水解进程对乳蛋白酶解产物抗菌性能的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物活性肽是指对生命活动具有调节作用的多肽,通常以多肽链序列的形式存在于蛋白质之中。利用天然的蛋白质作为原料,使用蛋白酶水解制取各种生物活性肽,是生物活性肽制备技术中最具可行性的一种。使用酶解法制取生物活性肽,有间歇式水解和酶膜生物反应器中连续水解两种手段,前者自动化程度低,操作简便,后者可以连续运行,生产效率高。
     抗菌肽是生物活性肽家族中的一员,它是生物体抵抗外来微生物侵袭的重要手段,通过破坏细胞膜结构、诱导细胞凋亡、抑制细胞呼吸和DNA合成等机制来达到抑菌作用。从制备抗菌肽的天然蛋白质的来源上讲,乳蛋白是制备抗菌肽的重要原料。乳蛋白中的乳酪蛋白、乳清蛋白和乳铁蛋白,它们的水解产物对微生物的影响存在差异。本论文的研究,主要分为以下几个部分:第一是探索了乳蛋白的分离与检测技术,优化分离工艺,提出了新的乳铁蛋白的检测方法;第二是在间歇式反应条件下,对不同类型的乳蛋白进行酶解,优化酶解反应条件,测定水解产物的抗菌特性;第三是尝试在酶膜反应器中连续水解乳蛋白制备抗菌肽。
     论文首先以脱脂乳粉作为原料,通过控制等电点的手段制备酪蛋白,得率可以达到7.8%。除去酪蛋白后的乳清,在中性条件下经过10K的超滤膜处理,可以脱去其中的乳糖和盐分,成为高纯度的乳清分离蛋白。
     论文提出了一种借助高效液相色谱测定乳制品中乳铁蛋白的方法。先通过额外加入的亚铁离子使乳铁蛋白的构型更加稳定。然后用60%乙醇沉淀蛋白除去糖分,再用醋酸盐缓冲液提取乳铁蛋白并分离掉酪蛋白,最后用高效液相色谱检测。采用LiChrosorb RP-C18色谱柱,在0.1%三氟乙酸协助下,甲醇与水线性梯度洗脱。乳铁蛋白的线性范围是0.4~2mg/mL (R2= 0.9980),平均回收率95.4%。可以用于一般乳制品中乳铁蛋白的测定。
     此外,一种借助乳铁蛋白铁结合能力测定奶粉中乳铁蛋白的方法也被提出并与HPLC的检测结果进行比较。先通过额外加入的亚铁离子使乳铁蛋白中的铁达到饱和以获得稳定的铁含量,然后对蛋白反复醇沉和水溶以除去游离铁,再用原子吸收分光光度计测定铁含量,依据铁与蛋白含量的相互关系计算出乳铁蛋白含量。该法快速准确,加样回收率超过96%,检测范围为3.5-100mg/g。该法可以用于婴儿配方奶粉中乳铁蛋白的测定。
     以牛初乳作为原料,经等电点沉淀和加压过滤除去酪蛋白,随后在pH 7.5条件下加入乙醇至50%,可以使乳清中的乳铁蛋白沉淀并获得粗制品,粗制品经低压液相色谱纯化以及切向流超滤脱盐后可以获得高纯度的乳铁蛋白,该乳铁蛋白制品经HPLC和HPEC分析,杂质含量均已低于检测限度。
     在乳铁蛋白水解工艺的优化过程中,使用平行试验法设计实验,借助Mathematic7.01软件实施曲面回归分析初步得出,当以蛋白质水解程度最大为目标时,胃蛋白酶水解乳铁蛋白反应体系适宜的条件是:底物浓度2%,温度37℃,pH 2.2-2.3,酶用量7U/g。当水解反应进行到60min时,所得水解产物抑菌活力最强。
     在乳清蛋白水解工艺的优化过程中,使用SPSS 18.0软件设计正交实验方案,并进行单变量一般线性模型的方差分析。使用碱性蛋白酶水解乳清蛋白适宜的工艺参数为:酶底比5%,pH8.0,温度45℃。水解产物不对病原微生物产生抑制作用,但可以促进益生菌的生长。
     将胰蛋白酶和中性蛋白酶以1:1的比例复合使用来水解酪蛋白。使用Design Expert软件的Box-Behken模块中的响应面分析法设计实验方案并作回归分析,发现在pH7.4,温度44℃,底物浓度32g/L,酶底比2.5%下,水解90min后,水解度可以达到15%,此时水解多肽产物抵抗病原微生物的活力达到最强,该水解多肽同时又能促进益生菌的生长。
     本文使用了自制酶膜生物反应器连续水解乳铁蛋白制备乳铁素。使用截留分子量为10k的聚醚砜超滤膜作为试验用膜堆。发现只要控制好底物流加速率并在线添加酶活,酶膜生物反应器就可以实现稳定产出。在酶膜生物反应器中乳铁蛋白的转化率和乳铁素的得率较间歇式反应有明显提高。
Bioactive peptides are the peptides that can regulate the metabolism, and exist in the protein in the form of polypeptide chains'sequences. The hydrolysis of natural protein by protease is the most feasible approach to attain diverse bioactive peptides. The hydrolysis method includes two types, namely batch-type hydrolysis and continuous hydrolysis utilizing the enzymatic membranes bioreactors (EMB). The former is easy and simple to control and has low automaticity; while the latter can be operated continuously and has efficient output.
     Antibacterial peptide which is one of the important categories of bioactive peptides offers vital protection to organism to resist microbial attack. The antibacterial peptide restrains the microorganism through various mechanisms, such as destroying the structure of cell membrane, inducing the cell apoptosis and inhibiting the cell respiration and DNA synthesis. Lactoprotein, as one kind of the natural protein, is an important material in the production of antibacterial peptide. The hydrolysates of the casein, whey protein and lactoferrin which are the ingredients of lactoprotein have different influences on the microorganism.
     This study compasses three parts. Firstly, the study optimized the separation technique of lactoprotein, and suggested new detection methods for some of the proteins. Secondly, using the batch-type reaction, different kinds of lactoprotein were hydrolyzed for the purposes of the optimization of hydrolysis parameters and the analysis of hydrolysates'antibacterial activities. Thirdly, antibacterial peptide was continuously produced by a designed enzymatic membrane bioreactor.
     The casein was separated from defatted milk powder and reach 7.8% yield through the isoelectric point precipitation. The whey was processed with the ultrafiltration membrane (10K) in the neutral pH condition, in order to erase the lactose and salinity and produce high purified whey protein isolate.
     In this study, a method to determine the lactoferrin in milk products by HPLC was identified. In a bid to obtain a configuration of lactoferrin that can be precipitated easily, the lactoferrin in milk was saturated by additional ferrous ion. Subsequently, the milk was precipitated by 60% thanol to eliminate the sugar, and dissolved in acetic acid buffer to remove casein protein and extract lactoferrin. The remaining product was then measured by HPLC, using LiChrosorb RP-C18 as separation column, linear gradient elution by methanol and water with the assistance of 0.1%TFA. The linear range of the lactoferrin detection is between 0.4 to 2mg/mL (R2= 0.9980), and the average recovery rate was 95.4%. This method is useful in detecting the lactoferrin in the milk products.
     In addition, an alternative method to determine the lactoferrin in milk powder, based on iron binding function of lactoferrin, was proposed and compared with the HPLC method. First, ferrous ion was added to lactoferrin to achieve a saturated iron ion binding. And then, the protein was precipitated by the ethanol and dissolved in water repeatedly in order to eliminate the excessive iron ion. The amount of iron in lactoferrin was measured by atomic absorption spectrophotometer. Through the correlation between the amounts of iron and protein, the amount of lactoferrin can be calculated. This method has advantages in terms of accuracy and speediness. The lactoferrin recovery rate is above 96%. The lactoferrin detection ranges from 3.5 to 100 mg/g. This method can be useful in the detection of lactoferrin in the infantile milk powder.
     The colostrums were preprocessed with the isoelectric point precipitation and pressure filtration to remove the caseins. In the condition of pH 7.5, the ethanol was mixed into the whey up to 50% of the mixture. The addition of the ethanol assists the precipitation of lactoferrin in the whey and to be harvested as crude product. The crude product was further purified with low pressure liquid chromatography and desalted with tangential flow ultra filter to yield high purity lactoferrin. The HPLC and HPEC analyses of lactoferrin indicated that the impurity content of lactoferrin is below the range of detection.
     The parallel test was employed to design the experiments for the optimization of lactoferrin hydrolysis. The calculation of response surface regression performed with software Mathematic 7.01 showed that the optimum parameters of lactoferrin hydrolysis by the pepsin are substrate concentration 2%, temperature 37℃, pH 2.2-2.3, and dosage of enzyme 7U/g, when the aim of experiment is to maximize the degree of proteolysis.
     The orthometric experiments aimed at optimization of whey protein hydrolysis were designed by the software SPSS 18.0. The optimized parameters attained from the orthometric experiments were further used to formulate a univariate general linear model. The data of parameters estimated by the univariate general linear model were compared with the real data using the variance analysis. The results revealed that the optimum parameters for the whey protein hydrolysis by the alcalase include the ratio of enzyme to substrate 5%, pH 8.0 and temperature 45℃. The hydrolysate does not inhibit the pathogenic microorganism, but facilitate the growth of probiotics.
