薄层钢包长寿、高效保温技术开发及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钢包在炼钢工序的生产过程中是不可缺少的设备,其使用寿命的长短,保温性能的好坏,直接影响到炼钢工艺的顺行,产品的质量及产量。
     2006年,重钢由于新1350m3高炉投入生产,迫使炼钢厂产钢量达到330万吨规模。在生产场地狭小,钢包数量不能增加的情况下,需要完成如此规模的产量十分困难。根据测算,要完成330万吨/年的生产规模,必须提高转炉出钢量达到80±2吨。经计算,当永久层减薄30毫米,在保证钢包的自由空间为600毫米条件下,能够满足出钢量达到80±2吨的要求。同时进一步的提高钢包包龄,加快钢包周转,对完成330万吨/年的生产规模也是必须的。由于减薄永久层,钢包的保温性能势必降低,该课题针对重钢330万吨/年的生产规模的要求,开展了在减薄钢包永久层厚度条件下、提高钢包耐材寿命,实现薄钢包的高效保温性能研究工作。
     该课题通过研究钢包砌筑方式、钢包砖材质、精炼工艺及精炼渣系,首先实现了减薄钢包的长寿命要求,钢包包龄由以前的65~70次提高到了120次以上,比重钢传统钢包包龄提高了约80%。经过滑板机构的改造,钢包准备时间降低了5~6分钟,钢包周转速度加快,钢包在线准备时间由以前的12分钟以上缩短到10分钟以下,保证了330万吨/年的生产规模的实现。
     通过钢包传热分析模拟计算,提出钢包的热损失主要是通过包壁,而影响包壁热损失的主要因素是绝热层的材质和厚度,钢包工作层、永久层导热系数偏高,材质性能对热损失的影响不如绝热层大。覆盖剂对降低渣层的热损失有着重要作用,但其比例仅为钢包总热损失的4.41%。
     通过对不同类型钢包绝热层、永久层保温性能、耐压强度,以及覆盖剂保温性能实验室及生产现场应用实验研究,得出了采用20mm河北硬质纤维板+90mm3#混合永久层+ 1#复合颗粒覆盖剂,不仅达到了减薄前钢水转运过程中的温降特征,而且保温效果还优于原厚壁钢包,钢水在出钢及Ar站或LF炉出站温度现行制度上降低了5℃。
     对钢包烘烤过程温度的变化进行研究,得出了不同种类钢包,包括换永久层的全修钢包,不换永久层的全修钢包,换渣线的挖修钢包的烘烤制度,保证了钢水转运过程中,温度变化的稳定性。综合上述研究结果的应用,连铸中间包钢水温度合格率上升到了87%以上。
Ladle is indispensable during the process of steelmaking, and whose life-span and thermal insulation property have an important influence on steelmaking process and product quality.
     In 2006, the new blast furnace 1350m3 of ChongSteel was put into use, which results in the yield of steel increasing up to 3.30 million tons per year. Under the condition that the production place and amount of ladles are limited, it is difficult to come true. Based on investigation, in order to realize the scale, the yield of oxygen convertor must attain about 80 tons. When permanent layer decreases 30mm, there is a 600mm free space in ladle, and the aim of 80 tons production can come true. At the same time, in order to accomplish the production scale of 3.30 million tons per year, it is necessary to improve the life-span and the turnover rate of ladle further .Because the thickness of permanent layer reduces, the thermal insulation property may decrease. Therefore, aiming at the requirement of the production scale of 3.30 million tons, focus of this study is how to implement high efficient and improve thermal insulation property of ladle when whose thickness of permanent layer is reduced.
     By studying on the construction way and material of brick of ladle, refining technique and slag system, the requirement of prolonging the life of the ladle with thin layer was realized firstly. The life-span of ladle has increased from 65~70 times to more than 120 times, which has enhanced about 80% than traditional ladle of ChongSteel. Through improving slide mechanism, the prepared time of ladle has decreased 5~6minutes, the turnover rate of ladle increased, and the prepared time on line from more than 12 minutes to less than 10 minutes. Thus the production scale of 330 million tons per year is realized.
     Through thermal analysis and simulation calculation of ladle, the idea that the heat is reduced via ladle wall is proposed. Whereas the material and thickness of insulating layer are the main factors affecting heat-loss. Because the conduction coefficient of work layer and permanent layer are high, material property has less influence on heat-loss than thermal insulating layer. The covering agent plays an important role in decreasing heat-loss of slag layer, but the ratio is only 4.41% of total heat-loss of ladle.
