载有hTERT基因逆转录病毒感染日本血吸虫童虫的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
迄今为止,应用于血吸虫病防治实践的技术仍存在许多不足,尤在控制日本血吸虫病流行与传播方面尚无理想方法。30年前有学者提出,建立稳定生长和连续传代培养的血吸虫细胞系,可为寻求新的防治技术提供基础和条件,但通过数十年的细胞培养技术探索,一直未能实现建立可连续传代生长的血吸虫细胞系目标。本研究受哺乳动物体细胞经转导外源永生化基因后成功建立永生化细胞系的启示,开展了采用逆转录病毒载体对日本血吸虫童虫细胞进行外源基因转导的生物学理论探索,制备了载有永生化基因(hTERT)的双嗜性逆转录病毒和泛嗜性逆转录病毒,并观察了这2种逆转录病毒载体转导外源基因到日本血吸虫童虫细胞或虫体后所发生的整合、转录和表达以及对Sj细胞增殖的影响。本研究目的在于为血吸虫细胞永生化研究提供理想的转导外源基因的载体,验证外源hTERT基因能否在血吸虫体内整合、表达及其表达部位,同时探索hTERT基因表达诱导细胞增殖的可行性。
     [目的]探讨用双嗜性逆转录病毒载体将外源基因导入日本血吸虫(Sj)细胞的生物学理论与实验依据。[方法]从GenBank中收集褐家鼠双嗜性逆转录病毒受体(rRam-1)的氨基酸序列,应用Blastp工具对其进行序列相似性搜索,并用Cluster W2工具对相似性较高的氨基酸序列进行同源性分析;采用RPS-blast与InterproScan在线工具对rRam-1受体及其同源的氨基酸序列进行保守区域分析;进一步应用多个在线分析工具对与rRam-1同源的Sj蛋白进行蛋白二级结构、疏水性、跨膜性、信号肽、亚细胞定位以及翻译后修饰点等进行分析与预测;在生物信息学预测的基础上采用含短片段外源基因的双嗜性逆转录病毒载体感染Sj-12d童虫细胞培养物,并应用PCR与RT-PCR方法检测外源基因在Sj细胞中的整合与表达。[结果]rRam-1氨基酸残基序列相似性搜索及同源性分析显示,其氨基酸序列与多种脊椎动物的钠离子依赖性的磷酸盐运载体家族的氨基酸序列有很高的同源性,一致性均在59%以上,其中,与中国仓鼠Ram-1受体(cRam-1)和人类Ram-1 (h Ram-1)受体的氨基酸序列一致性均为93%;此外,与多种无脊椎动物磷酸盐运载体家族的氨基酸序列也有较高的同源性,氨基酸一致性在42%以上;Sj中存在2种与rRam-1受体有较高同源性的蛋白SJCHGC09605和SjCHGC05362,它们与rRam-1受体之间的氨基酸序列一致性分别为54%和61%,相似性分别为74%和72%。2种血吸虫蛋白与人类、褐家鼠及中国仓鼠的Ram-1受体蛋白处于平行的进化分枝上。保守性分析显示,2种Sj蛋白与人类、褐家鼠及中国仓鼠的Ram-1受体存在相同的PH04 Superfamily保守结构域,均为磷酸盐运载体超家族成员;二级结构显示,SJCHGC09605和SJCHGC05362蛋白中,α螺旋分别占68.97%和39.22%,跨膜区预测显示分别有7个和5个可能的区域,与疏水性预测结果完全一致;亚细胞定位及翻译后修饰位点分析显示,2种蛋白均不含信号肽序列和亚细胞定位信号,也不含糖基化、磷酸化和脂酰化等翻译后修饰位点。利用携带外源E77.43基因的双嗜性逆转录病毒感染Sj童虫细胞后,经PCR与RT-PCR检测到目的基因存在与表达,扩增的目的片段大小为330 bp,与理论值相符。[结论]双嗜性逆转录病毒rRam-1受体与日本血吸虫细胞膜上起离子转运通道或受体蛋白作用的SjCHGC09605和SjCHGC05362两种跨膜蛋白成分存在较高同源性;用载有E77.43基因的双嗜性逆转录病毒感染Sj童虫细胞获得成功,推测SjCHGC09605和SjCHGC05362两种与rRam-1受体同源的蛋白可能是Sj感染过程中起作用的分子。该结果为下一步用双嗜性逆转录病毒载体转导永生化基因至Sj细胞提供了生物学理论与实验依据。
     [目的]建立含永生化基因(hTERT)的稳定产逆转录病毒细胞株,观察hTERT基因转导Sj童虫细胞后的整合和表达情况以及对细胞增殖作用的影响。[方法]将从美国引进的pBABE-puro-hTERT质粒经核酸内切酶酶切、PCR扩增和测序鉴定确认;倍比稀释测定PA317细胞和NIH3T3细胞对嘌呤霉素的最高耐受浓度;用脂质体将质粒转染至PA317细胞内,经嘌呤霉素筛选获得抗性克隆并扩大培养,并通过PCR、测序、免疫荧光、Western-blot及透射电镜对抗性细胞株进行鉴定,并以NIH3T3细胞测定收集的逆转录病毒液滴度。常规制备Sj-12d童虫细胞,并在体外培养中用BrudU-ELISA法检测细胞增殖情况,PCR法检测兔线粒体特异性基因确定无宿主来源细胞污染,倍比稀释法测定Sj细胞对嘌呤霉素的最高耐受浓度;用浓缩的双嗜性逆转录病毒感染Sj-12d童虫细胞并以嘌呤霉素连续筛选培养获得抗性Sj细胞克隆,扩大培养后用PCR、RT-PCR、Western-blot检测外源hTERT基因和puror基因在细胞内的整合与表达;用3H-TdR掺入法检测嘌呤霉素抗性Sj-12d细胞的增殖能力,利用细胞计数法绘制其生长曲线,并应用TRAP-ELISA法测定其端粒酶活性。[结果]pBABE-puro-hTERT质粒经酶切、PCR和测序鉴定为目的质粒;PA317细胞和NIH3T3细胞对嘌呤霉素的最高耐受浓度为6μg/ml和3μg/ml;嘌呤霉素抗性PA317克隆扩大培养物经PCR、测序、免疫荧光以及Western-blot检测到外源hTERT基因和puror基因的整合、转录及蛋白质表达;透射电镜检测到抗性PA317细胞的培养上清及胞浆内有逆转录病毒颗粒的存在,经浓缩后测得其滴度为2×105cfu/ml。Sj-12d童虫细胞培养3d后即可见部分细胞分裂相,10-14d后可见较多分裂相,BrdU-ELISA也显示培养14d后有明显的DNA合成与增殖,其对嘌呤霉素最高耐受浓度为0.5μg/ml;双嗜性逆转录病毒感染Sj-12d细胞后经嘌呤霉素连续筛选21d可见抗性克隆形成,对扩大培养后的抗性细胞做PCR、RT-PCR和Western blot,检测到外源hTERT基因和puror基因在抗性Sj-12d细胞内的整合、转录及蛋白表达,但整合的拷贝数少,转录水平低下;3H-TdR掺入法检测显示抗性Sj-12d细胞与常规培养的Sj-12d细胞均有一定增殖能力,但二者间差异无显著性(P>0.05);TRAP-ELISA实验未能从抗性Sj-12d细胞内检测到端粒酶活性;在培养4周内的抗性Sj-12d细胞生长相对较快,此后生长逐渐减慢,死亡细胞和退变细胞的数目逐渐增多,最后全部死亡。[结论]用pBABE-puro-hTERT逆转录病毒质粒转染PA317细胞后,成功建立含hTERT基因稳定产双嗜性逆转录病毒颗粒的细胞株;该病毒感染Sj-12d童虫细胞后可检测到外源hTERT基因和puror基因的整合、转录及蛋白表达,但整合拷贝数少,转录水平低下,未能激活Sj-12d细胞的端粒酶活性和改善细胞的增殖能力。
     [目的]为提高逆转录病毒对血吸虫的感染能力,探讨应用pVSV-G质粒和pBABE-puro-hTERT质粒共转染包装细胞制备泛嗜性逆转录病毒的可行性,并观察该病毒感染Sj童虫后外源基因在虫体内的整合、转录、表达及具体的表达部位情况。[方法]将pVSV-G质粒和pBABE-puro-hTERT质粒共转染GP2-293包装细胞,转染后48h收集细胞培养上清,用浓缩的上清液与Polybrene混合液感染NIH3T3细胞系,经嘌呤霉素连续筛选12d后获得抗性克隆,计数抗性克隆数目并计算病毒滴度;挑取抗性NIH3T3克隆扩大培养,以PCR检测外源hTERT基因和puror基因在细胞内的整合,采用免疫细胞化学染色法检测hTERT基因在细胞内的表达情况;将泛嗜性逆转录病毒加入到体外培养的Sj-12d童虫,感染24h后更换培养基,将虫体连续培养6d;采用PCR和Southern杂交检测外源hTERT基因在虫体内的整合,同时应用RT-PCR、Western blot及免疫组织化学染色检测外源hTERT基因在虫体内的转录、表达及定位情况。[结果]经计数后,泛嗜性逆转录病毒颗粒滴度为3.2×108,抗性NIH3T3细胞经PCR扩增出外源hTERT基因和puror基因特异性145bp和204bp目的条带,免疫细胞化学染色法检测到hTERT基因在细胞内发生了蛋白质表达,表达部位以细胞核内为主;泛嗜性逆转录病毒感染后的虫体经PCR和RT-PCR扩增出了外源hTERT基因和puror基因特异性145bp和204bp目的产物,其中,hTERT基因的转录水平较高,而puror基因的转录水平则较低,Southern杂交也显示出虫体内有外源hTERT基因的多个拷贝整合;Western blot实验显示病毒感染后的虫体内有外源hTERT基因的表达,其表达部位经免疫组织化学染色确定为在虫体的口吸盘、腹吸盘和后部体壁皮层下的表达量最多。[结论]用pVSV-G质粒和pBABE-puro-hTERT质粒共转染包装细胞后成功制备携带外源hTERT基因泛嗜性逆转录病毒,并证明该病毒感染Sj童虫活虫体后可在吸盘和后部体壁皮层下产生外源hTERT基因的多拷贝整合、转录与蛋白质表达。
To date, the technologies used for schistosomiasis control still have many deficiencies. Especially, there is no ideal measure in controlling the spread of schistosomiasis japonica. Thirty years ago, some scholars have suggested that the establishment of a stable and continuous passage cell line from schistosome may provide foundation and conditions for finding new schistosomiasis prevention and control technologies. Through decades of exploration for cell culture techniques on Schistosoma japonicum (Sj), however, a continuous passage schistosome cell line has not been achieved. In this study, by an inspiration from transduction of exogenous gene with immortalization function into mammalian somatic cells and successful establishment of immortalized cell lines, we carried out exploration of a biological theory on retroviral vector used to introduce exogenous gene into schistosomula cells, prepared amphotropic retrovirus and pantropic retrovirus containing human telomerase reverse transcriptase gene (hTERT) and observed the integration, transcription, expression and cell proliferation following transduction of exogenous genes into cells or worms from Sj with the two retroviral vectors. Our purpose is to provide an ideal vector for transduction of exogenous gene in the study of schistosome cell immortalization, verify the integration and expression of hTERT gene within schistosome worm bodies and explore the feasibility of inducing cell proliferation.