     The casein was hydrolyzed by the mixture of trypsin and neutral proteinase (ratio 1:1). The response surface analysis in the Box-Behken function was used to design the experiments, employing the software Design Expert. The results of experiments were then analyzed with regression analysis, which revealed that the degree of hydrolysis can reach 15%, with pH 7.4, substrate density 32g/L, ratio of enzyme to substrate 2.5%, and 90 minutes of hydrolysis. When the degree of hydrolysis reaches 15%, the antibacterial activity of polypeptide product is strongest. The polypeptide can also boost the growth of probiotics.
     In this study, lactoferrin was continuously hydrolyzed to generate lactoferrcin by a designed EMB apparatus. The membrane used in the experiment was the polyethersulfone ultrafiltration membrane with a molecular weight cutoff of 10k. The study found that the EMB can have stable output, if the supplement rate of substrate is well controlled and the enzyme was added on line. The production of lactoferrcin and the conversion rate of lactoferrin were higher in the EMB reactor than in the batch reactor.
引文
Adler-Nissen J. Determ ination of the degree of hydrolysis of food protein hydrolysates by trinitrobenzene sulfonic acid. J. Agric Food Chem.1999,27: 1256-1262.
    Adrian A. Foley and George W. Bates, The purification of lactoferrin from human whey by batch extraction[J]. Analytical Biochemistry,1987,162:296-300
    Agyei. D, Danquah.M. K. Industrial-scale manufacturing of pharmaceutical-grade bioactive peptides. Biotechnology Advances.2011,29(3):272-277
    Agyei. D, Danquah. M. K, Rethinking food-derived bioactive peptides for antimicrobial and immunomodulatory activities. Trends in Food Science & Technology, In Press, Corrected Proof, Available online 16 August 2011
    Ait-Oukhatar. N, Peres. J. M, Bouhallab. Said, et.al., Bioavailability of caseinophosphopeptide-bound iron, Journal of Laboratory and Clinical Medicine,2002,140(4):290-294
    Al-Mashikhi. S, Chan. E. L, Nakai. S., Separation of immunoglobulinsand lactoferrin from cheese whey by chelating chromatography. Dairy Science Journal,1988,71(7): 1747-1755.
    Anderson. B. F, Baker. H. M, Norris. G. E, Rice. D. W, Baker. E. N. Structure of human lactoferrin:Crystallographic structure analysis and refinement at 2.8 A resolution. J. Mol. Biol.1989.209:711-734.
    Andersen. J. H, Jenssen. H, Gutteberg. T. J. Lactoferrin andlactoferricin inhibit Herpes simplex 1 and 2 infection and exhibit synergy when combined with acyclovir. Antiviral Res.,2003,58 (3):209-215.
    Anema, S. G., and Yuming Li Association of denatured whey proteins with casein micelles in heated reconstituted skim milk and its effect on casein micelle size Journal of Dairy Research (2003) 70,73-83.(b)
    Anema, S.G. and Yuming, L. I. Effect of pH on the Association of Denatured Whey Proteins with Casein Micelles in Heated Reconstituted Skim Milk, J. Agric. Food Chem.2003,51,1640-1646(a)
    AOAC.1991. Official Methods of Analysis.15th ed. Vol.2 Suppl. AOAC, Washington, DC.
    Artemova. N. V, Bumagina. Z. M, Kasakov. A. S, Shubin. V. V, Gurvits. B. Y. Opioid peptides derived from food proteins suppress aggregation and promote reactivation of partly unfolded stressed proteins. Peptides.2010,31(2):332-338
    Azuma. N, Maeta. A, Fukuchi. K, et.al.,A rapid method for purifying osteopontin from bovine milk and interaction between osteopontin and other milk proteins, International Dairy Journal,2006,16(4):370-378
    Bandilla. D, Skinner. C. D. Capillary electrochromatography of peptides and proteins, Journal of Chromatography A,2004,1044(1-2):113-129
    Bashasm. J. A capillary electrophoretic method for isolation and characterization of grape xylem proteins[J]. African Journal of Biotechnology,2003,2(3):66-70.
    Baxter. J. H, Lai C, Phillips. R. R, et.al., Direct determination of methionine sulfoxide in milk proteins by enzyme hydrolysis/high-performance liquid chromatography, Journal of Chromatography A,2007,1157(1-2):10-16
    Belafi-Bako. K, Koutinas. A, Nemestothy. N, et.al.,Continuous enzymatic cellulose hydrolysis in a tubular membrane bioreactor, Enzyme and Microbial Technology,2006,38,1-2,3:155-161
    Bellamy. W, Takase. M, Yamauchi. K, et.al., Identifications of the bactericidal domain of lactoferrin. Biochim. Biophys. Acta.,1992,1121:130-136.
    Bellamy. W, Yamauchi. K, Wakabayashi. H,et al. Antifungal properties of lactoferricin B, a peptide derived from the N-terminal region of bovine lactoferrin. Lett. Appl. Microbiol.,1994,18(4):230-233
    Benkerroum. N. Antimicrobial peptides generated from milk proteins:a survey and prospects for application in the food industry. A review. International Journal of Dairy Technology.2010,63(3):320-338.
    Berkhout. B, v-Wamel. J. L.B, Beljaars. L, Meijer. D. K.F, Visser. S, Floris. R. Characterization of the anti-HIV effects of native lactoferrin and other milk proteins and protein-derived peptides. Antiviral Research.2002,55(2):341-355.
    Bhatia. S, Long. W, Kamaruddin. A. Enzymatic membrane reactor for the kinetic resolution of racemic ibuprofen ester:modeling and experimental studies, Chemical Engineering Science,2004,59:5061-5068
    Bhattacharjee. S, Bhattacharjee. C, Datta. S, Studies on the fractionation of β-lactoglobulin from casein whey using ultrafiltration and ion-exchange membrane chromatography, Journal of Membrane Science,2006,275(1-2):141-150
    Bietz.J.A. Separation of cereal proteins by reversed-phase high-performance liquid chromatography. Journal of Chromatography A.1983,255(21):219-238
    Blatt. W. F. Ultrafiltration for enzyme concentration, Methods in Enzymology,1971, 22:39-49
    Bodalo. A, Gomez. J.L, Gomez. E, et.al., Ultrafiltration membrane reactors for enzymatic resolution of amino acids:design model and optimization, Enzyme and Microbial Technology,2001,28:355-361
    Bodalo. A, Gomez. J. L, Gomez. E, et.al., Development and experimental checking of an unsteady-state model for ultrafiltration continuous tank reactors, Chemical Engineering Science,2005,60:4225-4232
    Boman. H. G. Inducible antibacterial defense system in Drosophial [J], Nature,1972, 232-237
    Bongers. J, Heimer. E. P. Recent applications of enzymatic peptide synthesis. Peptides. 1994,15(1):183-193.
    Boonen. K, Creemers. J. W, Schoofs. L. Bioactive peptides, networks and systems biology. Bioessays.2009,31(3):300-314
    Bramanti. E, Quigley. W. W. C, Sortino. C, et.al.,Multidimensional analysis of denatured milk proteins by hydrophobic interaction chromatography coupled to a dynamic surface tension detector, Journal of Chromatography A.2004,1023(1): 79-91
    Brisson. G, Britten. M, Pouliot. Y, Electrically-enhanced crossflow microfiltration for separation of lactoferrin from whey protein mixtures, Journal of Membrane Science,2007,297(1-2):206-216
    Brisson. G, Britten. M, Pouliot. Y, Heat-induced aggregation of bovine lactoferrin at neutral pH:Effect of iron saturation. International dairy journal.2007,17(6):617-624
    Brogden. K. A. Antimicrobial peptides:poreformers or metabolic inhibitors in bacteria [J]. Nat Rev Microbiol,2005,3(3):238-250.
    Brogden. K. A, Ackermann. M, McCray. P. B Jr., Tack. B. F Antimicrobial peptides in animals and their role in host defences. International Journal of Antimicrobial Agents. 2003,22(5):465-478.
    Brown. R. W, Baetz. A. L, McDonald. T. J. Fractionation of a Whey Growth Factor for Steptococcus agalactiae into Two Active Components Containing Proteins. Journal of Dairy Science,1983,66(11):2303-2311
    Cantarella. M, Cantarella. L, Gallifuoco. A, et.al., Amidase-catalyzed production of nicotinic acid in batch and continuous stirred membrane reactors, Enzyme and microbial technology,2008,42(3):222-229
    Cao. X, Hu. G, Huo. L, Zhu. X, Li. T, Powell. Je, Ito. Y. Stationary phase retention and preliminary application of a spiral disk assembly designed for high-speed counter-current chromatography. Journal of Chromatography A.2008, 1188(2):164-170
    Cerecedo. I, Zamora. J, Shreffler. W. G, et.al. Mapping of the IgE and IgG4 sequential epitopes of milk allergens with a peptide micro array-based immunoassay, Journal of Allergy and Clinical Immunology,2008,122(3):589-594
    Cheison. S. C, Wang. Z, Xu. S. Hydrolysis of whey protein isolate in a tangential flow filter membrane reactor I, Journal of Membrane Science,2006,283:45-56
    Cheison. S. C, Wang. Z, Xu. S. Multivariate strategy in screening of enzymes to be used for whey protein hydrolysis in an enzymatic membrane reactor, International Dairy Journal,2007,17:393-402 a
    Cheison. S. C, Wang. Z, Xu. S. Use of response surface methodology to optimise the hydrolysis of whey protein isolate in a tangential flow filter membrane reactor, Journal of Food Engineering,2007,80:1134-1145 b
    Chen. J, Cramer. S. M. Protein adsorption isotherm behavior in hydrophobic interaction chromatography. Journal of Chromatography A.2007,1165(1-2):67-77
    Chiang. W, Shih. C, Chu. Y. Functional properties of soy protein hydrolysate produced from a continuous membrane reactor system, Food Chemistry,1999,65 (2):189-194
    Cifuentes. A, de Frutos. M, Diez-Masa. J. C. Analysis of Whey Proteins by Capillary Electrophoresis Using Buffer-Containing Polymeric Additives. Journal of Dairy Science.1993,76(7):1870-1875.
