AIAA,2001:1-11.
    [122]朱仁璋,王鸿芳,泉浩芳等.载人航天器操作器系统评述[J].载人航天,2009年第4期:11-25.
    [123] Takata M, Wada M, Wakabayashi Y. Platform for RoboticsExperiments[C]//Proceedings of the8th International Symposium onArtificial Intelligence, Robotics and Automation in Space i-SAIRAS. Munich,Germany:2005:1-8.
    [124] Anderson D. EVA Worksite-Use of Computer Analysis for EVA OperationsDevelopment and Execution[J]. Acta Astronautica,1999,44(7-12):593-606.
    [125] Gryniewski L. Derry Crymble D, Ower J C. Satellite Refuelling System andMethod: United States, US2012/00112009A1[P].2012-05-10.
    [126] Rembala R, Ower C. Robotic Assembly and Maintenance of Future SpaceStation Based on ISS Mission Operations Experience[J]. Acta Astronautica,2009,65(2009):942-920.
    [127] Nishida S I, Hirabayshi H, Yoshikawa T. A New Robot End-effector forOn-orbit Reflector Assembly[C]//the9th Conference on Control, Automation,Robotics and Vision ICARCV2006. Singapore: IEEE,2006:1-6.
    [128] Troy Nilson, Mitch Wiens. Conceptualization and Design of a MechanicalDocking System[C]//Proceedings of the36th Aerospace MechanismSymposium.2002:265-278.
    [129] Stamm S, Motaghedi P. Orbital Express Capture System: Concept toReality[C]//Proceedings of SPIE Vol.5419. Bellingham, WA:2004:78-91.
    [130] Francis Herbert Arthur Mee. Grappling Device: United States,4105241[P].1978-08-08.
    [131] John J C. Introduction to Robotics: Mechanics and Control(3rd Edition)[M].New York: Pearson Eduction Press,2005:22-51.
    [132]蔡自兴.机器人学(第二版)[M].北京:清华大学出版社,2009:18-30.
    [133] Kaneko M, Yamashita T, Tanie K. Basic Considerations on TransmissionCharacterisitcs for Tendon Drive Robots[C]//the5th International Conferenceon Advanced Robotics. Pisa, Italy: IEEE,1991:827-832.
    [134] Palli G. Model and Control of Tendon Actuated Robots[D]. Bologna, Italy:University of Bologna,2006:25-41.
    [135]魏承,赵阳,田浩.空间机器人捕获漂浮目标的抓取控制[J].航空学报,2010,31(3):632-637.
    [136] Ma O, Dang H, Pham K. On-orbit Identification of Inertia Properties ofSpacecraft Using a Robotic Arm[J]. Journal of Guidance, Control andDynamics,2008,31(6):1761-1771.
    [137] ESA. ATV Edoardo Amaldi Factsheet English [R/OL].(2012-10-10)[2012].http://download.esa.int/docs/ATV/23_ATV-3_EA_LR.pdf.
    [138]朱仁璋,王鸿芳,徐宇杰等. ATV交会飞行控制策略研究[J].航天器工程,2011,20(1):25-26.
    [139] JAXA. HTV-1Press Kit[R/OL].(2012-10-10)[2009-09-09].http://iss.jaxa.jp/en/htv/mission/htv-1/presskit/htv1_presskit_en_a.pdf.
    [140] JAXA. HTV-2Mission Press Kit[R/OL].(2012-10-10)[2011-01-20].http://iss.jaxa.jp/en/htv/mission/htv-2/library/presskit/htv2_presskit_en.pdf.
    [141]彭成荣.航天器总体设计[M].北京:中国科学技术出版社,2011:169.
    [142] Abiko S, Yoshida K, Sato Y, et al. Performance Improvement of JEMRMS inLight of Vibration Dynamics[C]//Proceedings of the8th InternationalSymposium on Artificial Intelligence, Robotics and Automation inSpace-iSAIRAS. Munich, Germany:2005:1-6.
    [143] Scilianno B, Khatib O. Springer Handbook of Robotics[M]. Berlin: SpringerPress,2008:23-25.
    [144]刘宇.七自由度冗余机械臂多性能准则优化及运动控制的研究[D].哈尔滨:哈尔滨工业大学,2004:23-25.
    [145] Carignan C. Trajectory Optimization for Kinematically Redundant arms[J].Journal of Robotic Systems,1991,6(5):221-248.
    [146] Antonelli G, Indiveri G and Chiaverini S. Prioritized Closed-loop InverseKinematic Algorithms for redundant robotic Systems with VelocitySaturations[C]//Proceedings of IEEE/RSJ International Conference onIntelligent Robots and System. Louis, USA:2009:5892-5897.
    [147] Wang Jingguo, Li Yangmin and Zhao Xinhua. Inverse Kinematics andControl of a7-DOF Redundant Manipulator Based on the Closed-loopAlgorithm[J]. Advanced Robotic Systems,2010,7(4):1-10.
    [148] Liegeois A. Automatic Supervisory Control of the Configuration andBehavior of Multibody Mechanisms[J]. IEEE Transcaiton System, Man andCybernetics,1997,7(12):868-871.
    [149] Lee K, Buss M. Redundancy Resolution with MulitipleCriteria[C]//Proceedings of IEEE/RSJ International Conference on IntelligentRobots and System. Beijing, China:2005:598-603.
    [150] Shadpey F, Patel R, Balafoutis C, et al. Compliant Motion Control andRedundancy Resolution for Kinematically Redundant Manipulators[C]//Proceedings of Anmerican Control Conference. Seattle USA:1995:392-396.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700