高性能负温度系数热敏陶瓷和厚膜制备及基于阻抗谱的电学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着热敏电阻在各个应用领域的不断扩展,对温度测量、传感和控制的精度要求也越来越高,这就要求开发出更高温度敏感性的块体热敏材料;同时随着信息技术的飞速发展,电子元器件的微型化、集成化已成为电子技术发展的主流,而膜式化则是解决这些问题的一个关键技术。本文在跟踪国内外热敏电阻材料发展的基础上,研究出几类新型负温度系数(NTC)热敏陶瓷,并以这些新型热敏材料作为厚膜浆料制备无铅NTC热敏厚膜电阻,致力于开发出高性能块体热敏陶瓷和无铅NTC热敏厚膜电阻。同时采用X射线衍射仪、扫描电子显微镜、能谱仪、电阻温度特性测试仪对这些NTC热敏陶瓷和厚膜的物相、显微结构及电学性能进行了分析研究。为进一步揭示材料内部的构成特征及导电机制,借助阻抗分析仪对这些热敏材料的阻抗谱(IS)进行了系统分析,同时基于最小二乘法原理拟合了对导电起主要贡献作用的各个构成部件。
     首先系统研究了一类新型的具有立方钙钛矿结构的BaFexSn1-xO3NTC热敏陶瓷,随着Fe含量的升高,晶格常数a逐渐变小。这类陶瓷经高温烧结后所得晶粒粒径较大,晶界非常明显。BaFexSn1-xO3热敏陶瓷具有良好的NTC热敏行为,随着Fe含量增加,陶瓷室温电阻率(ρ25)由0.2MΩ.cm降至2kΩcm、热敏常数(β25/85)由4900K降至3900K。在Fe含量相对较低时,陶瓷体电阻的贡献主要来自于晶粒和晶界,也有微小接触电极的影响;在Fe含量较高时,仅有晶界和晶粒的贡献;单独分析BaFe0.5Sn0.5O3热敏陶瓷的变温阻抗,发现晶界电阻和晶粒电阻均表现出良好的NTC热敏行为,其中晶界电阻表现出较高的活化能。进一步在BaFexSn1-xO3的Ba位引入Sr元素,能使ρ25、β25/85和活化能(Ea)降低。
     在BaFexSn1-xO3的Ba位引入Bi元素,所得Ba1-mBimFe0.9Sn0.1O3陶瓷为立方钙钛矿结构。随着Bi含量增加,晶格常数a逐渐变短,烧结温度降低,ρ25、β25/85、Ea增加。Ba1-mBimFe0.9Sn0.1O3陶瓷的ρ25、β25/85、Ea分别处于1k~748M Ω·cm、4464~9314K和0.385~0.803eV范围内。经过氮气、氧气、空气中退火处理陶瓷的老化率值大小顺序为:氧气退火样品的老化率>空气退火样品的老化率>未退火处理样品的老化率>氮气退火样品的老化率。Ba1-mBimFe0.9Sn0.1O3热敏陶瓷内部对电学性能起到主要贡献的有晶界、铁电体的晶粒和晶壳三种,在不同的Bi\Ba含量下,这三个构成部件展现出不同的电阻贡献大小,Bi含量较低时(m≤0.2),铁电晶粒电阻相对较大;Bi含量合适时(0.2≤m≤0.5时),晶界电阻相对较大;Bi含量较大时(m≥0.6),晶壳电阻则相对较大。在此体系中进一步在Ba位用少量Y替代,所得NTC热敏陶瓷的ρ25、β25/85和Ea均随着Y含量的增加而升高。
     对于BaFe0.4sn0.6O3/BaBiO3NTC复合热敏陶瓷,随着BaBiO3含量的增加,ρ25、β5/85和Ea逐步降低,且这三个参数分别处于0.1~183.8kΩ·cm、2832~5450K和0.25~0.47eV范围内。
     为了获得低阻型厚膜烧结助剂,研究了一类电阻很小的具有单斜钙钛矿结构的新型BaCoⅡxCoⅢ2xBi1-3XO3NTC热敏厚膜,随着Co3O4的加入,其ρ23由BaBiO3厚膜的0.22MΩ·cm突然降低到约2Ω·cm,β25/85由3914降为约1100K。进一步在BaCoⅡ0.02CoⅢ0.04Bi0.94O3中各自掺入BaSb0.04Sn0.96O3、Zr02、Mn02和BaFe0.9Sn0.1O3,分别研究掺入量对其热敏性能的影响。
     系统研究了具有较高热敏活性的BaCoⅡ0.02CoⅢ0.04Bi0.94O3/Ba0.7Bi0.3Fe0.9Sn0.1O3复合NTC热敏厚膜。BaCoⅡ0.02CoⅢ0.04Bi0.94O3含量较高时,出现大块熔体,随着BaCoⅡ0.02CoⅢ0.04Bi0.94O3含量的降低,复合厚膜表面以颗粒链形式出现,且颗粒细小均匀。当Ba0.7Bi0.3Fe0.9Sn0.1O3含量升高时,粘合力逐渐变弱,ρ25、β25/85和Ea逐步增大,粘合力、ρ25、β25/85和Ea分别处于760~880kg/cm2、35.5Ω·cm~1.34MΩ·cm、2067~6139K和0.177~0.527eV区间之内,而且烧结温度和保温时间的变化对厚膜表面成膜性及电学性能的影响也较大。对于70%Ba0.7Bi0.3Fe0.9Sn0.1O3+30%BaCoⅡ0.02CoⅢ0.04Bi0.94O3含量厚膜气氛处理样品,氮气处理的老化率约1.2%,氧气处理的老化率约12.3%,空气中处理过的老化率约6.7%,不经过退火处理的老化率约4.5%。在Ba0.7Bi0.3Fe0.9Sn0.1O3含量较低时,Ba0.7Bi0.3Fe0.9Sn0.1O3/BaCoⅡ0.02CoⅢ0.04Bi0.94O3复合厚膜的导电贡献来自于类似陶瓷体的晶界和晶粒,整个厚膜体表现为短程导电机制;而当Ba0.7Bi0.3Fe0.9Sn0.1O3含量进一步增加时,厚膜内部只存在晶粒链导电贡献,且厚膜体的导电以长程导电机制为主。当这些晶粒链的构成粒子中主要为拥有较高电阻的热敏相构成时,厚膜电阻就比较大;而当这些构成粒子主要为中低阻的热敏相构成时,厚膜的电阻就相对较小。
     此后,在Ba0.7Bi0.3Fe0.9Sn0.1O3/BaCoⅡ0.02CoⅢ0.04Bi0.94O3基础上进一步掺入Ag20、BaSb0.04Sn0.96O3进行复合,结果表明所得热敏厚膜性能变化不大,并展现出前述热敏厚膜类似的导致机制。