    Clare, D. A., Swaisgood, H. E., Bioactive milk peptides:a prospectus. J. Dairy Sci. 2000,83,1187-1195.
    Corredig M & Douglas G. Dalgleish" Effect of temperature and pH on the interactions of whey proteins with casein micelles in skim milk. Food Research International.1996,29(1):49-55.
    Corredig, M., Douglas G. Dalgleish, The mechanisms of the heat-induced interaction of whey proteins with casein micelles in milk. International Dairy Journal.1999,9: 233-236
    Coulon J B; Hurtaud C; Remond B; Verite R, Factors contributing to variation in the proportion of casein in cows'milktrue protein:a review of recent INRA experiments. Journal of Dairy Research,1998,65(3):375-387
    Cretich. M, Chiari. M, Carrea. G, Stereoselective synthesis of (S)-(+)-Naproxen catalyzed by carboxyl esterase in a multicompartment electrolyzer, Journal of Biochemical and Biophysical Methods,2001,48(3):247-256
    Daffre. S, Bulet. P, Spisni. A, et al., Bioactive natural peptides, Studies in Natural Products Chemistry.2008,35:597-691.
    Davis. J. P, et al. Advances in modifying and understanding whey protein functionality [J].Trends in Food Science & Technology.2002,15:151-159.
    Dedem, Luuk. A.M. van der Wielen, et.al., Selection of pH-related parameters in ion-exchange chromatography using pH-gradient operations, Journal of Chromatography A,2008,1194(1):22-29
    Dhulster. Pl, Kapel. R, Froidevaux. R, et.al., Advancement in intermediate opioid peptide production in an enzymatic membrane reactor assisted by solvent extraction, Desalination,2002,148:221-226
    Dionysius.D.A,et.al.,Antibacterial peptides of bovine lactoferrin:purification and characterization. Dairy science journal,1997,80(4):667-674.
    Dionysius A, Milne M. Antibacterial peptides of bovine lactoferrin:purification and characterization. J. Dairy Sci.1997,80:667-674.
    Drews. A. Membrane fouling in membrane bioreactors—Characterisation, contradictions, cause and cures. Journal of Membrane Science.2010,363(1-2):1-28.
    Dupont. D, Arnould. C, Rolet-Repecaud. O, et.al. Determination of bovine lactoferrin concentrations in cheese with specific monoclonal antibodies. International Dairy Journal,2006,(16):1081-1087
    Dupont. D, Arnould. C, Rolet. O. R, Duboz. G, Faurie. F, Martin. B, Beuvier. E, Determination of bovine lactoferrin concentrations in cheese with specific monoclonal antibodies. International dairy journal.2006,16(9):1081-1087
    Doherty. S. B, Gee. V. L, Ross. R. P, Stanton. C, Fitzgerald. G. F, Brodkorb. A. Efficacy of whey protein gel networks as potential viability-enhancing scaffolds for cell immobilization of Lactobacillus rhamnosus GG. Journal of Microbiological Methods.2010,80(3):231-241
    Doucet. D, Otter. D. E, Gauthier. S. F, Foegeding. E. A. Enzyme induced gelation of extensively hydrolyzed whey pro·teins by Alcalase:peptide identification and determination of enzyme specificity. J. Agric. Food Chem.2003,51(21): 6300-6308.
    Erdmann. K. The possible roles of food-derived bioactive peptides in reducing the risk of cardiovascular disease, The Journal of Nutritional Biochemistry,2008,19(10): 643-654
    Ewaschuk. J. B, Diaz. H, Meddings. L, Diederichs. B, Dmytrash. A, Backer. J, van Langen. M. L, Karen. L. Madsen Secreted bioactive factors from Bifidobacterium infantis enhance epithelial cell barrier function. American Journal of Physiology Gastrointestinal Liver Physiology.2008,295(5):G1025-1034.
    Farvin. K. H. S, Baron. C. P, Nielsen. N. S, Jacobsen. C. Antioxidant activity of yoghurt peptides:Part 1-in vitro assays and evaluation in ω-3 enriched milk. Food Chemistry.2010,123(4,15):1081-1089.
    Fee. C. J, Chand. A, Capture of lactoferrin and lactoperoxidase from raw whole milk by cation exchange chromatography. Separation and Purification Technology.2006, 48(2):143-149
    Feng. X, Wang. J, Shan. A, et.al.,Fusion expression of bovine lactoferricin in Escherichia coli, Protein Expression and Purification,2006,47(1):110-117
    Ferbeyre. G, Moriggl. R. The role of_Stat5 transcription factors as tumor suppressors or oncogenes. Biochimica et Biophysica Acta (BBA)-Reviews on Cancer,2011, 1815(1):104-114.
    Fernandez. C. R, Gonzalez. P. B, Garcia. O.F, Carbonero. P. Appl Microbiol.1972, 23 (5):998-1000.
    Floris, R., Recio, I., Berkhout, B., Visser, S., Antibacterial and antiviral effects of milk proteins and derivatives thereof. Curr. Pharm. Des.2003,9,1257-1275.
    Foegeding. E. A, Luck. P, Vardhanabhuti. B. Milk protein products | whey protein products. Encyclopedia of Dairy Sciences (Second Edition),2011, Pages 873-878
    Fong. B. Y, Norris. C. S, Palmano. K. P, Fractionation of bovine whey proteins and characterisation by proteomic techniques. International Dairy Journal.2008,18(1); 23-46
    Freiburghaus. C, Janicke. B, Lindmark-Mansson. H, Oredsson. S.M, Paulsson. M.A. Lactoferricin treatment decreases the rate of cell proliferation of a human colon cancer cell line.Journal of Dairy Science.2009,92(6):2477-2484.
    Freixo. M. R, de Pinho. M. N, Enzymatic hydrolysis of beechwood xylan in a membrane reactor, Desalination,2002,149:237-242
    Ganz. T. Defensins and other antimicrobial peptides:a historical perspective and an update. Combinatorial chemistry & high throughput screening.2005,8(3):209-217
    Garcia. M. A, Marina. M. L, Rios. A, Valcarcel. M, Chapter 2 Separation modes in capillary electrophoresis. Comprehensive Analytical Chemistry.2005,45:31-134
    Geoffrey. W, Smithers F. Ballard. J, et.al., New Opportunities from the Isolation and Utilization of Whey Proteins. Journal of Dairy Science,1996,79(8):1454-1459
    Gifford. J. L, Hunter. H. N, Vogela. H. J. Lactoferriein:a lactoferrin-derived peptide with antimicrobial, antiviral, ant tumor and immunological properties. Cell. Mol. Life Sci,2005,62:2588-2598.
    Giorno. L, D'Amore. E, Mazzei. R, et.al., An innovative approach to improve the performance of a two separate phase enzyme membrane reactor by immobilizing lipase in presence of emulsion, Journal of Membrane Science,2007,295:95-101
    Giorno. L, Drioli. E. Biocatalytic membrane reactors:applications and perspectives, Tibtech august,2000,18:339-349
    Gonzalez-Chavez S. A, Arevalo-Gallegos. S, et.al.,Lactoferrin:structure, function and applications, International Journal of Antimicrobial Agents,2009,33(4): 301.e1-301.e8
    Guadix. A, Camacho. F, Guadix. E. M. Production of whey protein hydrolysates with reduced allergenicity in a stable membrane reactor, Journal of Food Engineering,2006,72(4):398-405
    Guerra. N. P, Rua. M. L, Pastrana. L. Development and characterisation of whey protein micro-beads as potential matrices for probiotic protection. Food Hydrocolloids, 2011,25(6):1604-1617
    Hage. D. S. High-performance affinity chromatography:a powerful tool for studying serum protein binding, Journal of Chromatography B:Analytical Technologies in the Biomedical and Life Sciences.2002,768(1):3-30
    Hahn. R, Schulz. P. M., Schaupp. C., Bovine whey fractionation based on cation-exchange chromatography, Journal of Chromatography A,1998,(795):277-287
    Haney. E. F, Nathoo. S, Vogel. H. J, Prenner. E. J. Induction of non-lamellar lipid phases by antimicrobial peptides:a potential link to mode of action.[J], Chem Phys Lipids.2010,163 (1):82-93
    Hansen. T, Alst. T, Havelkova. M, ea.lt., Antimicrobial activity of small beta-peptidomimetics based on the pharmacophore model of short cationic antimicrobial peptides.[J],2010,53(2):596-606
    Haque. E, Chand. R. Antihypertensive and antimicrobial bioactive peptides from milk proteins. European food research and technology.2008,227(1):7-15
    Haque. E, Chand. R, Kapila. S. Biofunctional properties of bioactive peptides of milk origin. Food reviews international.2009,25(1):28-43
    Harrie. A, van Veen, Marlieke E.J., et.al., Analytical cation-exchange chromatography to assess the identity, purity, and N-terminal integrity of human lactoferrin, Analytical Biochemistry.2002,309:60-66
    Hayes. K. D, Nielsen. S. S. Plasmin Levels in Fresh Milk Whey and Commercial Whey Protein Products. Journal of Dairy Science,2000,83(3):387-394
    Hayes, M. Catherine Stanton, Gerald F. Fitzgerald and R. Paul Ross. Putting microbes to work:Dairy fermentation, cell factories and bioactive peptides. Part Ⅱ:Bioactive peptide functions Biotechnology journal.2007,2,435-449
    Hayes, M. Paul, R, Gerald F. Fitzgerald and Catherine Stanton. Putting microbes to work:Dairy fermentation, cell factories and bioactive peptides. Part I:Overview. Biotechnology journal.2007,2,426-434
    Hayes. M, Ross. R. P, Fitzgerald. G. F, et.al., Casein-derived antimicrobial peptides generated by Lactobacillus acidophilusDPC6026 [J]. Appl. Environ. Microbiol.2006, 72 (3):2260-2264.