     [Objective] To explore biologically theoretical and experimental foundation for introduction of exogenous gene into Sj cells with amphotropic retrovirus vector. [Methods] Amino acid sequence of the receptor for amphotropic murine retroviruses of Rattus norvegicus (rRam-1) was collected from GenBank and its sequence similarity search was performed with Blastp program at NCBI (the National Center for Biotechnology Information) website. Afterwards, the homology analysis were carried out for higher similarity sequences with Cluster W2 program. Conserved regions of rRam-1 receptor and its homologous amino acid sequences were analyzed with RPS-blast and InterproScan tools. Subsequently, protein secondary structures, hydrophobicity, transmembrane regions, signal peptides, subcellular localization signal and post-translation modification sites of Sj proteins homologous to rRam-1 were analyzed and forecasted with several online analysis tools. Based on bioinformatics prediction, Sj-12d cell cultures were infected with amphotropic retrovirus vector containing short segment of exogenous gene and integration and expression of the foreign gene within Sj cells were detected with PCR and RT-PCR analysis. [Results] Similarity search and homology analysis of rRam-1 showed that its amino sequence was highly homologous with amino sequences of Sodium-dependent phosphate transporter from vertebrates and the identities were all more than over 59%. Among them, the identities of amino sequences to the receptor for amphotropic murine retroviruses of Cricetulus griseus (cRam-1) and the receptor for amphotropic murine retroviruses of Homo sapiens (hRam-1) were 93%, respectively. In addition, relatively high homologies with phosphate transporter families from numerous invertebrate species were also found, and the identities were all above 42%. Two proteins of Sj, SJCHGC09605 and SjCHGC05362, were highly homologous to rRam-1 with identities of 54% and 61% and positives of 74% and 72%, respectively. The two Sj proteins were at evolution branches parallel to hRam-1, rRam-1 and cRam-1. Conservation analysis indicated that there were same conserved domain PH04 Superfamily among two Sj proteins, hRam-1, rRam-1 and cRam-1 and all proteins were members of phosphate transporter superfamily. Secondary structure analysis showed that a helixes in SJCHGC09605 and SJCHGC05362 were 68.97% and 39.22%, respectively, and transmembrane prediction showed 7 and 5 possible regions, respectively, which was exactly consistent with hydrophobicity prediction. Subcellular localization and post-translation modification site analysis indicated that the two proteins did not contain signal peptide sequence and subcellular localization signal, and that, lycosylation, phosphorylation and lipid acylation were not found. After infection of cell cultures from Sj juvenile worms with amphotropic retrovirus containing exogenous gene E77.43, the presence and expression of target gene in cells were detected by PCR and RT-PCR analysis and the amplicon of predicted size of 330 bp was generated, which is corresponding with theoretical size. [Conclusion] There were high homology between rRam-1 and either transmembrane protein SjCHGC09605 or SjCHGC05362 on Sj cellular membrane acting as ion transport channel or receptor protein. Furthermore, cell cultures from Sj juvenile worms could be successfully infected with amphotropic retrovirus containing exogenous gene E77.43, indicating the two proteins homologous to rRam-1 may play important roles during infection of Sj cells by retroviruses. These findings provided a biologically theoretical and experimental foundation for transduction of immortal gene into Sj cells with amphotropic retrovirus vector.
     [Objectives] To establish a cell strain which stably produce amphotropic retro virus containing immortal hTERTgene and observe the integration and expression of hTERT gene in cell cultures from Sj juvenile worm following transduction and its influence on cell multiplication. [Methods] Plasmid pBABE-puro-hTERT was identified by enzyme digestion, PCR and sequencing. The highest puromycin-resistant concentration of PA317 and NIH3T3 cells was determined by gradient dilution method. After transfection of plasmid into PA317 cell with liposome, puromycin-resistant clones were obtained following screening with puromycin and one of clones was randomly selected and cultured for continous passage. PCR, sequencing, immunofluorescence, Western-blot and transmission electron microscopy were performed to identify the puromycin-resistant cell strain and the titer of retrovirus was determined with NIH3T3 cell. Sj-12d schistosomule cells were prepared as described before and cell proliferation was measured with BrudU-ELISA method. Absence of contamination from host cells was confirmed by detection of special rabbit mitochondrium gene with PCR. The highest puromycin-resistant concentration of Sj cells was determined by gradient dilution. After infection of Sj-12d cells with concentrated amphotropic retrovirus and successive screening in puromycin-containing medium, puromycin-resistant Sj cell clones were obtained and selected for continuous cultivation. The integration and expression of exogenous genes hTERT and puror within these cells were observed by PCR, RT-PCR and Western-blot. Proliferation of puromycin-resistant Sj-12d cells was measured by 3H-TdR incorporation, and growth curve plotted by cell count and telomerase activity monitored with TRAP-ELISA method. [Results] The authenticity of pBABE-puro-hTERT plasmid was identified by enzyme digestion, PCR and sequencing. The highest puromycin-resistant concentrations of PA317 and NIH3T3 cells were 6μg/ml and 3μg/ml, respectively. The integration, transcription and expression of exogenous genes hTERT and puror could be confirmed in puromycin-resistant PA317 cell strain by PCR, sequencing, immunofluorescence and Western-blot. Retrovirus particles could be found in culture supernatant and cytoplasm of puromycin-resistant PA317 cells by transmission electron microscopy and the titer of concentrated retrovirus particles was 2×105cfu/ml following infection of NIH3T3 cell line with these virions. After cultivation for 3 days, cell division phase appeared in Sj-12d schistosomule cells and more cell division phases appeared following 10-14 days. Furthermore, DNA synthesis and proliferation were verified by BrdU-ELISA analysis in Sj schistosomule cells cultured for 14 days and the highest puromycin-resistant concentration of Sj cells was 0.5μg/ml. After successive screening for 21 days with puromycin-containing medium, puromycin-resistant clones could be found in Sj-12d cells infected with amphotropic retrovirus and one of clones was randomly selected for successive cultivation. The integration, transcription and protein expression of exogenous genes hTERT and puror within puromycin-resistant Sj-12d cells could be detected by PCR, RT-PCR and Western blot, respectively. However, the copies and transcription level of foreign genes were low within schistosomule cells.3H-TdR incorporation experiment showed that both puromycin-resistant Sj-12d cells and normal cultured Sj-12d cells exhibited some extent proliferation ability but no significant difference was found between them (P>0.05). Telomerase activity could not be detected in puromycin-resistant Sj-12d cells using TRAP-ELISA method. Within 4 weeks, cultivated cells grew fast and then slowly. The number of dead cells and degenerative cells gradually increased and, finally, the cells all died. [Conclusion] After Transfection of PA317 cell with retroviral plasmid pBABE-puro-hTERT, a cell strain, PA317/hTERT, stably producing amphotropic retoviral particles containing hTERT gene was constructed successfully. Integration, transcription and expression of exogenous genes hTERT and puror could be detected in Sj-12d cells infected with amphotropic retrovirus, but the telomerase activity within them could not be activated and the cell proliferation ability could not also be improved.
     [Objectives] To enhance the ability of retrovirus to infect schistosomes, explore the feasibility of preparation of pantropic retrovirus by cotransfection into packaging cell line with plasmids pVSV-G and pBABE-puro-hTERT and observe integration, transcription, expression and protein locations of exogenous genes in worm bodies post infection of Sj juvenile worms with pantropic retrovirus. [Methods] GP2-293 package cells were cotransfected with plasmids pVSV-G and pBABE-puro-hTERT, and the supernatants of cell cultures were collected 48h post transfection and then NIH3T3 cell line was infected with the concentrated supernatants mixed with polybrene. Puromycin-resistant clones were obtained through successive screening for 12d with puromycin-containing media and the numbers of clones were counted for virus titers. Thereafter, puromycin-resistant clones were randomly selected for continuous culture, integration of exogenous genes hTERT and puror in cells was detected with PCR and expression of hTERT gene was determined with immunocytochemistry stain. Pantropic retrovirus were added to in vitro cultured Sj-12d schistosomules. Medium was replaced 24h after infection and worms were successively cultured for 6d. Integration of exogenous hTERT gene in worm bodies was confirmed by PCR and Southern hybridization analysis, and, simultaneously, RT-PCR, Western blot and immunohistochemical staining were also adopted for study of transcription, expression and protein location of exogenous hTERT gene in worm bodies. [Results] After counting, the titer of pantropic retrovirus was 3.2x 108. Two fragments of predicted sizes of 145 bp and 204 bp of exogenous genes hTERT and puror were amplified from puromycin-resistant NIH3T3 cells with PCR. Protein expression of hTERT gene in cells could be detected with immunocytochemical staining and the expression location was mainly in nucleus. Specific amplicons of exogenous genes hTERT and puror in size of 145 bp and 204 bp were generated from virus-treated schistosomule genomic DNAs using PCR and RT-PCR. Southern hybridization showed that multi-copies of exogenous hTERT gene were integrated into worm chromosomes. Western blot displayed that exogenous hTERT gene was expressed in worm bodies post infection with virus and most expressions were found in subtegumental regions of oral sucker, ventral sucker and the posterior of Sj larval worms by immunohistochemical staining. [Conclussion] Pantropic retrovirus was successfully prepared following cotransfection into packaging cell line with plasmids pVSV-G and pBABE-puro-hTERT and multicopy integration, transcription and protein expression of exogenous hTERT gene within subtegumental regions of suckers and the posterior of Sj larval worms was confirmed post infection of live Sj juvenile worms with this virus.