With the continuous expansion of thermistors in various applications, the requirement for the accuracy of temperature measurements, sensing and control is also increasing, which requires the development of higher temperature-sensitivity bulk thermistors. Simultaneously, as the rapid development of information technology, the miniaturization and integration of electronic elements has been the development mainstream of electronic technology and film of device is a key technology for the resolution of the problems. In this paper, a few of novel negative-temperature-coefficient (NTC) thermistor ceramics were studied based on tracking the development of the domestic and international thermistor materials. Lead-free thick film NTC thermistors were prepared using the novel thermistor materials as functional phase of the thick-film paste. It is the main objective to develop high-performance thermistor ceramics and lead-free NTC thick films. The phases, microstructures and electrical properties of the thick-film NTC thermistors and ceramics were systemically analyzed by X-ray diffraction, scanning electron microscopy, energy dispersive spectroscopy and resistance-temperature tester. To reveal the conduction mechanism and characteristics of the thermistors, impedance spectroscopy (IS) of thermistor materials was systematically analyzed by impedance analyzer. The contributed elements in conducting process were fitted by a least square method.
     The cubic perovskite-structure BaFexSn1-xO3NTC thermistor ceramics were systematically studied. The lattice parameter (a) of the ceramics increases with the rise of Fe content. The larger-size grains and clear grain boundaries are observed in the thermistor ceramics sintered at high temperatures. The BaFeexSn1-xO3thermistor ceramics show good NTC thermistor behavior. With increasing Fe content, the room-temperature resistivity (ρ25) of BaFexSn1-xO3ceramics decrease to the2kΩ·cm by the0.2MQ.cm, and the themistor constant (β25/85) also falls to the3900K by the4900K. At lower Fe content, the magnitude of ceramic resistance is mainly determined by grain and grain boundary, and the ceramic-electrode interface resistance is very small. At higher Fe content, the total resistance of thermistor ceramics is completely attributed to the grain and grain boundary. In the analysis on the variable-temperature impedance of BaFeo.5Sn0.5O3thermistor ceramic, it is found that the grain resistance and grain-boundary resistance with high activation energy show the excellent NTC thermistor behavior. Further, the introduction of Sr at Ba-site leads to the decrease of ρ25,β25/85and Ea.