    Hazum. E. Neuroendocrine peptides in milk.Trends in endocrinology & metabolism. 1991,2(1):5-28
    Hendrickson. H. P, Anderson. P, Wang. X, Pittman. Z, Bobbitt. D. R. Compositional analysis of small peptides using capillary electrophoresis and Ru(bpy)33+-based chemiluminescence detection. Microchemical Journal.2000,65(2):189-195.
    Hernandez-Ledesma B, Recio. I, Ramos. M, Amigo. L. Preparation of ovine and caprine β-lactoglobulin hydrolysates with_ACE-inhibitory activity. Identification of active peptides from caprine β-lactoglobulin hydrolysed with thermolysin. International Dairy Journal,2002,12(10):805-812.
    Hoek. K.S, Milne. J.M, Grieve. P.A, Dionysius. D.A, Smith. R. Antibacterial activity in bovine lactoferrin-derived peptides Antimicrobial Agents and Chemotherapy.1997, 41(1):54-59
    Holland. J. H, Deeth. H. C, Alewood. P. F. Proteomic analysis of k- casein micro-heterogeneity. Proteomics,2004,4:743-752. Brophy B, Smolenski G, Wheeler T, et al. Cloned transgenic cattle produce milk with higher levels of b- casein and κ- casein. Nature Biotechnology,2003,21:157-161
    Howl. J, Jones. S. Bioactive peptides. Chembiochem.2010,1439-4227,11(4):581 Korhonen. H, Hsu. J, Lin. L, Tzen. J. T. C, Chen. J. Pardaxin-induced apoptosis enhances antitumor activity in HeLa cells. Peptides.2011,32(6):1110-1116.
    Hu. Y, Wang. Y, Luo. G, Dai. Y. Modeling of a biphasic membrane reactor catalyzed by lipase immobilized in a hydrophilic/hydrophobic composite membrane, Journal of Membrane Science,2008,308:242-249
    Huang. Q, Teng. M, Niu. L. Purification and characterization of two fibrinogen-clotting enzymes from five-pace snake (Agkistrodon acutus) venom. Toxicon.1999,37(7):999-1013.
    Indyk. H. E, Filonz. E. L. Determination of lactoferrin in bovine milk, colostrum and infant formulas by optical biosensor analysis, International Dairy Journal, 2005,(15):429-438
    Irvine. G. B. Size-exclusion high-performance liquid chromatography of peptides:a review Analytica Chimica Acta 352 (1997) 387-397
    Irvine. G. B. High-performance size-exclusion chromatography of peptides. Journal of Biochemical and Biophysical Methods.2003,56(13):233-242
    Janer. C, Pelaez. C, Requena. T. Caseinomacropeptide and whey protein concentrate enhance Bifidobacterium lactis growth in milk nutritional factors affecting the production of two bacteriocins from lactic acid bacteria on whey. Food Chemistry, 2004,86(2):63-267
    Jenssen. H, Hancock. R. E. W. Antimicrobial properties of lactoferrin, Biochimie,2009,91(1):19-29
    Jeong. J, Kwon. H, Lee. Y, et.al. Determination of sugar phosphates by high-performance anion-exchange chromatography coupled with pulsed amperometric detection. Journal of Chromatography A.2007,1164(1-2):167-173
    Jones. A. J. S. Analysis of polypeptides and proteins. Advanced Drug Delivery Reviews.1993,10(1):29-90.
    Kamau. S. M, Lu. R, Chen. W, Liu. X, Tian. F, Shen. Y, Gao. T. Functional Significance of Bioactive Peptides Derived from Milk Proteins. Food reviews international.2010,26(4):386-401(a)
    Kamau. S. M, Cheison. S. C, Chen. W, Liu. X, Lu. R. Alpha-lactalbumin:its production technologies and bioactive peptides. Comprehensive reviews in food science and food safety.2010,9(2):197-212.(b)
    Kanekanian. A. Bioactive proteins and peptides as functional foods and nutraceuticals. International journal of dairy technology.2010,64(2):316-317
    Kang. J. H, Lee. M. K, Kim. K, et.al., Structure—biolocal activity relationship of 1 1-residue highly basic peptide segment of bovine lactoferrin. Pep. Prot. Res. Int. J. 1996,48:357-363.
    Karger. B. L. Capillary electrophoresis. Current Opinion in Biotechnology.1992, 3(1):59-64.
    Katchalsky. K. A, Lahov. E, Sode- Morgensen. M. T. Poly- peptidic antibiotic substances derived from casein[P].1973, US Patent,3,764,670.
    Kawakami. H, Shinmoto. H, Dosako. S. I. One-step isolation of lactoferrin using immobilized monoclonal antibodies. Dairy Science Journal,1987,70(4):752-759.
    Kikuchi. A, Okano. T. Intelligent thermoresponsive polymeric stationary phases for aqueous chromatography of biological compounds. Progress in Polymer Science. 2002,27(6):1165-1193.
    Kim. J, Lee. S, Shin. S, Lee. J, Jeong. K, Nan. Y, Park. Y, Shin. S, Kim. Y. Structural flexibility and the positive charges are the key factors in bacterial cell selectivity and membrane penetration of peptoid-substituted analog of Piscidin 1. Biochimica et Biophysica Acta (BBA)-Biomembranes.2010,1798(10):1913-1925.
    Kinghorn. N. M, Norris. C. S, Paterson. G. R, Otter. D. E. Comparison of capillary electrophoresis with traditional methods to analyse bovine whey proteins. Journal of Chromatography A.1995,700(1-2):111-123
    Kinghorn. N. M, Paterson. G. R, Otter. D. E.Quantification of the major bovine whey proteins using capillary zone electrophoresis. Journal of Chromatography A.1996, 723(2):371-379.
    Kleerebezem. M and Vaughan. E. E. Probiotic and Gut Lactobacilli and Bifidobacteria:Molecular Approaches to Study Diversity and Activity. Annual Review of Microbiology.2009,63:269-290
    Knez. Z, Habulin. M. Compressed gases as alternative enzymatic-reaction solvents:a short review, Journal of Supercritical Fluids,2002,23:29-42
    Korhonen. H. Milk-derived bioactive peptides:From science to applications. Journal of functional food.2009, (1):117-187
    Korhonen. H, Pihlanto. A. Bioactive peptides:Production and functionality. International dairy journal.2006,16(9):45-960
    Kuwata. H, et.al.,Bactericidal domain of lactoferrin:detection,quantitation, and characterization of lactoferricin in serum by SELDI affinity massspectrometry. Biochemical and Biophysical Research Communications.1998,245:764-773.
    Lahov. E, Regelson. W. Antibacterial and immunostimulating casein-derived substances from milk:caseicidin, isracidin peptides. Food and Chemical Toxicology. 1996,34:131-145.
    Larsson. M, Zakora. M, Dejmek. P, et.al., Primary proteolysis studied in a cast cheese made from microfiltered milk. International Dairy Journal.2006,16 (6):623-632
    Legrand. D. Advances in Lactoferrin Research. Biochimie.2009,91(1):1-2
    Leitner. A, Sturm. M. Lindner. W. Tools for analyzing the phosphoproteome and other phosphorylated biomolecules:A review. Analytica Chimica Acta.2011,703(1, 3):19-30.
    Leveugle. B, Spik. G, Perl. D. P, et.al.,The iron-binding protein lactotransferrin is present in pathologic lesions in a variety of neurodegenerative disorders:a comparative immunohistochemical analysis. Brain Research.1994,650(1):20-31
    Lin. S. S, Miyawaki. O, Nakamura. K. Continuous production of L-alanine with NADH regeneration by a nanofiltration membrane reactor. Bioscience, biotechnology, and biochemistry.1997,61(12):2029-2033
    Litwinczuk. Z, Krol. J, Brodziak. A, Barlowska. J. Changes of protein content and its fractions in bovine milk from different breeds subject to somatic cell count. Journal of Dairy Science.2011,94(2):684-91.