引文
[1]Sambrook J, Fritsch E F, Maniaatis T, et al. Molecular cloning, A laboratory mannual.2nd ed, New York:Cold Spring Harbor,1995:345-347
    [2]Hu Q H and Liang W Q. A comparative study of electroporation and ion tophoresis for percutaneous penetration of naproxen. Pharmazie,2003,58:192
    [3]Jaroszeski M J, Heller L C, Gilbert R, et al. Electrically mediated plasmid DNA delivery to solid tumors in vivo. Methods Mol Biol,2004,245:237-244.
    [4]Gondo T, Tsuruta S, Akashi R, et al. Green, herbicide-resistant plants by particle inflow gun-mediated gene transfer to diploid bahiagrass (Paspalum notatum). J Plant Physio,2005,162 (12):1367-1375
    [5]Dietrich A, Becherer L, Brinckmann U, et al. Particle-mediated cytokine gene therapy leads to antitumor and antimetastatic effects in mouse carcinoma models. Cancer Biother Radiopharm,2006,21 (4):333-341
    [6]Gordon E M and Anderson W F. Gene therapy using retroviral vectors. Curr Opin Biotechnol 1994,5:611-616.
    [7]Vos J-MH. Viruses in human gene therapy. Carolina:Carolina Academic Press,1995: 77-96
    [8]Andreadis S T, Roth C M, Le Doux J M, et al. Large-scale processing of recombinant retroviruses for gene therapy. Biotechnol Prog,1999,15:1-11.
    [9]McTaggart S and Al-Rubeai M. Retroviral vectors for human gene delivery. Biotechnology Advances,2002,20:1-31
    [10]Miller D G, Edwards R H and Miller A D. Cloning of the cellular receptor for amphotropic murine retroviruses reveals homology to that for gibbon ape leukemia virus. Proc. Natl. Acad. Sci. USA,1994,91:78-82
    [11]Wilson C A, Farrell K B and Eiden M V. Properties of a unique form of the murine amphotropic leukemia virus receptor expressed on hamster cells. J Virol,1994, 68(12):7697-7703
    [12]van Zeij M, Johann S V, Closs E, et al. A human amphotropic retrovirus receptor is a second member of the gibbon ape leukemia virus receptor family. Proc. Natl. Acad. Sci. USA,1994,91:1168-1172
    [13]Rasheed S, Gardner M B and Chan E. Amphotropic host range of naturally occuring wild mouse leukemia viruses. J Virol,1976,19(1):13-18
    [14]Hartley J W and Rowe W P. Naturally occurring murine leukemia viruses in wild mice:characterization of a new "amphotropic" class. J Virol,1976,19:19-25
    [15]Miller A D, Law M F and Verma I M. Generation of helper-free amphotropic retroviruses that transduce a dominant-acting, methotrexate-resistant dihydrofolate reductase gene. Mol Cell Biol,1985,5(3):431-437
    [16]Palmiter R D and Brinster R L. Germ-line transformation of mice.Annu. Rev Genet, 1986,20:465-499
    [17]Friedmann T. A brief history of gene therapy. Nat. Genet,1992,2:93-98
    [18]Bessis N and Boissier M C. Gene therapy for patients with rheumatoid arthritis. Joint Bone Spine,2006,73(2):169-176
    [19]Gaspar H B and Thrasher A J. Gene therapy for severe combined immunodeficiencies. Expert Opin Biol Ther,2005,5(9):1175-82
    [20]Ponder K P. Gene therapy for hemophilia. Curr Opin Hematol,2006,13 (5): 301-307
    [21]Peroni C N, Cecchi C R, Damiani R, et al. High-level secretion of growth hormone by retrovirally transduced primary human keratinocytes:prospects for an animal model of cutaneous gene therapy. Mol Biotechnol,2006,34 (2):239-245
    [22]Therrien J P, Pfutzner W and Vogel J C. An approach to achieve long-term expression in skin gene therapy. Toxicol Pathol,2008,36 (1):104-111
    [23]Dropulic B. Genetic modification of hematopoietic cells using retroviral and lentiviral vectors:safety considerations for vector design and delivery into target cells. Curr Hematol Rep,2005,4(4):300-304
    [24]Vogt S, Ueblacker P, Geis C, et al. Efficient and stable gene transfer of growth factors into chondrogenic cells and primary articular chondrocytes using a VSVG pseudotyped retroviral vector. Biomaterials,2008,29 (9):1242-1249
    [25]Kim S U, Nagai A, Nakagawa E, et al. Production and characterization of immortal human neural stem cell line with multipotent differentiation property. Methods Mol
    Biol,2008,438:103-121
    [26]Yang Z, Shao H, Tan Y, et al. Blood-derived smooth muscle cells as a target for gene delivery. Journal of Vascular Surgery,2007,47(2):432-440
    [27]Gong Y S, Zhang K L, Jiang X G, et al. Retroviral gene transfer of tissue-type plasminogen activator targets thrombolysis in vitro and in vivo. Gene Ther,2007,14 (21):1537-1542
    [28]St(?)rvold G L, Gjernes E, Askautrud H A, et al. A retroviral vector for siRNA expression in mammalian cells. Mol Biotechnol,2007,35 (3):275-282
    [29]Sales V L, Mettler B A, Lopez-Ilasaca M, et al. Endothelial progenitor and mesenchymal stem cell-derived cells persist in tissue-engineered patch in vivo: application of green and red fluorescent protein-expressing retroviral vector. Tissue Eng,2007,13 (3):525-535 [30] Uhm S J, Gupta M K, Kim T, et al. Expression of enhanced green fluorescent protein in porcine-and bovine-cloned embryos following interspecies somatic cell nuclear transfer of fibroblasts transfected by retrovirus vector. Mol Reprod Dev, 2007,74 (12):1538-1547 [31] Innes K M, Szilvassy S J, Davidson H E, et al. Retroviral transduction of enriched hematopoietic stem cells allows lifelong Bcl-2 expression in multiple lineages butdoes not perturb hematopoiesis. Experimental ematology,1999,27:75-87
    [32][1]Sakuta H, Suzuki R and Noda M. Retrovirus vector-mediated gene transfer into the chick optic vesicle by in ovo electroporation. Dev Growth Differ,2008,50(6): 453-7
    [33]Kamihira M, Nishijima K and Iijima S. Transgenic birds for the production of recombinant proteins. Adv Biochem Eng Biotechnol,2004,91:171-189
    [34]Simon G, Michael J, Adrian S,et al. Transgenic chickens as bioreactors for protein-based drugs. Drug Discovery Today,2005,10 (3):191-196
    [35]Blaese R M, Culver K W, Miller A D,et al. T lymphocyte-directed gene therapy for ADA-SCID:initial trial results after 4 years. Science,1995,270:475-480
    [36]Cavazzana-Calvo M, Hacein-Bey S, Basile G S, et al. Gene therapy of human severe combined immunodeficiency (SCID)-X1 disease. Science,2000,288: 669-672
    [37]Hacein-Bey-Abina S, Francoise Le Deist M D, Frederique Carlier B S, et al. Sustained correction of X-linked severe combined immunodeficiency by ex vivo gene therapy. N. Engl. J. Med,2002,346:1185-1193
    [38]Aiuti A, Slavin S, Aker M, et al. Correction of ADA-SCID by stem cell gene therapy combined with nonmyeloablative conditioning. Science,2002,296: 2410-2413
    [39]Gu Y, Li H, Miki, et al. Phenotypic characterization of telomerase-immortalized primary non-malignant and malignant tumor-derived human prostate epithelial cell lines. Exp. Cell Res,2006,312:831-843
    [40]Ouellette M M, McDaniel L D, Wright W E, et al. The establishment of telomerase-immortalized cell lines representing human chromosome instability syndromes. Hum. Mol. Genet,2000,9:403-411
    [41]秦自强.东方田鼠抗日本血吸虫相关基因E77.43的克隆和功能初步研究:[博士学位论文].长沙:中南大学,2007,5
    [42]Parra G, Agarwal P, Abril J F, et al. Comparative gene prediction in hum an and m ouse. Genome Res,2003,13(1):108-117
    [43]Bao Z and Eddy S R. Automated de novo identification of repeat sequence families in sequenced genomes. Genome Res,2002,12(8):1152-1155
    [44]Versaw WK and Metzenberg RL Repressible cation-phosphate symporters in Neurospora crassa. Proc. Natl. Acad. Sci. USA,1995,92(9):3884-3887
    [45]Miller D G and Miller A D. A family of retroviruses that utilize related phosphate transporters for cell entry. J. Virol,1994,68:8270-8276.