     By investigating the thermal insulation property of insulation layer and permanent layer, compressive strength, the thermal insulation property of covering agent and industrial trials, the system of 20mm HeBei hard fibreboard and 90mm 3# mixed permanent layer and 1# complex grain covering agent was adopted, which has not only alleviated temperature reduction in molten steel transport before becoming thin, but also thermal insulating effect been better than original ladle with thick wall, and the temperature at tapping, Ar station or out-ladle furnace decreased 5℃.
     By investigating the variation of temperature of baking process of ladle, the better system of the completely repaired ladle with changing permanent layer, completely repaired ladle without changing permanent layer and the dig repair ladle was obtained to ensure the temperature stability of molten steel in transport. Based on the application of research results above, the qualified rate of temperature of tundish has increased more than 87%.
引文
[1] 李里. 钢包热循环过程热状态的数学模拟[硕士学位论文].重庆大学 2001
    [2] 陈荣. 钢包温度分布和应力分布模型及应用研究[硕士学位论文]. 重庆大学. 2005.5
    [3] 重钢 LF 炉复合精炼渣研究报告. 重钢铁炼钢厂. 2005
    [4] 重钢钢包底吹氩工艺优化研究报告. 重钢铁炼钢厂 2006
    [5] 钱之荣,范广举.耐火材料实用手册[M].北京:冶金工业出版社,1992.
    [6] 许晓海,冯改山.耐火材料技术手册[M].北京:冶金工业出版社,2000.
    [7] 陈家祥.炼钢常用图表数据手册[M].北京:冶金工业出版社,1984.
    [8] 周筠清.传热学[M].北京:冶金工业出版社,1992:16-24.
    [9] 朱光俊,杨治立,张威,刘晓峰. 重钢炼钢厂 80t 钢包热分析. 炼钢. 2006. (8):40-43
    [10] 温德智,欧俭平. 蓄热式钢包烘烤技术在涟钢的应用. 湖南冶金. 2005.(7):25-28
    [11] 张盛昌,倪爱云,杜超伶,陈志忠,陈宏伟. 炼钢过程系统温降的生产实践. 河南冶金. 2004.(4):39-41
    [12] 张威,刘晓峰,朱光俊,杨治立. 炼钢厂钢水温降研究现状. 重庆科技学院学报(自然科学版). 2005.12
    [13] 张德. 降低终点温度实现低温快注生产. 山西冶金. 2004. (4)
    [14] 金科,沈允文,李建新. 钢包、中间包复合反射绝热层的制备与应用. 钢铁. 2005. (1)
    [15] 张跃辉,夏俊华,张晓妮,孙喜仁. 垂直升降式钢包快速烘烤装置的应用. 冶金能源. 2000. (11)
    [16] U, Kockentiedt J, Jung Vd. High-Speed billet casting with a parabolic mould taper Metallurcal Plane and Technology International, 1998. (1) 74
    [17] Goro Y, Tasamasa Y. Refining practice and application of the ladle furnace (LF).2002.(2)51
    [18] 饶荣水. 钢包烘烤技术的发展. 工业加热. 2000. (3)
    [19] 曹桂菊,周茂林,穆建忠. 钢包烘烤系统的改造与应用. 工业炉. 2002. (11)
    [20] 陆富汉,唐捷. 钢包烘烤新工艺的开发和应用. 研究与探讨. 2003
    [21] 王立刚,王克成,赵强. 数字化蓄热式钢包烘烤器及自动控制系统 冶金能源 2006. (5)
    [22] 尹卫平,杨世山,迟沁芳. 25t 转炉连铸生产各工序温度控制模型的研究. 炼钢. 2004. (4)
    [23] 张慧书,战东平,姜周华 LF 精炼过程的钢水温度控制. 2005:64-66
    [24] 马汉超. LF 炉钢水温度预报. 钢铁工业自动化. 1998.1
    [25] 韩传基,艾立群,朱立新,蔡开科,王新华. RH-MFB 二次精炼过程钢水温度控制的模拟 特殊钢. 2006. (1)
    [26] 徐安军,田乃媛,许中波,崔健,职建军. 宝钢炼钢厂钢水温度状况及相关问题讨论. 炼钢.1997. (12)
    [27] 李晶,傅杰,王平,毕其富,黄成钢. 钢包精炼过程中钢水成分微调及温度预报. 钢铁研究学报. 1999.4
    [28] 王云丽. 钢包耐火材料炉衬中温度分布模型. 管理科学. 2004.2
    [29] Hsiao Tsechiang ,Yashikawa K. Proceedings of Beijing Symposium on High Temperature Air Combustion [C] . Beijing :The Federation of Engineering Societies of Chinese Association for Science and Technology ,1999.