    Liu. L, Zhu. C, Zhao. Z, Analyzing molecular weight distribution of whey protein hydrolysates. Food and Bioproducts Processing.2008,86(1):1-6
    Lopez. C, Mielgo. I, Moreira. M. T, et.al., Enzymatic membrane reactors for biodegradation of recalcitrant compounds. Application to dye decolourisation. Journal of Biotechnology.2002,99(3):249-257
    Lozo. J, Strahinic. I, Dalgalarrondo. M, Chobert. J, Haertle. T, Topisirovic. L. Comparative analysis of β-casein proteolysis by PrtP proteinase from Lactobacillus paracasei subsp. paracasei BGHN14, PrtR proteinase from Lactobacillus rhamnosus BGT10 and PrtH proteinase from Lactobacillus helveticus BGRA43. International Dairy Journal.2011,21(11):863-868
    Lu. R, Xu. S, Wang. Z, et.al.,Isolation of lactoferrin from bovine colostrum by ultrafiltration coupled with strong cation exchange chromatography on a production scale. Journal of Membrane Science.2007,297(1-2):152-161
    Luykx. D. M.A.M, Cordewener. J. H.G, Ferranti. P, et.al.,Identification of plant proteins in adulterated skimmed milk powder by high-performance liquid chromatography—mass spectrometry, Journal of Chromatography A,2007,1164, (1-2):189-197.
    Madureira. A. R, Pereira. C. I, Gomes. A. M. P, Pintado. M. E, Malcata. F. X. Bovine whey proteins-overview on their main biological properties. Food Research International,2007,40(10):1197-1211.
    Madureira. A. R, Tavares. T, Gomes. A. M. P, Pintado. M. E, Malcata. F. X. Invited review:Physiological properties of bioactive peptides obtained from whey proteins. Journal of dairy science.2010,93 (2):437-45.
    Makart. S, Bechtold. M, Panke. S. Towards preparative asymmetric synthesis of β-hydroxy-α-amino acids:1-allo-Threonine formation from glycine and acetaldehyde using recombinant GlyA, Journal of Biotechnology,2007,130(4):402-410.
    Malkoski M, Dachper S G,O Brien-Simpson N M,. Kappacin, a novel antibacterial peptide from bovinemilk[J]. Antimicrobial agents and chemotherapy,2001,45(8): 2309-2315.
    Mangino. M. E. Gelation of whey protein concentrates. Food Technology,1992,46: 114-117.
    Mannheim. A, Cheryan M, Continuous hydrolysis of milk protein in a membrane reactor,Journal of Food Science,1990,55(2):381-385
    Manso. M. A, Le' onil. J, Jan. G. et.al. Application of proteomics to the characterization of milk and dairy products [J]. International Dairy Journal,2005, (15):845-855
    Manso. M. A, Miguel. M, Lopez-Fandiflo. R. Application of capillary zone electrophoresis to the characterisation of the human milk protein profile and its evolution throughout lactation. Journal of Chromatography A.2007,1146(1):110-117.
    Martin-Orue. C, Henry. G, Bouhallab. S. Tryptic hydrolysis of k-caseinomacropeptide: Control of the enzymatic reaction in a continuous membrane reactor. Enzyme and Microbial Technology.1999,24:173-180.
    Marsili. R. Flavors and off-flavors in dairy foods. Encyclopedia of Dairy Sciences (Second Edition),2011:533-551
    Mcintosh.G.H, Regester. G.O, Leleu. R. K, Royle. P. J, Smithers. G.W. Dairy proteins protect against dimethylhydrazineinduced intestinal cancers in rats. Journal of Nutrition.1995,125:809-816.
    Meisel. H, Biochemical properties of bioactive peptides derived from milk proteins: Potential nutraceuticals for food and pharmaceutical applications. Livestock production science.1997,50(1-2):125-138
    Mihajlovic. M, Lazaridis. T. Antimicrobial peptides in toroidal and cylindrical pores[J], Biochimica et Biophysica Acta,2010,1798 (8):1485-1493
    Mikkelsen. T. L, Rasmussen. E, Olsen. A, Barkholt. V, Fr(?)kiaer. H. Immunogenicity of K-Casein and Glycomacropeptide. Journal of Dairy Science.2006,89(3):824-830
    Minervini F, Algaron F, Rizzello C G., Angiotensin I-converting-enzyme- inhibitory and antibacterial peptides from Lactobacillus helveticus PR4 Proteinase-hydrolyzed caseins of milk from six species [J]. Appl. Environ. Microbio,2003,69(9): 5297-5305.
    Miralles. B, Ramos. M, Amigo. L. Influence of proteolysis of milk on the whey protein to totle protein ratio as determined by capillary electrophoresis. J. Dairy Sci, 2003,(86):2813-2817
    Mitrovic. B, Milacic. R. Speciation of aluminium in forest soil extracts by size exclusion chromatography with UV and ICP-AES detection and cation exchange fast protein liquid chromatography with ETAAS detection. Science of The Total Environment.2000,258(3,4):183-194.
    Mistry. N, Drobni. P, Naslund. J, Sunkari. V. G, Jenssen. H, Evander. M. The anti-papillomavirus activity of human and bovine lactoferricin. Antiviral Research. 2007,5 (3):258-265.
    Misun. D, Curda. L, Jelen. P. Batch and continuous hydrolysis of ovine whey proteins. Small Ruminant Research.2008,79:51-56
    Mohan. K.V. P. C, Gunasekaran. P, Varalakshmi. E., et.al.,In vitro evaluation of the anticancer effect of lactoferrin and tea polyphenol combination on oral carcinoma cells, Cell Biology International,2007,31(6):599-608
    Moore. S.A, Anderson. B.F, Groom. C.R, Haridas. M, Baker. E.N. Three-dimensional structure of biferric bovine lactoferrin at 2.8A resolution. J. Mol. Biol. 1997,274:222-236.
    Morales. S, Alvarez. H, Sanchez. C. Dynamic models for the production of glucose syrups from cassava starch. Food and bio-products processing.2008,86:25-30
    Myoung S. N., Kei-ichi Shimazaki, Haruto Kumura, et.al., Characterization of Korean native goat lactoferrin, Comparative Biochemistry and Physiology Part B,1999, (123):201-208
    Naylors. Clarkenj. Capillary isoelectric focusing-mass spectrometry:analysis of protein mixtures from human body fluids[J]. Biomed Chromatogr.2002.16(4):287 297.
    Nelson. M. A, Moser. A, Hage. D. S. Biointeraction analysis by high-performance affinity chromatography:Kinetic studies of immobilized antibodies. Journal of Chromatography B.2010,878(2):165-171.
    Nesbitt. C. A, Zhang. H, Yeung. K. K.-C. Recent applications of capillary electrophoresis-mass spectrometry (CE-MS):CE performing functions beyond separation. Analytica Chimica Acta.2008,627(1,3):3-24
    Neyestani. T. R, Djalali. M, et.al.,Isolation of α-lactalbumin, β-lactoglobulin, and bovine serum albumin from cow's milk using gel filtration and anion-exchange chromatography including evaluation of their antigenicity. Protein Expression and Purification.2003,29(2):202-208
    Nicki M. Kinghorn, Carmen S. Norris, Geoff R. Paterson, Don E. Otter. Comparison of capillary electrophoresis with traditional methods to analyse bovine whey proteins. Journal of Chromatography A.1995,700:1111-123
    Novalin. S, Neuhaus. W, Kulbe. K. D. A new innovative process to produce lactose-reduced skim milk. Journal of Biotechnology.2005,119:212-218
    Ochoa. T. J, Cleary. T. G. Effect of lactoferrin on enteric pathogens. Biochimie.2009, 91(1):30-34
    Nukuni N, Ikeda K, Megumi O, et al. Regulatory function of whey acidic protein in the proliferation of mouse mammary epithelial cells in vivo and in vitro[J]. Developmental Biology.2004,274:31-44.
    Otte. J, Shalaby. S. M. A, Zakora. M, Nielsen. M. S. Fractionation and identification of ACE-inhibitory peptides from α-lactalbumin and β-casein produced by thermolysin-catalysed hydrolysis. International Dairy Journal.2007, 17(12):1460-1472.
    Ounis. W. B, Gauthier. S. F, Turgeon. S. L, Pouliot. Y. Separation of transforming growth factor-beta2 (TGF-(32) from whey protein isolates by crossflow microfiltration in the presence of a ligand. Journal of Membrane Science.2010,351(1-2):189-195
    Pakkanen R & Aalto J. Growth factors and antimicrobial factors of bovine colostrum. International Dairy Journal.1997,7:285-297.
    Palmano. K. P, Elgar. D. F, Detection and quantitation of lactoferrin in bovine whey samples by reversed-phase high-performance liquid chromatography on polystyrene-divinylbenzene. Journal of Chromatography A.2002,947, (2):307-311
    Pan. D, Guo. Y. Optimization of sour milk fermentation for the production of ACE-inhibitory peptides and purification of a novel peptide from whey protein hydrolysate. International Dairy Journal.2010,20(7):472-479.