    [46]Kavanaugh M P, Miller D G, Zhang W, et al. Cell-surface receptors for gibbon ape leukemia virus and amphotropic murine retrovirus are inducible sodium-dependent phosphate symporters. Proc. Natl. Acad. Sci. USA,1994,91:7071-7075
    [47]Jono S, McKee M D, Murry C E, et al. Phosphate regulation of vascular smooth muscle cell calcification. Circ. Res,2000,87:E10-E17
    [48]O'Hara B, Johann S V, Klinger H P, et al. Characterization of a human gene conferring sensitivity to infection by gibbon ape leukemia virus. Cell Growth Differ, 1990,1:119-127
    [49]Olah Z, Lehel C, Anderson W B, et al. The cellular receptor for gibbon ape leukemia virus is a novel high affinity sodium-dependent phosphate transporter. J. Biol. Chem,1994,269:25426-31
    [50]Takeuchi Y, Vile R G, Simpson G, et al. Feline leukemia virus subgroup B uses the same cell surface receptor as gibbon ape leukemia virus. J. Virol,1992,66: 1219-1222
    [51]Miller A D, Law M F and Verma I M. Generation of helper-free amphotropic retroviruses that transduce a dominant-acting, methotrexate-resistant dihydrofolate reductase gene.Mol Cell Biol,1985,5(3):431-437
    [52]Burns J C, McNeill L, Shimizu C, et al. Retrovirol gene transfer in Xenopus cell lines and embryos. In Vitro Cell Dev Biol Anim,1996,32 (2):78-84
    [53]Miller A D. Cell-surface receptors for retroviruses and implications for gene transfer. Proc. Natl. Acad. Sci. USA,1996,93:11407-11413
    [54]Kuhlbrandt W and Gouaux E. Membrane proteins. Curr Opin Struct Biol,1999,9 (4):445-447
    [55]Miller A D and Buttimore C. Redesign of retrovirus packaging cell lines to avoid recombination leading to helper virus production. Molecular and cellular biology, 1986,6(8):2895-2902
    [56]曾铁兵.日本血吸虫童虫细胞体外培养与免疫保护性研究:[博士学位论文]:长沙:中南大学,2007,10
    [57]Miller AD and Rosman GJ. Improved Retroviral vectors for gene transfer and expression. Biotechniques,1989,7(9):980-986
    [58]Miller AD and Buttimore C. Redesign of Retrovirus Packaging Cell Lines To Avoid Recombination Leading to Helper Virus Production. Mol Cel Biol,1986,6(8): 2895-2902
    [59]Miller AD. PA317 retrovirus packaging cells. Mol Ther,2002,6(5):572-575
    [60]Matsumoto Y, Perry G, Levine R, et al. Paramyosin and actin in Schistosomal teguments.Nature,1988,333:76-78
    [61]Davis A H, Blanton R and Klich P. Stage and sex specific differences in actin expression in Schistosoma mansoni. Molecular and Biochemical Parasitology,1985, 17:289-298
    [62]Abbas M K and Cain G D. Analysis of isoforms of actin from Schistosoma mansoni by two-dimensional gel electrophoresis. Parasitology Reseach,1989,76:178-180
    [63]Abbas M K and Cain G D. Actin and intermediate-sized filaments of the spines and cytoskeleton of Schisitosoma mansoni. Parasitology Research,1987,73:66-74
    [1]Weller TH and Wheeldon SK. The cultivation in vitro of cells derived from adult Schistosoma mansoni. I. Methodology, criteria for evaluation of cultures and development of media. J Trop Med Hyg,1982,31:335-348
    [2]Hobbs DJ, Fryer SE, Duimstra J R,et al.Culture of cells from juvenile worms of Schistosoma mansoni. J Parasitology,1993,79:913-921
    [3]Bayne CJ, Menino JS, Hobbs DJ, et al. In vitro cultivation of cells from larval Schistosoma mansoni. J Parasitology,1994,80:29-35
    [4]董惠芬,蒋明森,李瑛,等.日本血吸虫培养方法初探.水生生物学报,1995,19(4):382-383
    [5]董惠芬,蒋明森,李瑛,等.日本血吸虫成虫细胞培养条件的初步研究.中国血吸虫病防治杂志,1995,7:257-261
    [6]董惠芬,蒋明森,杨明仪,等.日本血吸虫成虫培养细胞的超微结构观察.水生生物学报,1999,45(1):1-7
    [7]Dong HF, Chen XB, Ming ZP, et al. Ultrastructure of cultured cells from Schistosoma japonicum. Acta Trop,2002,82(2):225-234
    [8]董惠芬,蒋明森,明珍平,等.MNNG诱导日本血吸虫成虫培养细胞增殖的研究.中国公共卫生杂志,2000,16:883-884
    [9]董惠芬,蒋明森,明珍平,等.EGF对用或不用MNNG诱导的日本血吸虫成虫培养细胞生长的影响.中国地方病学杂志,2000,19:347-349
    [10]Ming Z, Dong H, Zhong Q, et al. The effect of a mutagen (N-methyl-N-nitro-N-nitrosoguanidine) on cultured cells from adult Schistosoma japonicum. Parasitol Res, 2006,98 (5):430-437
    [11]曾铁兵,蔡力汀,第三作者,等.日本血吸虫童虫细胞免疫小鼠抗血吸虫病的免疫保护性研究.中国科学C辑:生命科学,2007,37(6):660-666
    [12]张中庸,曾宪芳,李靓如,等.日本血吸虫尾蚴细胞的传代培养及抗原性检测.中国寄生虫学与寄生虫病杂志,2002,20(6):332-334
    [13]龚燕飞,第二作者,张祖萍,等.日本血吸虫童虫细胞体外培养条件的初步研究.中国人兽共患病杂志,2005,21(2):159-163.
    [14]刘伟,曾铁兵,第三作者,等.日本血吸虫成虫体外传代培养细胞的生物学鉴定.中 国寄生虫学与寄生虫病杂志,2006,24(5):375-378
    [15]曾铁兵,第二作者,刘伟,等.用改良人原生殖细胞培养基培养日本血吸虫成虫生殖类细胞的初步研究.中国病原生物学杂志,2008,3(2):107-109
    [16]Greider CW. Telomere length regulation. Annu. Rev. Biochem,1996,65:337-365
    [17]Bacchetti S and Counter C M. Telomeres and telomerase in human cancer. Int. J. Oncol, 1995,7:423-432
    [18]Bryan TM, Engezou A, Dalla-Pozza L, et al. Evidence for an alternative mechanism for maintaining telomere length in human tumors and tumor-derived cell lines. Nat. Med,1997,3:1271-1274
    [19]Shay JW. Telomerase in human development and cancer. J. Cell Physiol,1997, 173:266-270
    [20]Shay JW and Bacchetti S. A survey of telomerase activity in human cancer. Eur. J. Cancer,1997,33:787-791
    [21]Greider CW. Telomerase activation-one step on the road to cancer. Trends Genet,1999, 15:109-112
    [22]Lange T De and DePinho R A. Unlimited mileage from telomerase? Science,1999, 283:947-949
    [23]Holt SE and Shay JW. Role of telomerase in cellular proliferation and cancer. J. Cell Physiol,1999,180:10-18.
    [24]Bryan TM and Cech TR. Telomerase maintenance of chromosome ends. Curr. Opin. Biol,1999,11:318-324
    [25]Greider CW and Blackburn E H. Identification of a specific telomere terminal transferase activity in Tetrahymena extracts. Cell,1985,43:405-413
    [26]Greider CW and Blackburn E H. The telomere terminal transferase of Tetrahymena is a ribonucleoprotein enzyme with two kinds of primer specificity. Cell,1987,51:887-898
    [27]Greider CW and Blackburn EH. A telomeric sequence in the RNA of Tetrahymena telomerase is required for telomere repeat synthesis. Nature,1989,337:331-337.
    [28]Hirai H, LoVerde PT. Identification of the telomerase on Schistosoma mansoni chromosomes by FISH. J Parasitol,1996,82(3):511-512
    [29]Romero DP, Blackburn EH. A conserved secondary structure for telomerase RNA. Cell,1991,67:343-353
    [30]Chen JL, Blasco MA, Greider CW, et al. Secondary structure of vertebrate telomerase RNA. Cell,2000,100:503-514
    [31]Feng J, Funk WD, Wang SS, et al. The RNA component of human telomerase. Science, 1995,269:1236-1241.
    [32]Avilion AA, Piatyszek MA, Gupta J, et al. Human telomerase RNA and telomerase activity in immortal cell lines and tumor tissues. Cancer Res,1996,56:645-650
    [33]Blasco MA, Funk W, Villeponteau B and Greider CW. Functional characterization and developmental regulation of mouse telomerase RNA. Science,1995,269:1267-1270
    [34]Lingner J, Hughes TR, Shevchenko A, et al.Reverse transcriptase motifs in the catalytic subunit of telomerase. Science,1997,276:561-567
    [35]Nakamura TM, Morin GB, Chapman K B, et al. Telomerase catalytic subunit homologs from fission yeast and human. Science,1997,277:955-959
    [36]Metz AM, Love RA, Strobel G. A, et al. Two telomerase reverse transcriptases (TERTs) expressed in Candida albicans. Biotechnol. Appl. Biochem,2001,34:47-54
    [37]Osanai M, Kojima KK, Futahashi R, et al. Identification and characterization of the telomerase reverse transcriptase of Bombyx mori (silkworm) and Tribolium castaneum (flour beetle). Gene,2006,376:281-289
    [38]Meier B, Clejan I, Liu Y, et al. trt-1 is the Caenorhabditis elegans catalytic subunit of telomerase. PLoS Genet,2006,2:e18
    [39]Bryan TM, Sperger JM, Chapman KB, et al. Telomerase reverse transcriptase genes identified in Tetrahymena thermophila and Oxytricha trifallax. Proc. Natl. Acad. Sci. USA,1998,95:8479-8484
    [40]Collins K and Gandhi L. The reverse transcriptase component of the Tetrahymena telomerase ribonucleoprotein complex. Proc. Natl. Acad. Sci. USA,1998,95: 8485-8490
    [41]Takenaka Y, Matsuura T, Haga N, et al. Expression of telomerase reverse transcriptase and telomere elongation during sexual maturation in Paramecium caudatum. Gene,2001,264:153-161
    [42]Giardini MA, Lira CB, Conte FF, et al.The putative telomerase reverse transcriptase component of Leishmania amazonensis:gene cloning and characterization. Parasitol. Res,2006,98:447-454
    [43]Figueiredo LM, Rocha EP, Mancio-Silva L, et al. The unusually large Plasmodium telomerase reverse-transcriptase localizes in a discrete compartment associated with the nucleolus. Nucleic Acids Res,2005,33:1111-1122
    [44]Meyerson M, Counter CM, Eaton EN,et al. hEST2, the putative human telomerase catalytic subunit gene, is up-regulated in tumor cells and during immortalization. Cell, 1997,90:785-795
    [45]Nasir L, Gault E, Campbell S, et al. Isolation and expression of the reverse transcriptase component of the Canis familiaris telomerase ribonucleoprotein (dog-TERT). Gene,2004,336:105-113
    [46]Greenberg RA, Allsopp RC, Chin L, et al. Expression of mouse telomerase reverse transcriptase during development, differentiation and proliferation. Oncogene, 1998,16:1723-1730
    [47]Wong SC, Ong LL, Er CP, et al. Cloning of rat telomerase catalytic subunit functional domains, reconstitution of telomerase activity and enzymatic profile of pig and chicken tissues. Life Sci,2003,73:2749-2760
    [48]Guo W, Okamoto M, Lee YM, et al. Enhanced activity of cloned hamster TERT gene promoter in transformed cells. Biochim. Biophys. Acta,2001,1517:398-409
    [49]Delany ME and Daniels LM. The chicken telomerase reverse transcriptase (cTERT): molecular and cytogenetic characterization with a comparative analysis. Gene, 2004,339:61-69
    [50]Kuramoto M, Ohsumi K, Kishimoto T, et al. Identification and analyses of the Xenopus TERT gene that encodes the catalytic subunit of telomerase. Gene, 2001,277:101-110
    [51]Yap WH, Yeoh E, Brenner S, et al. Cloning and expression of the reverse transcriptase component of pufferfish (Fugu rubripes) telomerase. Gene,2005,353:207-217
    [52]Heller-Uszynska K, Schnippenkoetter W and Kilian A. Cloning and characterization of rice (Oryza sativa L) telomerase reverse transcriptase, which reveals complex splicing patterns. Plant J,2002,31:75-86
    [53]Sykorova E, Leitch A R and Fajkus J.Asparagales telomerases which synthesize the human type of telomeres. Plant Mol. Biol,2006,60:633-646
    [54]Fitzgerald MS, Riha K, Gao F, et al. Disruption of the telomerase catalytic subunit gene from Arabidopsis inactivates telomerase and leads to a slow loss of telomeric DNA. Proc. Natl. Acad. Sci. USA,1999,96:14813-14818
    [55]Oguchi K, Liu H, Tamura K, et al. Molecular cloning and characterization of AtTERT, a telomerase reverse transcriptase homolog in Arabidopsis thaliana. FEBS Lett,1999,457:465-469
    [56]Nakamura TM and Cech TR. Reversing Time:Origin of Telomerase.Cell,1998,92(5): 587-590
    [57]Kim NW, Piatyszek MA, Prowse K R, et al. Specific association of human telomerase activity with immortal cells and cancer. Science.1994,266(5193):2011-2015
    [58]Cerni C. Telomeres, telomerase, and myc. An update. Mutation Research,2000,462: 31-47
    [59]Kilian, A. et al. Isolation of a candidate human telomerase catalytic subunit gene, which reveals complex splicing patterns in different cell types. Hum. Mol. Genet. 1997,6:2011-2019.