     The Ba1-mBimFeo.9Sn0.103ceramics still keep the cubic perovskite structure after the introduction of Bi element at Ba-site of BaFexSn1-xO3.With the rise of Bi content, the lattice constant (a) and the sintered temperatures of the Ba1-mBimFe0.9Sn0.103ceramics decrease. At the same time, the increasing P25,β25/85and Ea of the ceramics are in the range of1k-748M Q·cm,4464-9314K and0.385-0.803eV, respectively. The aging rate of the ceramics annealed at the atmosphere of N2, O2and air as the following orders: the aging rate of ceramic annealed at O2> the aging rate of ceramic annealed in air> the aging rate of unannealed ceramic>the aging rate of ceramic annealed at N2.The electrical properties of Ba1-mBimFe0.9Sn0.1O3thermistor ceramics are mainly from the contribution of grain boundary, ferroelectric grain and grain shell. The three elements show the different magnitude of electrical resistance at various Bi\Ba rate. For the compositions with m<0.2, the resistance of ferroelectric grain is relatively large. For the compositions with0.2≤m≤0.5, the grain boundary shows higher resistance value. When m≥0.6the larger grain-shell resistance occurs. The Ba-site at Ba1-mBimFe0.9Sn0.103ceramics was substituted for the minor Y element. The P25>,β25/85and Ea of the substituted ceramics increase with the rise of Y content.
     The p25,β25/85and Ea of BaFeo.4Sn0.6O3/BaBiO3composite ceramics, decreasing with the rise of BaBiO3content, are in the range of0.1-183.8kΩ·cm,2832-5450K and0.25-0.47eV, respectively.
     In order to obtain a low-resistance sintering additive of thick films, a novel monoclinic perovskite-type BaCoⅡxCoⅢ2xBi1-3xO3thick film were investigated. With the added Co3O4, the room-temperature resistivity of BaBiO3thick films sharply decreases to2Ω·cm by0.22MΩ·cm, and the thermistor constant down to1100K by3914K. The thermistor characteristics of the composite BaCoⅡ0.02CoⅢ0.04Bi0.9403thick films were studied after the addition of the BaSb0.04Sn0.96O3, ZrO2, MnO2and BaFeo.9Sn0.1O3, respectively.
     The high-performance BaCoⅡ0.02CoⅢ0.04Bi0.9403/Ba0.7Bi0.3Fe0.9Sn0.103NTC composite thick films were systematically studied for the first time. For the higher BaCo0.02ⅡCo0.04ⅢBi0.94O3content, the large melt is found in the composite thick films. With the reduction of BaCo0.02ⅡCo0.04ⅢBi0.94O3content in the thick films, the even, fine grains and the grain chains occur. Simulateneously, the adhsive force is weakened, the values of ρ25,β25/85and Ea increase. The adhsive force,ρ25,β25/85and Ea are in the range of760-880kg/cm2,35.5Ω·cm-1.34MΩ·cm,2067-6139K and0.177-0.527eV, respectively. Furthermore, the film-forming and electrical properties are greatly affected by the sintered temperatures and the holding time in the heat-treatment process. For the70%Ba0.7Bi0.3Fe0.9Sn0.1O3+30%BaCo0.02ⅡCo0.04ⅢBi0.94O3thick films annealed in various atmospheres, the aging values of the thick films annealed in N2, O2, air and un-annealed, are1.2%,12.3%,6.7%and4.5%, respectively. For the lower Ba0.7Bi0.3Fe0.9Sn0.1O3content, the conduction contribution of Ba0.7Bi0.3Fe0.9Sn0.1O3/BaCo0.02ⅡCo0.04ⅢBi0.94O3thick films is mainly made of grain boundaries and grains similar to that of the ceramics. The composite thick films show the short-range conduction mechanism at the lower Ba0.7Bi0.3Fe0.9Sn0.1O3content. With the further increase of Ba0.7Bi0.3Fe0.9Sn0.1O3content, the grain chains of composite thick films are the main conduction contribution and the thick films show the long-range conduction mechanism. In the grain chains, when the thick-film grains are made from the high-resistance thermistor phases, the total resistance of thick film is relatively larger. Once the mid-and low-resistance thermistor phases as the grains of grain chains, however, the resistance value of thick film show smaller.