    Pan. Y, Lee. A, Wan. J, Coventry. M. J. et.al., Antiviral properties of milk proteins and peptides, International Dairy Journal,2006,16(11):1252-1261
    Pan.Y, Lee. A, Wan. J, Coventry. M.J, Michalski. W.P, Shiell. B, Roginski. H. Antiviral properties of milk proteins and peptides. International Dairy Journal. 2006,16:1252-1261
    Paolucci-Jeanjean. D, Belleville. M. P, Rios. G. M, et.al., Kinetics of continuous starch hydrolysis in a membrane reactor. Biochemical Engineering Journal,2000. 6(3):233-238
    Papadimitriou. C. G, Anna. V. M, Silva. S. V, et.al., Identification of peptides in traditional and probiotic sheep milk yoghurt with angiotensin Ⅰ-converting enzyme (ACE)-inhibitory activity. Food Chemistry.2007,105(2):647-656
    Paul. M, Somkuti.G.A., Hydrolytic breakdown of lactoferricin by lactic acid bacteria. Journal of industry microbiology and biotechnology.2010,37:173-178
    Petruzzelli. R, Clementi. M. E, Marini. S. et.al., Respiratory inhibition of isolated mammalian mitochondria by salivary antifungal peptide histatin-5[J]. Biochemical and Biophysical Research Communications.2003,311 (4):1034-1040
    Perea. A, Ugalde. U, Continuous hydrolysis of whey proteins in a membrane recycle reactor. Enzyme and Microbial Technology.1996,18(1):29-34
    Pierce. A, Legrand. D, Advances in Lactoferrin Research, Biochimie,2009,91(1):1-2 Pihlanto. A. Food-derived bioactive peptides-opportunities for designing future foods. Curr Pharm.2003,9 (16):1297-1308.
    Pihlanto. A, Antioxidative peptides derived from milk proteins. International Dairy Journal.2006,16(1):1306-1314
    Prata-Vidal. M, Bouhallab. S, Henry. G, et.al., An experimental study of caseinomacropeptide hydrolysis by trypsin in a continuous membrane reactor. Biochemical Engineering Journal.2001,8:195-202
    Prazeres. D. M. F, Cabral. J. M. S., Enzymatic membrane bioreactors and their applications. Enzyme and Microbial Technology.1994,16(9):738-750
    Pribyl. M, Chmelikova.R, Hasal. P, et.al., Modeling of hydrogel immobilized enzyme reactors with mass-transport enhancement by electric field. Chemical Engineering Science.2001,56(2):433-442
    Prieto. C. A, Guadix. E. M, et.al., Influence of temperature on protein hydrolysis in a cyclic batch enzyme membrane reactor. Biochemical Engineering Journal.2008, 42:217-223
    Puddu. P, Valenti. P, Gessani. S, Immunomodulatory effects of lactoferrin on antigen presenting cells. Biochimie.2009,91(1):11-18
    Punidadas P.& Rizvi. S. S. H. Separation of milk proteins into fractions rich in casein or whey proteins by cross flow filtration. Food Research International.1998,31(4): 265-272,
    Pundir. P, Kulka. M. The role of G protein-coupled receptors in mast cell activation by antimicrobial peptides:is there a connection?[J]. Immunol Cell Biol.2010, 88(6):632-640.
    Qi. P. X, Onwulata. C. I. Physical properties, molecular structures, and protein quality of texturized whey protein isolate:Effect of extrusion moisture content.2010. J. Dairy Sci.94:2231-2244
    Qian. Y, Preston. K, Krokhin. O, et.al. Characterization of Wheat Gluten Proteins by HPLC and MALDI TOF Mass Spectrometry. Journal of the American Society for Mass Spectrometry.2008,19(10):1542-1550
    Rahman. M. M, Kim. W, Ito. T, Kumura. H, Shimazaki. K. Growth promotion and cell binding ability of bovine lactoferrin to Bifidobacterium longum. Anaerobe.2009, 15(4):133-137.
    Ramabadran. K, Bansinath. M. Opioid peptides from milk as a possible cause of sudden infant death syndrome. Medical Hypotheses.1988,27(3):181-187.
    Recio. I, Visser. S. Identification of two distinct antibacterial domains within the sequence of bovineas2-casein [J]. Biochim. Biophys acta.1999,1428 (2-3):314-326.
    Reddy. K.V. R, Yedery. R. D, Aranha. C.Antimicrobial peptides:premises and promises. International Journal of Antimicrobial Agents.2004,24(6):536-547
    Requena. P, Gonzalez. R, Lopez-Posadas. R, Abadia-Molina. A, Suarez. M. D, Zarzuelo. A, Medina. F. S, Martinez-Augustin. O. The intestinal antiinflammatory agent glycomacropeptide has immunomodulatory actions on rat splenocytes. Biochemical Pharmacology.2010,79(12,15):1797-1804.
    Riechel. P, Weiss. T, Weiss. M, et.al. Determination of the minor whey protein bovine lactoferrin in cheese whey concentrates with capillary electrophoresis. Journal of Chromatography A.1998, (817):187-193
    Rodrigues. E. G, Dobroff. A. S, Taborda. C. P, Travassos. L. R. Antifungal and antitumor models of bioactive protective peptides. Anais da academia Brasileira de Ciencias.2009,81(3):503-520
    Rodriguez-Nogales. J. M, Ortega. N, et.al., Pectin hydrolysis in a free enzyme membrane reactor:An approach to the wine and juice clarification. Food Chemistry. 2008,107:112-119
    Roufik. S, Gauthier. S. F, Turgeon. S. L. In vitro digestibility of bioactive peptides derived from bovine β-lactoglobulin. International dairy journal.2006,16(4):294-302
    Roufik. S, Gauthier. S. F, et.al., Physicochemical characterization and in vitro digestibility of β-lactoglobulin/β-Lg f142-148 complexes. International Dairy Journal. 2007,17:471-480
    Roufik. S, Paquin. P, Britten. M, Use of high-performance size exclusion chromatography to characterize protein aggregation in commercial whey protein concentrates. International Dairy Journal.2005,15(3):231-241
    Rios. G.M, Belleville. M.P, Paolucci. D, et.al., Progress in enzymatic membrane reactors-a review, Journal of Membrane Science,2004,242:189-196
    Riu. A, Balaguer. P, Perdu. E, et.al.,Characterisation of bioactive compounds in infant formulas using immobilised recombinant estrogen receptor-a affinity columns. Food and Chemical Toxicology.2008,46(10):3268-3278
    Roufik. S, Paquin. P, Britten. M. Use of high-performance size exclusion chromatography to characterize protein aggregation in commercial whey protein concentrates. International Dairy Journal.2005,15(3):231-241
    Roufik. S, Sylvie F. Gauthier,et.al., Physicochemical characterization and in vitro digestibility of β-lactoglobulin/β-Lg f142-148 complexes, International Dairy Journal. 2007,17:471-480
    Ruohomaki. K, Vaisanen. P, Metsarnuuronen. S, et al. Characterization and removal of humic substances in ultra—and nanofiltration[J]. Desalination,1998,1(18): 273-283
    Saravanan. R, Bhunia. A, Bhattacharjya. S. Micelle-bound structures and dynamics of the hinge deleted analog of melittin and its diastereomer:Implications in cell selective lysis by D-amino acid containing antimicrobial peptides. Biochimica et Biophysica Acta (BBA)-Biomembranes.2010,1798(2):128-139.
    s-Sauveur. D, Gauthier. S. F., et.al., Immunomodulating properties of a whey protein isolate, its enzymatic digest and peptide fractions, International Dairy Journal,2008, 18(3):260-270
    Santosa. H.M, Motaa. C, Lodeiroa. C. An improved clean sonoreactor-based method for protein identification by mass spectrometry-based techniques. Talanta.2008, 77(2):870-875
    Santos. M. J, Teixeira. J. A, Rodrigues. L. R. Fractionation and recovery of whey proteins by hydrophobic interaction chromatography. Journal of Chromatography B. 2011,879(7-8):475-479
    Saufi. S. M, Fee. C. J.,Recovery of lactoferrin from whey using cross-flow cation exchange mixed matrix membrane chromatography. Separation and Purification Technology.77 (2011) 68-75
    Schibli. D. J, Hwang. P. M, Vogel. H. J. The structure of the antimicrobial active center of lactoferricin B bound to sodium dodecyl sulfate micelles. FEBS Letters.1999,446(2-3,):213-217.
    Scott. J. A, Smith. K. L.A bioreactor coupled to a membrane to provide aeration and filtration in ice-cream factory wastetwater remediation. Water research.1997,31(1): 69-74.
    Shah. N. P. Effects of milk-derived bioactives:an overview. British Journal of Nutrition. (2000),84(1):3-10
    Sindayikengera. S, XIA. W. S, Enzymatic hydrolysis of caseins by two diferent proteases and Their effect on functional properties of resulting protein hydrolysates, Food science.2006,27(2):64-71
    Silva. S. V, Malcata. F. X. Caseins as source of bioactive peptides. International Dairy Journal.2005,15(1):1-15
    Smacchi, E, Gobbetti, M., Bioactive peptides in dairy products:synthesis and interaction with proteolytic enzymes. Food Micro.2000,17:129-141.
    S(?)rensen. S, Justesen. S. Just, Johnsen. A. H, Purification and characterization of osteopontin from human milk. Protein Expression and Purification.2003, 30(2):238-245
    Sorrentino. S, Alessandro. A, Maras. B, Ciccio. L. D, et.al., Purification of a 76-kDa iron-binding protein from human seminal plasma by affinity chromatography specific for ribonuclease:structural and functional identity with milk lactoferrin. Biochimica et Biophysica Acta (BBA)-Protein Structure and Molecular Enzymology.1999, 1430(1):103-110
    Stachelhaus. T, Schneider. A, Marahiel. M. A. Engineered biosynthesis of peptide antibiotics. Biochemical Pharmacology.1996,52(2):177-186.