    [60]Beattie T L, Zhou W, Robinsin M O, et al. Reconstitution of human telomerase activity in vitro. Current Biology,1998,8:177-180
    [61]Bachand F and Autexier C. Functional Reconstitution of Human Telomerase Expressed in Saccharomyces Cerevisiae. J Biol Chem,1999,274(53):38027-31
    [62]Autexier C, et al. Reconstitution of human telomerase activity and identification of a minimal function region of the human telomerase RNA. The EMBO Journal, 1996,15(21):5928-5935
    [63]Masutomi K, Kaneko S, Hayashi N, et al. Telomerase activity reconstituted in vitro with purified human telomerase reverse transcriptase and human telomerase RNA component. J Biol Chem,2000,275(29):22568-73
    [64]Weinrich SL, Pruzan R, Ma L, et al. Reconstitution of human telomerase with the template RNA component hTR and the catalytic protein subunit hTRT. Nat Genet, 1997,17(4):498-502
    [65]Meyerson M, Counter CM, Eaton E N, et al. hEST2, the putative human telomerase catalytic subunit gene, is up-regulated in tumor cells and during immortalization. Cell, 1997,90:785-795
    [66]Kang MK and Park NH. Extension of cell life span using exogenous telomerase. in:Tollefsbol TO, eds. Biological Aging:Methods and Protocols. Totowa, NJ:Humana Press Inc,2007,151-165
    [67]Lee KW, Choi KH, Ouellette MM. Use of exogenous hTERT to immortalize primary human cells. Cytotechnology,2004,45:33-38
    [68]Bodnar AG, Ouellette M, Frolkis M, et al. Extension of life-span by introduction of telomerase into normal human cells. Science,1998,279(5349):349-352.
    [69]Chiu CP. Telomerase-immortalized hTERT-RPE1 cell line. Clontechniques,1999, 14:2-3
    [70]Kitagawa M, Ueda H, Iizuka S, et al. Immortalization and characterization of human dental pulp cells with odontoblastic differentiation. archives of oralbiology,2007,52:
    727-731
    [71]Shao R and Guo X. Human microvascular endothelial cells immortalized with human telomerase catalytic protein:a model for the study of in vitro angiogenesis. Biochemical and Biophysical Research Communications,2004,321:788-794
    [72]Lee K M, Nguyen C, Ulrich A B, et al. Immortalization with telomerase of the Nestin-positive cells of the human pancreas. Biochemical and Biophysical Research Communications,2003,301:1038-1044
    [73]Yin XX, Chen ZQ, Guo ZQ, et al. Immortalization of human osteoblasts by transferring human telomerase reverse transcriptase gene. Biochemical and Biophysical Research Communications,2004,315 (3):643-651
    [74]Gu Y, Li H, Miki J, et al. Phenotypic characterization of telomerase-immortalized primary non-malignant and malignant tumor-derived human prostate epithelial celllines.Exp Cell Res,2006,312:831-843
    [75]Ouellette MM, McDaniel LD, Wright WE, et al. The establishment of telomerase-immortalized cell lines representing human chromosome instability syndromes. Hum Mol Genet,2000,9 (3):403-411
    [76]Hong HX, Zhang YM, Xu H, et al. Immortalization of swine umbilical vein endothelial cells with human telomerase reverse transcriptase. Mol Cells,2007,24 (3):358-363
    [77]Wei LL, Gao K, Liu PQ, et al. Mesenchymal Stem Cells From Chinese Guizhou Mini pig by hTERT Gene Transfection. Transplantation Proceedings,2008,40:547-550
    [78]Uebing-Czipura AU, Dawson HD and Scherba G Immortalization and characterization of lineage-restricted neuronal progenitor cells derived from the porcine olfactory bulb. Journal of Neuroscience Methods,2008,170:262-276
    [79]Morgenstern JP and Land H. Advanced mammalian gene transfer:high titre retroviral vectors with multiple drug selection markers and a complementary helper-free packaging cell line, Nucleic Acids Research,1990,18(12):3587-3596
    [80]Counter CM, Hahn WC, Wei W, et al. Dissociation among in vitro telomerase activity, telomere maintenance, and cellular immortalization. Proc. Natl. Acad. Sci. USA,1998, 95(25):14723-14728
    [81]Miller AD and Buttimore C. Redesign of retrovirus packaging cell lines to avoid recombination leading to helper virus production. Mol. Cell. Biol,1986,6:2895-2902
    [82]Ulaner GA, Hu JF, Vu TH, Giudice LC, Hoffman AR. Telomerase activity in human development is regulated by human telomerase reverse transcriptase (hTERT) transcription and by alternate splicing of hTERT transcripts. Cancer Res
    1998;58:4168-72.
    [83]Fitzpatrick JM, Johansen MV, Johnston D A,et al. Gender-associated gene expression in two related strains of Schistosoma japonicum.Molecular & Biochemical Parasitology,2004,136:191-209
    [84]Korman AJ, Frantz JD, Strominger J L, et al. Expression of human class II major histocompatibility complex antigens using retrovirus vectors. Proc. Nati. Acad. Sci. USA,1987,84:2150-2154
    [85]Bender MA, Palmer TD, Gelinas RE, et al. Evidence that the packaging signal of Moloney murine leukemia virus extends into the gag region. J Virol,1987,61(5): 1639-1646
    [86]Burns JC, McNeill L, Shimizu C, et al. Retrovirol gene transfer in Xenopus cell lines and embryos. In Vitro Cell Dev Biol Anim.1996,32 (2):78-84.
    [87]Hartley JW and Rowe WP. Naturally occurring murine leukemia viruses in wild mice: characterization of a new "amphotropic" class. J Virol,1976,19:19-25
    [88]Miller AD, Law MF and Verma IM. Generation of helper-free amphotropic retroviruses that transduce a dominant-acting, methotrexate-resistant dihydrofolate reductase gene. Mol Cell Biol,1985,5(3):431-437
    [89]Rasheed S, Gardner MB and Chan E. Amphotropic host range of naturally occuring wild mouse leukemia viruses. J Virol,1976,19(1):13-18
    [90]Miller AD. PA317 retroviral packaging cells. Molecular Therapy,2002,6(5):572-575
    [91]Greenberg RA, Allsopp RC, Chin L, et al. Expression of mouse telomerase reverse transcriptase during development, differentiation and proliferation. Oncogene,1998,16 (13):1723-30
    [92]Jurgen S, Simon B, Gregory ML, et al. Retroviral preparations derived from PA317 packaging cells contain inhibitors that copurity with viral particles and are devoid of viral vector RNA. Hum. Gene Therapy,2000,11:771-775
    [93]Chen Y, Weng X, Xu Z. Experimental study on detection of Schistosoma japonicum 5D gene by using PCR. Zhong guo Ji Sheng Chong Xue Yu Ji Sheng Chong Bing Za Zhi,1998,16(1):58-61
    [94]Forsman A, Uzameckis D, Ro"nnblom L, et al. Single-tube nested quantitative PCR:a rational and sensitive technique for detection of retroviral DNA. Application to RERV-H/HRV-5 and confirmation of its rabbit origin. J Virological Methods, 2003,111:1-11
    [95]Fitzpatrick JM, Johansen MV, Johnston DA, et al. Gender-associated gene expression
    in two related strains of Schistosoma japonicum 。 Molecular & Biochemical Parasitology,2004,136:191-209
    [96]第一作者,秦志强,第三作者,等.双嗜性逆转录病毒感染日本血吸虫细胞的生物学理论与可行性探讨.中国病原生物学杂志,2009,4(10):721-728
    [97]方会龙,曾庆仁,喻容,等.日本血吸虫在小鼠体内不同发育时点的生长速度与蛋白组分差异.中国现代医学杂志,2007,17(24):3007-3014
    [98]曾铁兵,蔡力汀,第三作者,等.日本血吸虫童虫细胞免疫小鼠抗血吸虫病的免疫保护性研究.中国科学C辑:生命科学,2007,37(6):660-666
    [99]Zeng T, Cai L,第三作者, et al. Immunization of mice with cells from juvenile worms of Schistosoma japonicum provides immunoprotection against schisto somiasis. Sci China C Life Sci,2007,50(6):822-830
    [100]Cai L, Zeng T, Zeng Q, et al. Schistosoma japonicum:Vaccination with cultured cells from juvenils induced a partial protection agaist challenge infection in mouse model. in Proceedings of the 11th Inernational Congress of Parasitology ICOPA XI(August 6-11,2006, Glasgow, Scotland, United Kindom), Bologna:Medimond Publishers, 2006,285-288
    [101]McTaggart S and Al-Rubeai M. Retroviral vectors for human gene delivery. Biotechnology Advances,2002,20:1-31
    [102]Robbins PD and Ghivizzani SC. Viral Vectors for Gene Therapy. Pharmacol. Ther. 1998,80, (1):35-47
    [103]Gary L and Buchschacher Jr. Introduction to Retroviruses and Retroviral Vectors. Somatic Cell and Molecular Genetics,2001,26(1/6):1-11
    [104]曾铁兵.日本血吸虫童虫细胞体外培养与免疫保护性研究:[博士学位论文]:长沙:中南大学,2007,10
    [105]Miller DG, Edwards RH and Miller AD. Cloning of the cellular receptor for amphotropic murine retroviruses reveals homology to that for gibbon ape leukemia virus. Proc Natl Acad Sci USA,1994,91:78-82.