     Furthermore, each of the Ag2O and BaSb0.04Sn0.96O3were added into the Ba0.7Bi0.3Fe0.9Sn0.1O3/BaCo0.02ⅡCo0.04ⅢBi0.94O3composite thick films. The addition of Ag2O and BaSb0.04Sn0.96O3don't have too much effect on the electrical properties and the conduction mechanism of the thick films is similar to the previous chapater.
引文
[1](英)莫尔桑(Moulson, A.J.),(英)赫贝尔(Herbert, J.M.)电子陶瓷材料、性能、应用[M].武汉:武汉工业大学出版社,1993.
    [2]Hosseini M. The effect of cation composition on the electrical properties and aging of Mn-Co-Ni thermistors [J]. Ceram. Int.,2000,26,245-249.
    [3]王卫民.M-Co-Ni-O基NTC热敏半导体陶瓷的低温烧结与电性能研究[D].陕西:西北工业大学,2006.
    [4]李言荣,恽正中.电子材料导论[M].北京:清华大学出版,2001.384-388.
    [5]杨文,杨邦朝.阳离子分布对尖晶石型热敏陶瓷电性能的影响[J].功能材料,2000,31(5):513-515.
    [6]Macklen E D. Thermistors. Glasgow:Electrochemical Publications,1979.
    [7]Park K, Bang D Y. Electrical properties of Ni-Mn-Co-(Fe) oxide thick-film NTC thermistor prepared by screen printing [J]. J. Mater. Sci.,2003,14:81-87.
    [8]陆峰,程家骐,李凤翔,等.Mg-Mn-Fe-0系热敏电阻变B特性的研究[J].功能材料,1996,27(6):550-553.
    [9]姜斌,王海玲,王恩信.掺杂对Mn-Co-Ni系NTC热敏电阻器稳定性的影响[J].电子元件与材料.1997,16(4):37-40.
    [10]姜斌,王海玲,王恩信.Nb2O5掺杂对MnCONi系NTC热敏电阻材料的影响[J].电子科技大学学报,1997,26(5):496-499.
    [11]Kuang X, Carotenuto G, Nicolals L. A review of ceramic sintering and suggestions on reducing sintering temperatures [J]. Adv. Perform. Mater.,1997,4:257-274.
    [12]Veres A, Noudem J G, Fourrez S, et al. The influence of iron substitution to manganese on the physical properties of YMnO3 [J]. Solid-State Sci.,2006,8: 137-141.
    [13]Gutierrez D, Pena O, Duran P, et al. Crystal structure, electrical conductivity and Seebeck coefficient of Y(Mn, Ni)O3 solid solution [J]. J. Eur. Ceram. Soc.,2002,22(4): 567-572.
    [14]Feltz A. Perovskite forming ceramics of the system SrxLa1-xTix+yⅣCoyⅡCo1-x.2yⅢO3 for NTC thermistor applications [J]. J. Eur. Ceram. Soc.,2000,20(14-15):2367-2376.
    [15]Luo Y, Liu X Y, Li X Q, et al. BaBiO3-doped SrTiO3-based NTC thermistors [J]. J. Alloys Compd.,2007,433:221-224.
    [16]Luo Y, Liu X Y. High temperature NTC BaTiO3-based ceramic resistors [J]. Mater. Lett.,2005,59:3881-3884.
    [17]Luo Y, Liu X Y, Chen G H. Electrical properties of BaTiO3-based NTC ceramics doped by BaBiO3 and Y2O3 [J]. Mater. Lett.,2006,60:1011-1013.
    [18]Luo Y, Liu X Y, Li X Q. Electrical properties of BaTiO3-based NTC thermistors doped by BaBiO3 and La2O3 [J]. J Mater Sci:Mater Electron,2006,17:909-913.
    [19]Houivet D, Bernard J, Haussonne J M. High temperature NTC ceramic resistors (ambient-1000 degrees C) [J]. J. Eur. Ceram. Soc.,2004,24(6):1237-1241.