    Sung. W, Lee. D. Pleurocidin-derived antifungal peptides with selective membrane-disruption effect. Biochemical and Biophysical Research Communications. 2008,369(3):858-861.
    Susana A. G. C, Sigifredo. A. G, Quintin R. C. Lactoferrin:structure, function and applications. International Journal of Antimicrobial Agents.33 (2009):301-308
    Tang. Z, Zhang. Y, Stewart. A. F, Geng. M, Tang. X, Tu. Q, Yin. Y. High-level expression, purification and antibacterial activity of bovine lactoferricin and lactoferrampin in Photorhabdus luminescens. Protein Expression and Purification.2010,73(2):132-139.
    Tomita. M, Bellamy. W, Takase. M, Yamauchi. K, Wakabayashi. H, Kawase. K. Potent Antibacterial Peptides Generated by Pepsin Digestion of Bovine Lactoferrin. Journal of Dairy Science.1991,74(12):4137-4142.
    Tomita. A. M, Hiroyuki. W, Kouichirou. S, et.al., Twenty-five years of research on bovine lactoferrin applications. Biochimie.2009,91(1):52-57
    Tomita. M, Wakabayashi. H, Shin. K, et.al., Twenty-five years of research on bovine lactoferrin applications. Biochimie.2009,91(1):52-57
    Tomotani. E. J, Vitolo. M, Production of high-fructose syrup using immobilized invertase in a membrane reactor. Journal of Food Engineering.2007,80:662-667
    Trusek-Holownia. A, Production of protein hydrolysates in an enzymatic membrane reactor. Biochemical Engineering Journal.2008,39:221-229(b)
    Trusek-Holownia. A, Noworyta. A, Peptides removing in enzymatic membrane bioreactor. Desalination.2008,221:543-551 (a)
    Tsai. J, Chen. T, Pan. B. S, Gong. Sa, Chung. M. Antihypertensive effect of bioactive peptides produced by protease-facilitated lactic acid fermentation of milk. Food Chemistry,2008,106(2):552-558
    Tsuda. H, Sekine. K, Fujita. K, et. al., Cancer prevention by bovine lactoferrin and underlying mechanisms-a review of experimental and clinical studies [J]. Biochem Cell Biol,2002,80(1):131-136
    Ulvatne. H, Samuelsen.(?), Haukland. H. H, et.al.,Lactoferricin B inhibits bacterial macromolecular synthesis in Escherichia coli and Bacillus subtilis, FEMS Microbiology Letters,2004,23(2):377-384
    Unsal. E, Irmak. T, Durusoy. E, et.al.,Monodisperse porous polymer particles with polyionic ligands for ion exchange separation of proteins, Analytica Chimica Acta. 2006,570(2):240-248
    Vad. B, Thomsen. L. A., et.al, Divorcing folding from function:How acylation affects the membrane-perturbing properties of an antimicrobial peptide[J], Biochimica et Biophysica Acta,2010,1804 (4):806-820
    Vaidya. A. M, Bell. G, Halling. P. J, et al.,Aqueous—organic membrane bioreactors. Part Ⅰ. A guide to membrane selection. Journal of Membrane Science.1992,71, (1-2,3):139-149
    van der Strate. B.W.A, Beljaars. L, Molema. G, Harmsen. M.C, Meijer. D.K.F. Antiviral activities of lactoferrin. Antiviral Research.2001,52(3):225-239.
    Varenne. A, Descroix. S. Recent strategies to improve resolution in capillary electrophoresis—A review. Analytica Chimica Acta.2008,628(1):23
    Vasbinder, A. J. Cornelis G. de Kruif Casein-whey protein interactions in heated milk: the influence of pH. International Dairy Journal.2003,13:669-677
    Vegvari. A, Chapter 3 Peptide and protein separations by capillary electrophoresis and electrochromatography. Comprehensive Analytical Chemistry.2005,46:149-252
    Wasilewska. J, Sienkiewicz-Szlapka. E, Kuzbida. E, Jarmolowska. B, Kaczmarski. M, Kostyra. E. The exogenous opioid peptides and DPPIV serum activity in infants with apnoea expressed as apparent life threatening events (ALTE). Neuropeptides.2011, 45(3):189-195Weinberg. E. D. Iron availability and infection, Biochimica et Biophysica Acta (BBA)-General Subjects,2009,1790(7):600-605
    Wakabayashi. H, Kuwata. H, Yamauchi. K, et. al., No detectable transfer of dietary lactoferrin or its functional fragmentsto portal blood in healthy adult rats [J]. Biosci Biotechnol Biochem,2004,68(4):853-860
    Weinberg. E. D. Iron availability and infection, Biochimica et Biophysica Acta (BBA)-General Subjects,2009.1790(7):600
    Wiradharma. N, Khoe. U, Hauser. C. A. E, Seow. S. V, Zhang. S, Yang. Y. Synthetic cationic amphiphilic a-helical peptides as antimicrobial agents. Biomaterials.2011, 32(8):2204-2212.
    Won. A, Khan. M, Gustin. S, Akpawu. A, Seebun. D, Avis. T. J, Leung. B. O, Hitchcock. A. P, Ianoul. A. Investigating the effects of L- to D-amino acid substitution and deamidation on the activity and membrane interactions of antimicrobial peptide anoplin. Biochimica et Biophysica Acta (BBA)-Biomembranes.2011, 1808(6):1592-1600.
    Woltinger. J, Drauz. K, Bommarius. A. S. The membrane reactor in the fine chemicals industry, Applied Catalysis A:General,2001,221:171-185
    Yonezawa. S, Xiao. J. Z, Odamaki. T, Ishida. T, Miyaji. K, Yamada. A, Yaeshima. T, Iwatsuki. K. Improved growth of bifidobacteria by cocultivation with Lactococcus lactis subspecies lactis.J Dairy Sci.2010,93(5):1815-23.
    Yoshida. S. Preparation of lactoferrin by hydrophobic interaction chromatography from milk acid whey. J Dairy Sci,1989,72(6):1446-1450
    Zoha. K, Stenstrom. M. K. Application of a membrane bioreactor for treating explosives process wastewater, Water Research,2002,36:1018-1024
    Zucht. H.D, Raida. M, Adermann. K, et.al., Casocidin-Ⅰ:a casein-aS2 derived peptide exhibits antibacterial activity [J]. FEBS Lett.1995,372:185.
    毕海丹,崔旭海,张永忠.膜技术在乳品工业中应用的最新进展,食品与发酵工业,2005,31(3):99-104
    卜尔红,刘成国,罗玲泉.碱性蛋白酶在酪蛋白磷酸肽生产中的研究,乳业科学与技术,2008(3):143-145
    陈洁.牛乳乳清蛋白的分离方法,冷饮与速冻食品工业,1996(1):20-21
    陈静,张和平,孙健.婴儿配方乳蛋白水解物在酶-膜反应器中连续化生产试验研究,食品科学,2006,27(9):167-171
    陈凌昊,周浪,许娜.阳离子抗菌肽抗肿瘤的作用机制,吉林医药学院学报,2009,30(5):298-300
    陈莎莎,丁月云,金融,王恬.乳铁蛋白的抑菌作用及其机制,中国乳品工业,2007,35(5):53-58
    陈婷,余群力,赵莉,程兆鹏.超滤膜分离技术回收乳清蛋白工艺研究,食品工业科技,2010,31(4):226-228
    陈忠平.牛奶中酪蛋白和乳糖的分离,安徽技术师范学院学报,2001,15(4):58-59
    程静,高学军,刘晓,姚永豪,终慧丽.反相高效液相色谱法检测牛初乳乳铁蛋白的方法研究.乳业科学与技木,2009,(1):30-34
    丁艺雪,夏明,毛俊磊,陈晶晶.变温发酵法生产双歧杆菌大豆酸奶的研究,食品与机械,2009,25(4):124-127
    董晶莹,马莺,陈历俊.陶瓷膜微滤分离酪蛋白与乳清蛋白.哈尔滨工业大学学报,2009,41(6):78-81
    方海田,德力格尔桑,刘慧燕.牛乳中酪蛋白胶束结构理论模型的研究进展,农业科学研究,2006,27(3):86-89
    傅维琦,吴绵斌,陶银英.牛初乳中提取乳铁蛋白工艺的研究,浙江大学学报(工学版),2006,40(1):154-157
    GB 5413.5-2010食品安全国家标准婴幼儿食品和乳品中乳糖、蔗糖的测定.国家质量技术监督局.
    GB/T4789.35-2010,食品微生物学检验乳酸菌检验.北京:中国标准出版社,2010.龚广予,巫庆华,吴正钧.一种检测乳铁蛋白的方法——放射免疫扩散法,中国乳品工业,2001,29(3):27-29
    龚彦文,申艳敏,程雪妮.橙汁超滤澄清工艺研究.食品科技.2010,35(7):131-134古卓良,周国华,张晓丹,等.缓冲液种类对毛细管区带电泳分离蛋白质的影响. 解放军药学学报,2003,19(6):404-407
    郭本恒,骆承庠.超滤技术分离初乳乳清蛋白质的研究,食品工业,1997,(1):20-21
    韩奕奕,黄菲菲,王建军,吕春.凝胶电泳法(SDS-PAGE)测定乳与乳制品中p-乳球蛋白的含量.乳业科学与技术,2009,(2):74-77.