    [106]Wu YY, Hruszkewycz AM, Delgado RM, et al. Limitations on the quantitative determination of telomerase activity by the electrophoretic and ELISA based TRAP assays. Clin Chim Acta,293:199-213
    [107]Kolquist KA, Ellisen LW, Counter CM, et al. Expression of TERT in early premalignant lesions and a subset of cells in normal tissues. Nat Genet,1998,19: 182-186
    [108]Burns JC, Friedmann T, Driever W, et al. Vesicular stomatitis virus G glycoprotein pseudotyped retroviral vectors; concentration to very high titer and efficient gene transfer into mammalian and non-mammalian cells. Proceedings of the National Academy of Sciences USA,1993,90:8033-8037
    [1]Burns J C, Friedmann T, Driever W, et al. Vesicular stomatitis virus G glycoprotein pseudotyped retroviral vectors; concentration to very high titer and efficient gene transfer into mammalian and non-mammalian cells. Proceedings of the National Academy of Sciences USA,1993,90:8033-8037
    [2]Mastromarino P, Conti C, Goldoni P, et al. Characterization of membrane components of the erythrocyte involved in vesicular stomatitis virus attachment and fusion at acidic pH. J. Gen. Virol.1987,68:2359-2369
    [3]Lin S, Gaiano N, Culp P, et al.Integration and germ-line transmission of a pseudotyped retroviral vector in zebrafish. Science,1994,265:666-669
    [4]Burns J C, McNeill L, Shimizu C, et al. Retroviral gene transfer in Xenopus cell lines and embryos. In Vitro Cellular and Developmental Biology-Animal,1996,32:78-84
    [5]Burns J C, Matsubara T, Lozinski G, et al. Pantropic retroviral vectormediated gene transfer, integration, and expression in cultured newt limb cells. Developmental Biology,1994,165:285-289
    [6]Boulo V, Cadoret J P, Shike H, et al.Infection of cultured embryo cells of the pacifc oyster, Crassostrea gigas, by pantropic retroviral vectors. In Vitro Cellular and Developmental Biology-Animal,2000,36:395-399
    [7]Lu J K, Chen T T, Allen S K, et al. Production of transgenic dwarf surfclams, Mulinia lateralis, with pantropic retroviral vectors. Proceedings of the National Academy of Sciences, USA,1996,93:3482-3486
    [8]Shike H, Shimizu C, Klimpel K S, et al. Expression of foreign genes in primary cultured cells of the blue shrimp Penaeus stylirostris. Marine Biology,2000,137: 605-611
    [9]Hu G B, Wang D, Wang C H, et al. A novel immortalization vector for the establishment of penaeid shrimp cell lines. In vitro cellular & developmental biology-Animal,2008,44 (3-4):51-56
    [10]Matsubara T, Beeman R W, Shike H, et al. Pantropic retroviral vectors integrate and express in cells of the malaria mosquito, Anopheles gambiae. Proceedings of the National Academy of Sciences USA,1996,93,6181-6185
    [11]Teysset L, Burns J C, Shike H, et al. A Moloney murine leukemia virus-based retroviral vector pseudotyped by the insect retroviral gypsy envelope can infect Dro- sophila cells. Journal of Virology,1998,72:853-856
    [12]Que X, Kim D, Alagon A, et al. Pantropic retroviral vectors mediate gene transfer and expression in Entamoeba histolytica. Molecular and Biochemical Parasitology,1999, 99:237-245
    [13]Kines K J, Mann V H, Morales M E, et al. Transduction of Schistosoma mansoni by vesicular stomatitis virus glycoprotein-pseudotyped Moloney murine leukemia retrovirus. Experimental Parasitology,2006,112:209-220
    [14]Kines K J, Morales M E, Mann V H, et al. Integration of reporter transgenes into Schistosoma mansoni chromosomes mediated by pseudotyped murine leukemia virus. FASEB J,2008,22(8):2936-2948.
    [15]方会龙,第二作者,喻容,等.日本血吸虫在小鼠体内不同发育时点的生长速度与蛋白组分差异.中国现代医学杂志,2007,17(24):3007-3014
    [16]陈佩慧,周述龙.医学寄生虫体外培养.北京:科学出版社,1995:345-436
    [17]Yee J K, Friedmann T and Burns J C. Generation of high-titer pseudotyped retroviral-vectors with very broad host range. Methods Cell Biol,1994,43:99-112.
    [18]Greenberg R A, Allsopp R C, Chin L, et al. Expression of mouse telomerase reverse transcriptase during development, differentiation and proliferation. Oncogene,1998,16 (13):1723-30
    [19]Rogers M V and McLaren D J. Analysis of total and surface membrane lipids of Schistosoma mansoni. Mol. Biochem. Parasitol,1987,22:273-288
    [20]Allan D, Payares G, Evans W H,. The phospholipid and fatty acid composition of Schistosoma mansoni and of its puriWed tegumental membranes. Molecular and Biochemical Parasitology 1987,23:123-128
    [21]Mclaren J M and Hockley D J. Blood flukes have a double outer memberane. Nature,1977,269:147-149
    [22]Emi N, Friedmann T and Yee J K. Pseudotype formation of murine leukemia virus with the G protein of vesicular stomatitis virus. J Virol.1991,65(3):1202-7
    [23]Maksakova I A., Romanish M T, Gagnier, et al.Retroviral elements and their hosts: insertional mutagenesis in the mouse germ line [Online]. PLoS Genet.2006,2, e2
    [24]Nabekura T, Otsu M, Nagasawa T, et al. Potent vaccine therapy with dendritic cells genetically modified by the gene-silencing-resistant retroviral vector GCDNsap. Mol. Ther. 2006,13:301-309
    [25]Li X, Massey HC Jr, Nolan T J, et al. Successful transgenesis of the parasitic nematode Strongyloides stercoralis requires endogenous non-coding control elements. Int. J. Parasitol.2006,36:671-679
    [26]Edwards M, Wong S C, Chotpadiwetkul R, et al.Transfection of primary cultures of rat hepatocytes. Methods Mol. Biol.2006,320:273-282
    [27]Correnti J M, Jung E, Freitas T C, et al.Transfection of Schistosoma mansoni by electroporation and the description of a new promoter sequence for transgene expression. Int. J. Parasitol.2007,37:1107-1115
    [28]Dirks C and Miller A. D. Many nonmammalian cells exhibit postentry blocks to transduction by gammaretroviruses pseudotyped with various viral envelopes, including vesicular stomatitis virus G glycoprotein. Journal of Virology,2001, 75:6375-6383.
    [29]McDiarmid S S and Podesta R B. Identification of a sialic acid containing glycocalyx on the surface of Schistosoma mansoni. Mol Biochem Parasitol.1984,10(1):33-43
    [30]Zelenock J A, Welling T H, Sarkar R, et al. Improved retroviral transduction efficiency of vascular cells in vitro and in vivo during clinically relevant incubation periods using centrifugation to increase viral titers. J Vase Surg,1997,26:119-127
    [31]Guven H, Konstantinidis K V, Alici E, et al. Efficient gene transfer into primary human natural killer cells by retroviral transduction. Experimental Hematology, 2005,33:1320-1328
    [32]Paya M, Segovia J C, Santiago B, et al. Optimising stable retroviral transduction of primary human synovial fibroblasts. Journal of Virological Methods,2006,137:95-102
    [33]Bahnson A B, Dunigan J T, Baysal B E, et al. Centrifugal enhancement of retroviral mediated gene transfer. J. Virol. Methods,1995,54 (2-3):131-143
    [34]Beckmann S, Wippersteg V, El-Bahay A, et al. Schistosoma mansoni:Germ-line transformation approaches and actin-promoter analysis. Experimental Parasitol-ogy, 2007,117:292-303
    [1]Hayflick L, Moorhead PS. The serial cultivation of human diploid cell strains. Exp Cell Res.1961,25:585-621.
    [2]Lundberg AS, Hahn WC, Gupta P, et al. Genes involved in senescence and immortalzation. Curr Opin Cell Biol,2000,12(6):705-709
    [3]Pignolo RJ, Rotenberg MO, Cristofalo VJ. Alterations in contact and density-dependent arrest state in senescent WI-38 cells. In Vitro Cell Dev Biol Anim,1994,30A(7),471-476.