    [20]Itusuhei O, Nasanori Y, Eturo Y, et al. Dispositif de thermistance, methode de fabrication dun tel dispositif et capteur de temperature [P]. Denso Corporation, French paten FR 9902475,1999-2-26.
    [21]Lu W Z, Li B Y, Fu M, et al. Novel thermistor of Bi-doped Ba(Sn, Sb)O3 with linear negative temperature coefficient [J]. Sens. Actuators,2000,80:38-41.
    [22]王肖燕,周方桥,王正宇.Mn掺杂对BaSnO3陶瓷的NTC特性的影响[J].电子元件与材料,2006,25(12):44-46.
    [23]Kulawik J, Szwagierczak D, Groger B, et al. Fabrication and characterization of bulk and thick film perovskite NTC thermistors [J]. Microelectron. Int.,2007,24(2):14-18.
    [24]Hao Y X, Ma W B, Qu Y F, et al. Temperature sensitive properties of the La(TixMn1-x)O3 system [J]. J. Electroceram.,2005,15(3):251-255.
    [25]J Hombo, Y Matsumoto, T Kawano, et al. Electrical conductivities of SrFeO3-δ and BaFeO3-δ perovskites [J]. J. Solid State Chem.,1990,84(1):138-143.
    [26]Fagg D P, Kharton V V, Frade J R, et al. Stability and mixed ionic-electronic conductivity of (Sr,La)(Ti,Fe)O3-ε perovskites [J]. Solid State Ionics,2003,156:45-57.
    [27]Yaremchenko A A, Patrakeev M V, Kharton V V, et al. Oxygen ionic and electronic conductivity of La0.3Sr0.7Fe(Al)03-δ perovskites [J]. Solid-State Sci.,2004,6:357-366
    [28]Kharton V V, Tsipis E V, Yaremchenko A A, et al. Oxygen permeability, electronic conductivity and stability of La0.3Sr0.7CoO3-based perovskites [J]. Mater. Sci. Eng., B, 2006,134:80-88.
    [29]Park K. Microstructure and electrical properties of Ni1.0Mn2-xZrxO4 NTC thermistors [J]. Mater. Sci. Eng., B,2003,104:9-14.
    [30]Kanade S A, Puri V. Electrical properties of thick-film NTC thermistor composed of Ni0.8Co0.2Mn2O4 ceramic:Effect of inorganic oxide binder [J]. Mater. Res. Bull.,2008, 43:819-824.
    [31]Kanade S A, Puri V. Composition dependent resistivity of thick film Ni(1-x)CoxMn2O4: (0≤x≤1) NTC thermistors [J]. Mater. Lett.,2006,60:1428-1431.
    [32]S. A. Kanade, Vijaya Puri. Properties of thick film Nio.6Coo.4FeyMn2-y04:(0≤y≤0.5) NTC ceramic [J]. J. Alloys Compd.,2009,475:352-355.
    [33]Jadhav R, Kulkarni D, Pur V. Structural and electrical properties of fritless Ni(1-x)CuxMn2O4 (0≤x≤1) thick film NTC ceramic [J]. J Mater Sci:Mater Electron., 2010,21:503-508.
    [34]Satoshi M, Tadao H. Thick-film thermistor composition [P]. JP3184301(A), 1991-08-12.
    [35]Jagtap S, Rane S, Gosavi S, et al. Low temperature synthesis and characterization of NTC powder and its'lead free'thick film thermistors [J]. Microelectron. Eng.,2010, 87:104-107.
    [36]Jagtap S, Rane S, Gosavi S, et al.'Lead Free'thick film thermistors:a study of variation in glass frit concentration and organics composition [J]. J Mater Sci:Mater Electron.,2009,21:861-867.
    [37]Shoichi M, Yoji U, Hiromi T. Thick-film thermistor composition and its manufacturing method, and thick-film thermistor element [P]. JP2006332192(A), 2006-12-07.
    [38]Shoichi M, Yoji U. Manufacturing method of thick film thermistor composition [P]. JP2006032388(A),2006-02-02.
    [39]Satoshi M, Tadao H. Thick-film thermistor composition [P]. JP3200302(A), 1991-09-02.
    [40]Park K, Bang B Y. Electrical properties of Ni-Mn-Co-(Fe) oxide thick-film NTC thermistors prepared by screen printing [J]. J Mater Sci:Mater Electron,2003,14: 81-87.