    [30] Tada T ,Akiyama T , Kawamoto M , Kikukawa H. Developement of Regenerative Burner System for Radiant Tube[A ]. Internatioal Conference on Environmental Control of Combustion Processes,Sponsered by AFRC and J FRC [C].Honolulu ,Hawaii ,1991.
    [31] Masashi, Katsuki shika, Hasegawa. In:The Science and Technology of Combustion in Highly Preheated Air[A] Twenty-Seventh Symposium (International) on Combustion[C]. The Combustion Institute. 1998. 3135-3146.
    [32] AEA Technology Engineering Software Ltd. CFX 414 UserDocumentation [M] . Harwell ,1999.
    [33] Ou Jianping , Hsiao Techiang. Investigation and application of HTACin China. HTACG5 : Fifth International Symposium on High Temperature Air Combustion and Gasification. Yokohama. Japan. 2002 . 9.
    [34] H. Klein G. Eigentierger. In: Approximate solutions for metallic regenerative heat exchangers International. Journal of Heat and Mass Transfer. 2001, 44:3553-3563.
    [35] F. deMonte. Cyclic steady thermal response of rapidly switched fixed-bed heat regenerators incounterflow [J] International Journal of Heat and Mass Transfer, 1999, 42: 2591-2604.
    [36] Nabil Rafidi, Wlodimierz Blasiak. Experimental Study: Thermal PerformanceRegenerative Heat Exchangers Used in HiTAC Regenerative Burning Systems [A]. 25th TopicOriented Technical Meeting[C].Stockholm Sweden, 2003:87-94.
    [37] 么秋杨,陈永,黄道鑫. 高速连铸钢水温度控制. 钢铁钒钛. 1999(6)
    [38] Michael W. Short. 连铸期间的温度预报和控制 武钢技术. 1998(6)
    [39] 徐安军,田乃媛,许中波,伊炳希. 炼钢厂钢水温度—时间优化匹配系统开发. 钢铁研究 1997(5)
    [40] 唐余扬,顾俭,曹兆民. 转炉炼钢全流程温度控制及实施. 炼钢. 1998(5)
    [41] 王魁汉. 连铸中间包钢水连续测温[J ]. 连铸, 1993, (9) :2992304.跟踪分析提供了设备保证.
    [42] 蔡九菊, 饶荣水, 于庆波, 等.填充球蓄热室阻力特性的实验研究 钢铁, 1998, 33 (6) : 57-59
    [43] 侯长连, 刘日新 高效蓄热式工业炉的发展及其应用. 工业加热, 2001, (4) : 17-20
    [44] 饶文涛, 朱彤. 高温空气燃烧 NOx 生成规律研究[J]. 工业炉. 2003, 25 (4) :1-4.
    [45] 饶文涛, 杜军, 张鹤声等. 蓄热烧嘴结构优化数值模拟研究[J].工业炉,2002, 24 (2) : 5-8.
    [46] 饶文涛, 杜军, 张鹤声. 工业炉蓄热燃烧系统的开发[J]. 工业加热,2002, (4) :42-46.
    [47] 饶文涛. 高温空气燃烧特性及应用研究: [博士学位论文]. 上海:同济大学,2002.
    [48] 马晓茜, 张凌. HTAC 的关键技术及其高效低污染特性分析[J], 钢铁,1999, 34 (10): 60-63. [49]
    [49] 蒋绍坚, 艾元方, 彭好义等.高温低氧燃烧技术及其高效低污染特性分析[J].中南工业大学学报, 2000, 31(4): 311-314.
    [50] 张先棹 蓄热室新型蓄热体的选用 工业炉, 1998,(3) : 9-12.
    [51] 朱荣, 沈颐身, 关运泽 高温低氧燃烧技术中NOx 极限控制及其能量极限回收.北京科技大学学报,2000,10 (增刊) : 79-82.
    [52] 侯长连, 刘日新. 高效蓄热式工业炉的发展及其应用. 工业加热, 2001, (4) : 17-201.
    [53] 萧泽强:吉川邦夫.高温空气燃烧新技术讲座[M]北京: 中国科学技术协会工程会,1999,10.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700