    [4]Campisi, J, Dimri, G., and Hara, E. Handbook of the Biology of Aging. San Diego: Academic Press,1999.121-149
    [5]Stein GH, Namba M, Corsaro CM, et al. Relationship of finite proliferative lifespan, senescence and quiescence in human cells. J Cell Physiol,1985,122(3):343-349.
    [6]Shay JW, Pereira-Smith OM, Wright WR. A role for both Rb and p53 in the regulation of human cellular senescence. Exp Cell Res.1991,196(1):33-39
    [7]Wei W, Sedivy JM.Differentiation between Senescence (Ml) and Crisis (M2) in Human Fibroblast Cultures. Experimental Cell Research,1999,253(2),519-522
    [8]Denis H, Lacroix JC. The dichotomy between germ line and somatic line, and the origin of cell mortality. Trends Genet,1993,9(1):7-11
    [9]Haber DA. Telomere, cancer, and immotality. N Engl J Med,1995,332(14):955-956
    [10]Shay JW, Van Der Haegen BA, Ying Y, et al. The frequency of immortalization of human fibroblasts and mammary epithelial cells transfected with SV40 large T-antigen. Exp Cell Res,1993,209(1):45-52
    [11]Katakura Y, Alam S, shirahata S. Immortalization by gene transfection. Methods Cell Biol,1998,57:69-91
    [12]Blackburn EH, Gall JG. A randomly reported sequence at the termini of the extrachromosomal RNA genes in Tetrahymena. J Mol Biol,1978,120:33-35
    [13]Moyzis RK, Buckingham JM, Cram LS, et al. A highly conserved repetitive DNA sequence, (TTAGGG)n, present at the telomeres of human chromosomes. Proc Natl Acad Sci USA,1998,85(18):6622-6626
    [14]Greider CW.Blackburn EH. Identification of a specific telomere terminial transferase activity in Tetrahymena extracts.Cell,1985,43(2):405-413
    [15]Morin GB.The human telomere terminal transferase enzyme is a ribonucleoprotien that synthesizes TTAGGG repeats. Cell,1989,59(3):521-529
    [16]Counter CM, Hirte HW, Bacchetti S, et al. Telomerase activity in human ovarian carcinoma. P roc Natl A cad Sci USA,1994,91(8):2900-2904
    [17]Kim NW, Piatyszek MA, Prowse KR, et al. Specific association of human telomerase activity with immortal cells and cancer. Science,1994,266(5196):2011-2015
    [18]Nakamura TM, Cech TR. Reversing time:origin of telomerase. Cell,1998,92(5): 587-590
    [19]Beattie TL, Zhou W, Robinson MO,et al.Reconstitution of human telomerase activity in vitro. Current Biology,1998,8(3):177-180
    [20]Mikuni O. Trager JB, Ackerly H, et al. Reconstitution of telomerase activity utilizing human catalytic subunit expressed in insect cells. Biochem Biophys Res Commun, 2002,298(1):144-150
    [21]Lingner J, Hughes TR, Shevchenko A, et al.Reverse transcriptase motif in the catalytic subunit of telomerase. Science,1997,276(5312):561-567
    [22]Nakamura TM, Morin GB, Chapman KB, et al. Telomerase catalytic subunit homologs from fission yeast and human. Science,1997,277 (5328):955-959
    [23]Mayerson M, et al. hEST2 the putative human telomerase catalytic subunit gene, is up-regulated in tumor cells and during immortalization.Cell,1997,90:785-795
    [24]Cong YS, Wen J, Bacchetti S. The human telomerase catalytic subunit hTERT organization of the gene and characterization of the promoter et al. Hum Mol Genet, 1999,8(1):137-142
    [25]Takakura M, Kyo S, Kanaya T, et al. Cloning of human telomerase catalytic subunit (hTERT) gene promoter and identification of proximal core promoter sequencesessential for transcriptional activation in immortalized and cancer cells et al. Cancer Res,1999,59:551-557
    [26]Horikawa I, Cable LP, Afshari C, et al. Cloning and characterizaition of the promoter region of human telomerase reverse transcriptase gene et al. Cancer Res,1999,59: 826-830
    [27]Lingner J, Hughes TR, Shevchenko A, et al.Reverse transcriptase motifs in the catalytic subunit of telomerase. Science,1997,276(5312):561-567
    [28]Nakamura TM, Morin GB, Chapman KB, et al. Telomerase catalytic subunit homologs from fission yeast and human. Science,1997,277(5328):955-959
    [29]Meyerson M, Counter CM, Eaton EN, et al. hEST2, the putative human telomerase catalytic subunit gene, is up-regulated in tumor cells and during immortalization. Cell, 1997,90(4):785-795
    [30]Wang J, Xie LY, Allan S, et al. Myc activates telomerase. Genes Dev,1998,12(12): 1769-1774
    [31]Wu KJ, Grandori C, Amacker M, et al. Direct activation of TERT transcription by c-MYC. Nature genetics,1999,21(2):220-224
    [32]Greenberg RA, O'Hagan RC, Deng H, et al. Telomerase reverse transcriptase gene is a direct target of c-Myc but is not functionally equivalent in cellular transformation. Oncogene,1999,18(5):1219-1226
    [33]Galloway DA, Gewin LC, Myers H, et al. Regulation of telomerase by human papillomaviruses. Cold Spring Harb Symp. Quant. Biol.70,209-215.
    [34]Gewin L, Galloway DA. E box-dependent activation of telomerase by human papillomavirus type 16 E6 does not require induction of c-myc. J Virol,2001,75 (15): 7198-7201
    [35]McMurray HR, McCance DJ. Human papillomavirus type 16 E6 activates TERT gene transcription through induction of c-Myc and release of USF-mediated repression. J Virol,2003,c77 (18):9852-9861
    [36]Oh ST, Kyo S, Laimins LA. Telomerase activation by human papillomavirus type 16 E6 protein:induction of human telomerase reverse transcriptase expression through Myc and GC-rich Spl binding sites. JVirol,2001,75 (12):5559-5566
    [37]Veldman T, Horikawa I, Barrett JC, et al. Transcriptional activation of the telomerase hTERT gene by human papillomavirus type 16 E6 oncoprotein. J. Virol,2001,75 (9): 4467-4472
    [38]Veldman T, Liu X, Yuan H, Schlegel R. Human papillomavirus E6 and Myc proteins associate in vivo and bind to and cooperatively activate the telomerase reverse transcriptase promoter. Proc Natl Acad Sci. USA,2003,100(14):8211-8216
    [39]Klingelhutz AJ, Foster SA, McDougall JK. Telomerase activation by the E6 gene product of human papillomavirus type 16. Nature,1996,380:79-82
    [40]Liu X, Roberts J, Dakic A,et al. HPV E7 contributes to the telomerase activity of immortalized and tumorigenic cells and augments E6-induced hTERT promoter function.Virology,2008,375(2):611-23
    [41]Vousden KH. p53:Death Star. Cell,2000,103(5),691-694
    [42]Bond JA, Blaydes JP, Rowson J, et al. Mutant P53 rescues human diploid cells from senescence without inhibiting the induction of SDI1/WAF1.Cancer Res,1995,55(11): 2404-2409
    [43]Sherr C J, Roberts J M. CDK inhibitors:positive and negative regulators of G1-phase progression. Genes Dve,1999,13(12):1501-1512
    [44]Fang L, Igarashi M, Leung J,et al. p21Waf1/Cip1/Sdil induces permanent growth arrest with markers of replicative senescence in human tumor cells lacking functional p53. Oncogene,1999,18(18):2789-2797
    [45]Li H, Cao Y, Berndt MC, et al.Molecular interactions between telomerase and the tumor suppressor protein p53 in vitro.Oncogene,1999,18(48):6785-6794
    [46]Xu D, Wang Q, Gruber A, et al. Downregulation of telomerase reverse transcriptase mRNA expression by wild type p53 in human tumor cells. Oncogene,2000,19 (45) 5123-5133
    [47]Band V, De Caprio JA, Delmolino L, et al. Loss of p53 protein in human papillomavirus type 16 E6-immortalized human mammary epithelial cells. J Virol,1991, 65 (12):6671-6676
    [48]Wazer DE, Chu Q, Liu XL,et al. Loss of p53 protein during radiation transformation of primary human mammary epithelial cells. Mol Cell Biol,1994,14 (4):2468-2478
    [49]Shay JW, Tomlinson G, Piatyszek MA, et al. Spontaneous in vitro immortalization of breast epithelial cells from a patient with Li-Fraumeni syndrome. Mol Cell Biol, 1995,15 (1):425-432
    [50]Gao Q, Hauser SH, Liu XL, et al. Mutant p53-induced immortalization of primary human mammary epithelial cells. Cancer Res,1996,56 (13):3129-3133
    [51]Gollahon LS, Shay JW. Immortalization of human mammary epithelial cells transfected with mutant p53 (273his). Oncogene,1996,12 (4):715-725
    [52]Yaswen P, Stampfer MR. Molecular changes accompanying senescence and immortalization of cultured human mammary epithelial cells. The International Journal of Biochemistry & Cell Biology,2002,34 (11):1382-1394
    [53]Sherr C J. Cancer Cell Cycles. Science,1996,274 (5293):1672-1677
    [54]Sherr CJ,Weber JD. The ARF/p53 pathway. Curr Opin Genet Dev,2000,10(1):94-99
    [55]Fang X, Jin X, Xu HJ, et al. Epression of p16 induces transcriptional downregulation of the RB gene.Oncogene,1998,16(1):1-8
    [56]Iritani BM,Eisenman RN,et al. C-myc enhances protein synthesis and cell size during B lymphocyte development. Proc Natl Acad Sci USA,1999,96(23):13180-13185
    [57]Brandvold KA, Neiman P, Ruddell A, et al.Angiogenesis is an early event in the generation of myc-induced lymphomas.Oncogene,2000,19(23):2780-2785