    [41]Luo Y, Li X Q, Liu X Y. Electrical properties of binder-free thick film BaYxBi1-xO3 NTC thermistors [J]. J. Alloys Compd,2011,509:463-465.
    [42]Rane S, Prudenziati M, Morten B. Environment friendly perovskite ruthenate based thick film resistors [J]. Mater. Lett.,2007,61:595-599.
    [43]Yuan C L, Wu X F, Huang J Y, et al. Electrical properties of thick film NTC thermistors based on SrFeo.9Sn0.1O3-d [J]. Solid State Sci.,2010,12:2113-2119.
    [44]Park K. Structural and electrical properties of FeMg0.7Cr0.6Co0.7-xAlx04 (0≤x≤0.3) thick film NTC thermistors [J]. J. Eur. Ceram. Soc.,2006,26:909-914.
    [45]Barik S K, Choudhary R N P, Mahapatra P K. Electrical properties of Na1/2Nd1/2Ti03 Ceramics [J]. J Mater Sci:Mate.r. Electron.,2008,19:607-614.
    [46]Bo wen C, Ramesh S, Gill C, et al. Impedance spectroscopy of CuO-doped Y-TZP Ceramics [J]. J. Mater. Sci.,1998,33:5103-5110.
    [47]李燕燕,李国荣,王天宝,等.Nb2O5掺杂高温无铅(Ba,Bi,Na)TiO3基PTCR陶瓷 结构与电性能研究[J].无机材料学报,2009,24:374-378.
    [48]Lily, Kumari K, Prasad K, et al. Dielectric and impedance study of lead-free ceramic: (Na0.5Bi0.5)ZrO3 [J]. J. Mater. Sci.,2007,42:6252-6259.
    [49]Lanfredi S, Nobre M A L. Conductivity mechanism analysis at high temperature in bismuth titanate:A single crystal with sillenite-type structure [J]. Appl. Phys. Lett., 2005,86:081916.
    [50]Heinen B, Waser R. Influence of the thickness and area of NiCr/Ag electrodes on the characteristics of BaTiO3-ceramic based positive-temperature-coefficient thermistors [J]. J. Mater. Sci.,1998,33:4603-4608.
    [51]袁昌来,刘心宇,马家峰,等.Bi0.5Ba0.5Fe0.5Ti0.49Nb0.01O3热敏陶瓷的微结构和电学性能研究[J].物理学报,2010,59:4253-4260.
    [52]Hrovat M, Belavic D, Holc J, et al. The development of the microstructural and electrical characteristics of NTC thick-film thermistors during firing [J]. J. Mater. Sci., 2006,41:5900-5906.
    [53]吕文中.BaSnO3基复合氧化物电子陶瓷材料的研究[D].武汉:华中理工大学,1994.
    [54]Shimizu Y, Shimabukuro M, Arai H. Enhancement of humidity sentitivity for perovskite-type oxides having senicondutivity [J]. Chem. Lett.,1985,7:917-920.
    [55]Kazuko S. Exhaust gas sensor and process for producing same [P]. EPO Patent EP0157328,1985-10-9.
    [56]Lumpe U, Gerblinger J, Meixner H. Carbon-monoxide sensors based on thin films of BaSnO3 [J]. Sens. Actuators, B,1995,25:657-660.
    [57]Lumpe U, Gerblinger J, Meixner H. Nitrogen oxide sensors based on thin films of BaSnO3[J]. Sens. Actuators, B,1995,26:97-98.
    [58]Chu X F. Dilute CH3SH-sensing characteristics of BaSnO3 thick film sensor [J]. Mater. Sci. Eng., B,2004,106:305-307.
    [59]Cerda J, Arbiol J, Dezanneau G, et al. Perovskite-type BaSnO3 powders for high temperature gas sensor applications [J]. Sens. Actuators, B,2002,84:21-25.
    [60]Tao S W, Liu X Q, Gao F, et al. Ethanol-sensing characteristics of barium stannate prepared by chemical precitation [J]. Sens. Actuators, B,2000,71:223-227.
    [61]周志刚,赵刚,张中太.热-湿-气多功能敏感陶瓷材料[P].CN85100146A,1985-4-1.
    [62]陈加福,孟明,林培琰,等.BaFeO3和BaCeO3钙钛矿型氧化物的储氮性能[J].催化学报,2003,24(6):419-422.