    何卫中,姚善泾,关怡新,朱自强.高压C02和乙醇协同沉淀牛奶中蛋白质的研究.食品与发酵工业,2003,(8):534-539
    侯利霞,翟培,施用辉.家蝇抗菌肽对细菌细胞表面特性影响及其作用机理的研究,微生物学通报,2007,34(3):434-437
    胡志和,冯飞,刘传国,等.牛乳铁素的制备纯化与氨基酸序列分析,食品科学,2008,29(7):166-169
    胡志和,刘传国,庞广昌,陈庆森.乳铁素免疫调节功能评价.食品科学,2009,30(15):200-204.
    胡志和,庞广昌,陈庆森,刘碧帆.不同条件下水解酪蛋白所得到的抗菌肽抑菌效果比较,食品科学,2003,24(2):130-133
    胡志和,王昌禄,李斌.乳铁蛋白及乳铁素对嗜酸乳杆菌生长影响的研究,食品科学,2007,28(10):413-417
    金月亭.酶解乳铁蛋白支取乳铁素的工艺方法研究,浙江大学,硕士学位论文,20080501
    Lagrange. V乳清蛋白及其新组分的性质、功能和新用途[J].中国乳品工业,1999,27(2):24-27.
    廖世奇,周思彤,曾家豫.生物抗菌肽的研究进展[J],甘肃医药,2009,28(1):16-20
    李海芹.酪蛋白酶解产物中抗菌肽的初步研究,食品与发酵工业,2006,32(3):147-148
    李珊珊,王加启,魏宏阳,等.乳及乳制品中乳铁蛋白定量测定法SDS-PAGE法的建立,中国乳业,2008(9):42-46
    李佐刚,汤瑶,孙旭,闻镍,于敏,史兴昌,李响,王秀文,王军志,李波.转基因山羊羊乳中重组人乳铁蛋白性质的检定与研究.药物分析杂志,2008,28(2):223-226
    黎观红,张锦华,瞿明仁,易中华.乳酪蛋白源抗菌肽——结构、功能及应用,中国食品添加剂,2010,(3):207-214
    刘和春,杨春,杨青,等.毛细管等点聚焦/毛细管无胶筛分电泳二维蛋白质分离平台的构建[J].分析化学,2004,32(3):273-277
    刘利军,赵征.酶法水解乳清蛋白条件的优化.天津科技大学学报,2005,20(3):9-16.
    刘静,李祥,张光华.加热双酶联合水解大豆蛋白的研究,中国酿造,2008,189(12):38-41
    刘忠渊,徐涛,郑树涛.新疆家蚕抗菌肽Cecropin-XJ与细菌DNA互相作用的广谱研究,广谱学与光谱分析,2008,28(3):612-616
    卢蓉蓉,许时婴,王璋,方民.超滤法分离初乳中乳铁蛋白的数学模型.2002年中国乳业科技大会.2002
    卢蓉蓉,许时婴,王璋.乳铁蛋白测定方法的比较,中国乳品工业,2002,30(5):123-125
    卢晓明,王静波,任发政,陈尚武.乳清蛋白在食品工业中的应用,食品科学,2010,31(01):262-267
    齐崴,何志敏,何明霞.酶解反应与膜分离耦合连续制备酪蛋白磷酸肽,化工学报,2006,34(4):43-46
    邵锦震,易理清.等电沉淀分离酪蛋白方法的探讨.湖北师范学院学报:自然科学版,2004,24(1):19.
    宋宏新,刘立新,柏红梅,蒋振威.牛乳中蛋白质的电泳分析技术研究.2010,26(2):51-53
    宋茹,韦荣编,汪东风.食物源蛋白酶制备抗菌肽研究进展,食品科学,2009,30(11):284-288
    田波,迟玉杰.蛋清蛋白水解物的水解程度与分子量关系的研究.食品工业科技,2002,23(11):14-15
    唐玲玲,夏明.高效液相色谱法在蛋白质分离检测中的应用,农产品加工学刊,2009,1:89-91
    王芃.胃蛋白酶胰蛋白酶水解酪蛋白的研究,食品研究与开发,2010,31(7)143-147
    王国荣,张列兵,于景华,粱建芬.优先酶解乳清蛋白浓缩物中卢一乳球蛋白工艺的研究[J].食品科学,2007,10:04-07.
    王威,王联结.阳离子抗菌肽分子设计的研究现状,食品工业科技,2010,(1):442-445
    王文杰,王璋.酶膜反应器中水解大豆分离蛋白的研究,食品与机械,2008,24(1):16-19
    王新保,卢蓉蓉,任举,杨瑞金,张文斌.酶法制备乳铁蛋白抗菌肽的工艺,食品与发酵工业,2008,(2):73-78
    王燕平,陆小冬.人乳中乳铁蛋白ELISA检测方法的研究.乳业科学与技术,2009,(5):221-223.
    王义鹏,赖仞.昆虫抗菌肽结构、性质和基因调控.动物学研究,2010.2,31(1):27-34
    王湛.膜分离技术基础[M].北京:化学工业出版社,2006:193-195;198
    滕超,马海乐,王振斌.酶膜反应器在蛋白质水解制取活性多肽中的应用.食品研究与开发,2007,28(6):179-183
    吴海波,江连洲,陈爱梅.超滤法回收大豆乳清蛋白前预处理的研究.食品与发酵工业.2010,36(4):104-110
    吴琼英,茅妍.乳源抗菌肽的抑菌活性及其影响因素,江苏科技大学学报(自然科学版),2010,24(2):184-187
    吴士业;刘达玉.超滤浓缩乳清蛋白并分离乳糖的研究,食品与机械,1999,(2):34-35
    伍军,艾启俊,于同泉.溶液pH对不同超滤膜超滤大豆黄浆水的影响.食品科技.2004,(3):89-91
    夏明.乳源性活性肽及其相关技术研究进展,中国食物与营养,2009(5):37-39
    夏明.均匀试验法改良双歧杆菌大豆酸奶发酵工艺研究,食品研究与开发,2011,(10)in press
    夏明,麻辰韶.红花籽粕水溶性蛋白的提取与氨基酸组成分析,农产品加工学刊,2009(b),(9):41-43
    夏明,应铁进,朱妍.双酶法降解红花籽粕制备水解蛋白的工艺研究,粮油加工,2009(a),(7):74-76
    夏庆,薛正莲.胰蛋白酶水解酪蛋白所得产物抗菌活性的研究,安徽工程科技学院学报,2007,22(1):23-26
    肖杨,罗永康.牛乳铁蛋白酶解产物抗菌特性的研究,中国乳业,2007,(9):42-44
    徐丽萍.牛初乳中乳铁蛋白的分离和纯化.食品工业科技.2007,(3):170-172
    许宁.牛乳铁蛋白的质量控制,中国药师,2005,8(11):911-913
    薛培宇,代永刚,南喜平,杨贞耐.响应面法优化酪蛋白抗菌肽的制备工艺.食品科技,2011,36(1):5-8
    杨春,张维冰,张玉奎.毛细管柱表面鸡卵清蛋白快速改性并用于等电聚焦电泳分离蛋白质.分析化学,2003,31(9):1097-1100
    杨永新,赵兴绪,陶金忠,等.乳蛋白质组的研究进展,甘肃农业大学学报,200742(1):10-4
    杨星剑,王金洛,徐福洲,杨兵.,抗菌肽的研究进展,今日养猪业,2005,(3):38-40
    阳晖,刘燕.不同方法提取乳清浓缩蛋白的研究。安徽农业科学,2011,39(2):657-659
    原龙,王新,尤艳蓉.牛奶中酪蛋白和乳糖的分离方法研究,应用化工,2009,38(3):389-394
    袁永俊.酪蛋白抗菌肽的酶法制备,食品与机械,2010,26(2):1-4,
    张东送.牛乳铁蛋白与乳铁素的制备及其特性研究,天津商业大学,硕士学位论文,20050501
    张东送,庞广昌,谷芳,王彦,刘萍.乳铁素B的抗菌活性及其影响因素,食品与生物技术学报.2005,24(2):1-5
    张东送,庞广昌,李艳琴,胡志和,吴雅静.牛乳铁蛋白抗菌活性及其影响因素的研究,食品与发酵工业,2004,30(11):1-5
    张杉,陈敏,李慧SDS-PAGE电泳测定乳清蛋白方法的研究.食品科技PKU,2008,33(1):215-220.
    张鑫,苗向阳,尹逊河,等.抗菌肽在转基因动植物中的研究进展,生物技术通 报,2009,(2):22-25
    张旭,何明霞,杨学友.生物酶膜反应器实时监控系统计算机测量与控制,2006,14(5):625-627
    张赛赛,李恒星,沙莎,冯凤琴.酶膜反应器水解酪蛋白连续制备ACE抑制肽的研究,中国食品学报,2009,9(6):41-47
    赵红艳.抗菌肽在食品防腐剂中的研究应用,卫生研究,2009,38(4):502-504
    赵京山,温进坤,韩梅.无胶筛分毛细管电泳检测微量蛋白质方法的建立与评价[J].河北医科大学学报,2005,26(2):127-128
    赵亚丽,赵谋明,刘颖栋.酶法水解酪朊酸钠工艺的研究,食品工业科技,2004,25(4):89-91
    赵新淮,冯志彪.蛋白质水解物水解度的测定.中国乳品工业,1994,11:65-67.
    赵正涛,李全阳,赵红玲,卫晓英.牛乳中酪蛋白的分离及其特性的研究,食品与发酵工业,2009,35(1):169-172

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700