    [63]Azad A M, Chen H N. Characterization of BaSnO3-based ceramics [J]. J. Alloys Compd.,1998,270:95-106.
    [64]Park J H, Bae J S, Choi B C, et al. Impedance spectroscopy of Bi3O12 ceramics above and below ferroelectric transition temperatures [J]. J. Phys. D,2007, 40:579.
    [65]Schmidt R, Brinkman A W. Studies of the temperature and frequency dependent impedance of an electroceramic functional oxide NTC thermistor [J]. Adv. Funct. Mater.,2007,17:3170-3174.
    [66]Wang J, Neaton J B, Zheng H, et al. Epitaxial BiFeO3 Multiferroic Thin Film Heterostructures [J]. Science,2003,299(5613),1719-1722.
    [67]Fiseher P, Polemska M, Sosnowska I, et al. Temperature dependence of the crystal and magnetic structures of BiFeO3 [J]. J. Phys. C,1980,13:1931.
    [68]Kubel F, Sehmid H. Structure of a ferroelectric and ferroelastic mondomain crystal of the perovskite BiFeO3 [J]. Acta. Crystallgr. B,1990,46:698.
    [69]Jiang M H, Liu X Y, Chen G H. Phase structures and electrical properties of new lead-free Na0.5K0.5NbO3-LiSbO3-BiFe03 ceramics [J]. Scripta Mater.,2009,60: 909-912.
    [70]Zhou C R, Liu X Y, Li W Z. Dielectric and piezoelectric properties of BiFeO3 modified Bi0.5Na0.5TiO3-Bi0.5Ko.sTiO3 lead-free piezoelectric ceramics [J]. Mater. Sci. Eng.,B,2008,153:31-35.
    [71]Zhou C R, Liu X Y, Li W Z, et al. Structure and piezoelectric properties of Bi0.5Na0.5TiO3-Bio.5K0.5TiO3-BiFeO3 lead-free piezoelectric ceramics [J]. Mater. Chem. Phys.,2009,114:832-836.
    [72]Zou M J, Fan H Q, Chen L, Yang W W. Micro structure and electrical properties of (1-x) [0.82Bi0.5Na0.5TiO3-0.18Bi0.5K0.5TiO3]-xBiFe03 lead-free piezoelectric ceramics [J]. J. Alloys Compd.,2010,495:280-283.
    [73]Zuo R Z, Ye C, Fang X S. Na0.5K0.5Nb03-BiFe03 lead-free piezoelectric ceramics [J]. J. Phys. Chem. Solids,2008,69:230-235.
    [74]Buscaglia M T, Mitoseriu L, Buscaglia V, et al. Preparation and characterisation of the magneto-electric xBiFeO3-(1-x)BaTiO3 ceramics [J]. J. Eur. Ceram. Soc.,2006,26: 3027-3030.
    [75]Wang Z B, Zhao C H, Yang P H, et al. Effect of annealing in O2 or N2 on the aging of Feo.5Mn1.84Ni0.66O4 NTC ceramics [J]. Solid State Ionics,2006,177:2191-2194.
    [76]Irvine J T S, Sinclair D C, West A R. Electronics:characterization by impedance spectroscopy [J]. Adv. Mater.,1990,2:132.
    [77]Sinclair D C, West A R. Impedance and modulus spectroscopy of semiconducting barium titanate showing positive temperature coefficient of resistance [J]. J. Appl. Phys.,1989,66:3850.
    [78]Heinen B, Waser R. Influence of the thickness and area of Ni-Cr/Ag electrode on characteristics of positive-temperature-coefficient thermistors [J]. J. Mater. Sci.,1998, 33:4603-4608.
    [79]Gerhardt R. Dielectric and Impedance Spectroscopy Revisited:Distinguishing Localized Relaxation from Long Range Conductivity [J]. J. Phys. Chem. Solids,1994, 55:1491-1506.
    [80]Norbre M A L, Lanfredi S. Negative temperature coefficient thermistor based on Bi3Zn2Sb3O14 ceramic:An oxide semiconductor at high temperature [J]. Appl. Phys. Lett.,2003,82:2284-2286.
    [81]Thornton G, Jacobson A J. A neutron diffraction determination of the structures of Ba2SbⅤBiⅢ06 and Ba2BivBiⅢO6 [J]. Acta Crystallogr, Section B,1978,34:351-354
    [82]Cox D E, Sleight A W. Mixed-valent Ba2Bi3+Bi5+O6:structure and properties vs. temperature [J]. Acta Crystallogr, Section B,1979,35:1-10.
    [83]Cox D E, Sleight A W. Crystal structure of Ba2Bi3+Bi5+O6 [J]. Solid State Commun., 1976,19(10):969-973.
    [84]Mattheiss L F, Hamann D R. Electronic structure of BaPb1-xBixO3 [J]. Phys. Rew. B, 1983,28(8):4227-4241.
    [85]Shen Z X, Lindberg P A P, Wells B O. Photoemission study of monoclinic BaBiO3 [J]. Phys. Rew. B,1989,40(10):6912-6918.
    [86]Tajima S, Uchida S, Masaki A. Optical study of the metal-semiconductor transition in BaPb1-xBixO3 [J]. Phys. Rew. B,1985,32(10):6302-6311.
    [87]Klinkova A, Nikolaichik V I, Barkovskii N V. Thermal Stability of the Perovskite BaBiO3 [J]. Solid State Chem.,1999,146:439-447.
    [88]Yamaguchi M, Takeuchi F, Hashimoto T. Discovery of new phase and analysis of phase relationships in BaBiO3 with thermal analyses [J]. Thermochimica Acta.,2005, 431:33-37.
    [89]Zhou Q D, Kennedy B J. High temperature structure of BaBiO3-δ synchrotron X-ray powder diffraction study [J]. Solid State Commun.,2004,132:389-392.
    [90]Chaillout C, Santoro A, Remeika J P, et al. Bismuth valence order-disorder study in BaBiO3 by powder neutron diffraction [J]. Solid State Commun.,1988,65(11): 1363-1369.
    [91]Sleight A W, Gillson J L, Bieerstedt R E. High-temperature superconductivity in the BaPb1-xBixO3 system [J]. Solid State Commun.,1975,17(1):27-28
    [92]Mattheiss L F, Gyorgy E M, Johnson D W. Superconductivity above 20 K in the Ba-K-Bi-O system [J]. Phys. Rew. B,1988,37(7):3745-3746.
    [93]Cava R J, Batlogg B, Krajewski J J, Farrow R, White A E, Short K, Peck W F, Kometani T. Superconductivity near 30-K without Copper-the Ba0.6K0.4BiO3 Perovskite [J]. Nature,1988,332:814-816.
    [94]池上沼.厚膜ヤソサ.电子材料,1980,19(5):94-100.
    [95]Hashimoto T, Kawazoe H, Shimamura H. Effects of substitution of Bi with Pb in BaBi1-xPbxO3 on crystal structure and conduction behavior [J]. Physica C,1994,223: 131-139.
    [96]Kambe S, Shime I, Ohshima S, Okuyama K, Sakamoto K. Crystal structure and electronic properties of BaBiOy (2.5≤y≤2.9) and Ba1-xLaxBiO3 (0≤x≤0.5) [J]. Solid State Ionics,1998,108:307-313.
    [97]Robert W, Vest A. Model for Sheet Resistivity of RuO2 Thick Film Resistors [J]. IEEE, 1991,14(2):96-405.
    [98]Ewen P J S, Robertson J M. A percolation model of conduction in segregated systems of metallic and insulating materials:application to thick film resistors [J]. Appl. Phys., 1981,14:2253-2268.
    [99]Nordstrom T V, Hills C R. Proc. Lnt. Symp. Microelectronics,1979:403.
    [100]Boonstra A H, Mutsaers C A H A. The effect of particle size on the temperature coefficient of resistance of thick film resistors [J]. Thin Solid Films,1980,67(1): 13-20.
    [101]Pike G E, Seager C H. Electrical properties and conduction mechanisms of Ru-based thick-film (cermet) resistors [J]. J. Appl. Phys.,1977,48(12):5152-5169.
    [102]Liu Q Z, Wang H F, Chen F, et al. Single-crystalline transparent and conductive oxide films with the perovskite structure:Sb-doped SrSnO3 [J]. J. Appl. Phys.,2008, 103:093709.
    [103]Wang H F, Liu Q Z, Chen F, et al. Transparent and conductive oxide films with the perovskite structure:La-and Sb-doped BaSnO3 [J]. J. Appl. Phys.,2007,101:106105.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700