    [58]Felsher DW, Zetterberg A, Zhu J, et al. Overexpression of MYC causes p53-dependent G2 arrest of normal fibroblasts.Proc Natl Acad Sci USA,2000,97:10544-10548
    [59]Yin XY, Grove L, Datta NS, et al. Inverse regulation of cyclin B1 by c-Myc and p53 and induction of tetraploidy by cyclin B1 overexpression. Cancer Res,2001,61(17): 6487-6493
    [60]Prendergast GC. Mechanisms of apoptosis by c-myc. Oncogene,1999,18 (19):2967-2987
    [61]Obaya AJ, Mateyak MK, Sedivy JM,et al. Mysterious liaisons:the relationship between c-myc and cell cycle. Oncogene,1999,18(19):2934-2941
    [62]Berns EM, Klijn JG, Van Stevern KL, et al. Prevalence of amplificatio of the oncogenes c-myc, HER2/neu, and int-2 in 1000 human breast tumors:correlation with steroid receptors. Eur J Cancer,1992,28:697-700
    [63]Harada Y, Katagiri T, Ito I, et al. Genetic studies of 457 breast cancers. Clinicopathologic parameters compared with genetic alterations. Cancer,1994,74(8): 2281-2286
    [64]Wang J, Xie LY, Allan S, et al. Myc activates telomerase. Genes Dev,1998,12 (12) 1769-1774
    [65]Latil A, Vidaud D, Valeri A, et al. HTERT expression correlates with MYC over-expression in human prostate cancer. Int J Cancer,2000,89 (2):172-176
    [66]Wu KJ, Grandori C, Amacker M, et al. Direct activation of TERT transcription by c-myc. Nat Genet,1999,21(2):220-224
    [67]Greenberg RA, O'Hagan RC, Deng H, et al. Telomerase reverse transcriptase gene is a direct target of c-myc but is not functionally equivalent in cellular transformation. Oncogene,1999,18 (5):1219-1226
    [68]Oh S, Song YH, Kim UJ, et al. In vivo and in vitro analyses of myc for differential promoter activities of the human telomerase (htert) gene in normal and tumor cells. Biochem Biophys Res Commun,1999,263(2):361-365
    [69]Stampfer MR, Pan CH, Hosoda J,et al. Blockage of EGF receptor signal transduction causes reversible arrest of normal and immortal human mammary epithelial cells with synchronous reentry into the cell cycle. Exp Cell Res,1993,208(1):175-188
    [70]Tsujimoto Y and Croce CM. Analysis of the structure, transcripts, and protein products of bcl-2, the gene involved in human follicular lymphoma. Proc Natl Acad Sci USA, 1986,83(14):5214-5218
    [71]Reed JC. Mechanisms of apoptosis. Am J Pathol,2000,157:1415-1430
    [72]Mandal M, Kumar R. Bcl-2 modulates telomerase activity. J Biol Chem,1997,272(22): 14183-14187
    [73]Liu JP. Studies of the molecular mechanisms in the regulation of telomerase activity. FASEB J,1999,13(15):2091-2104
    [74]Bryan TM, Reddel RR. SV40-induced immortalization of human cells. Crit Rev Oncog,1994,5(4):331-357
    [75]Aboagye-Mathiesen G, Zdravkovic M, Toth FD, et al. Altered expression of the tumor suppressor/oncoprotein p53 in SV40 Tag-transformed human placental trophoblast and malignant trophoblast cell lines. Early Pregnancy,1996,2(2):102-112
    [76]Srinivasan A, McClellan AJ, Vartikar J, et al. The aminoterminal transforming region of simian virus 40 large T and small t antigens functions as a J domain. Mol Cell Biol, 1997,17(8):476-478
    [77]Khoo NK, Bechberger JF, Shepherd, T.et al. SV40 Tag transformation of the normal invasive trophoblast results in a premalignant phenotype. Mechanism responsible for hyperinvasiveness and resistance to anti invasive action of TGFβ. Int J Cancer,1998, 77:429-439
    [78]Tevethia MJ. Immortalization of primary mouse embryo fibroblasts with SV40 virions, viral DNA, and a subgenomic DNA fragment in a quantitative assay. Virology 1984, 137 (2):414-421.
    [79]Shay JW, Wright WE. Quantitation of the frequency of immortalization of normal human diploid fibroblasts by SV40 large T antigen. Exp Cell Res,1989,184 (1): 109-118
    [80]Allain JE, Dagher I, Mahieu-Caputo D, et al. Immortalization of a primate bipotent epithelial liver stem cell. Proc Natl Acad Sci USA,2002,99(6):3639-3644
    [81]Olson JK, Zamvil SS, Miller SD, et al. Efficient technique for immortalization of murine microglial cells relevant for studies in murine models of multiple sclerosis. Journal of Neuroscience Methods,2003,128:33-43
    [82]Webber MM, Bello D, Kleinman HK, et al. Prostate specific antigen and androgen receptor induction and characterization of an immortalized adult human prostatic epithelial cell line. Carcinogenesis,1996,17 (8):1641-1646
    [83]Racusen LC, Monteil C, Sgrinoli A, et al. Cell lines with extended in vitro growth potential from human renal proximal tubule:Characterization, response to inducers, and comparison with established cell lines. J Lab Clin Med,1997,129 (3):318-329
    [84]Maruo S,Yang L, Takada K. Roles of Epstein-Barr virus glycoproteins gp350 and gp25 in the infection of human epithelial cells. J Gen Virol,2001,82:2373-2383
    [85]Martin DR, Marlowe RL, Ahearn JM. Determination of the role for CD21 during Epstein-Barr virus infection of B-lymphoblastoid cells. J Virol,1994,68 (8):4716-4726
    [86]Kurth J, Spieker T, Wustrow J, et al. EBV-infected B cells in infectious mononucleosis: viral strategies for spreading in the B cell compartment and establishing latency Immunity,2000,13(4):485-495
    [87]Fingeroth JD, Weis JJ, Tedder TF, et al. Epstein-Barr virus receptor of human B lymphocytes is the C3d receptor CR2. Proc Natl Acad Sci USA,1984,81(14): 4510-4514
    [88]程计林,耿直,仝文斌等.EBV转化B淋巴细胞中丙型肝炎病毒抗原表达的免疫组化研究.临床肝胆病杂志,2001,17(2):92-94
    [89]Zur Hausen H. Papillomaviruses and cancer:from basic studies to clinical application. Nat Rev Cancer,2002,2(5):342-350
    [90]Oda D, Bigler L, Lee P, et al. HPV immortalization of human oral epithelial cells:a model for carcinogenesis. Exp Cell Res,1996,226(1):164-169
    [91]Brown J, Higo H, McKalip A, et al. Human papillomavirus (HPV) 16 E6 sensitizes cells to atractyloside-induced apoptosis:Role of p53, ICE-like proteases and the mitochondrial permeability transition. J Cell Biochem,1997,66(2):245-255
    [92]Pillai MR, Lakshmi S, Sreekala S, et al. High-risk human papillomavirus infection and E6 protein expression in lesions of the uterine cervix. Pathobiology,1998,66(5): 240-246
    [93]Liu Y, Chen JJ, Gao Q, et al. Multiple functions of human papillomavirus type 16 E6 contribute to the immortalization of mammary epithelial cells. J Virol,1999,73(9), 7297-7307
    [94]Liu X, Yuan H, Fu B, et al. The E6AP ubiquitin ligase is required for transactivation of the hTERT promoter by the human papillomavirus E6 oncoprotein. J Biol Chem, 2005,280(11):10807-10816
    [95]Veldman T, Horikawa I, Barrett JC, et al. Transcriptional activation of the telomerase hTERT gene by human papillomavirus type 16 E6 oncoprotein. J Virol,2001,75(9): 4467-4472
    [96]Filatov L, Golubovskaya V, Hurt JC, et al. Chromosomal instability is correlated with telomere erosion and inactivation of G2 checkpoint function in human fibroblasts expressing human papillomavirus type 16 E6 oncoprotein. Oncogene,1998,16(14): 1825-1838
    [97]Tsao SW, Mok SC, Fey EG, et al. Characterization of human ovarian surface epithelial cells immortalized by human papilloma viral oncogenes (HPV-E6E7 ORFs). Exp cell Res,1995,218:499-507
    [98]沈忠英,沈健,蔡维佳等.人乳头状瘤病毒18型E6E7基因诱导胎儿食管永生化上皮的生物学特性.中华实验和临床病毒学杂志,1999,13(3):209-212
    [99]Furukawa T, Duguid WP, RosenbergL, et al. Long-term culture and immortalization of epithelial cells from normal adult human pancreatic ducttransfected by the E6E7 gene of human papillomavirus 16. Am J Pahol,1996,148:1763-1770
    [100]Kremer R, Woodworth CD, Goltzman D. Expression and action of parathyroid hormone-related peptide in human cervical epithelial cells. Am J Physiol,1996,271: 164-171
    [101]赵超,白丽霞,屠铮等.人乳头状瘤病毒16型E6、E7基因转染的人宫颈上皮永生化细胞系的建立及鉴定.中国妇产科临床杂志.2006,7(4):278-282
    [102]Steinert S,Shay JW,Wright WE, et al. Transient expression of human telomerase extends the life span of normal human fibroblasts. Biochem Biophys Res Commun, 2000,273(3):1095-1098
    [103]Okamoto T, Aoyama T, Nakayama T, et al. Clonal heterogeneity in differentiation potential of immortalized human mesenchymal stem cells. Biochem Biophys Res Commun,2002,295(2):354-361
    [104]梁光萍,罗向东,陈渝,等.hTERT基因荧光真核表达载体的构建及表达.第四军医大学学报,2003,24(13):1221-1223
    [105]王捍国,肖明振,赵守亮,等.永生化人成牙本质细胞样细胞系的建立.第四军医大学学报,2003,24(10):876-878
    [106]Yin XX, Chen ZQ, Guo ZQ, et al. Immortalization of human osteoblasts by transferring human telomerase reverse transcriptase gene. Biochemical and Biophysical Research Communications,2004,315 (3):643-651
    [107]Schnabl B, Choi YH, Olsen JC, et al. Immortal activated human hepatic stellate cells generated by ectopic telomerase expression. Lab Invest,2002,82(3):323-333
    [108]Hashimoto N, Kiyono T, Wada M R, et al. Immortalization of human myogenic progenitor cell clone retaining multipotentiality. Biochemical and Biophyical Research Communications,2006,348(4):1383-1388
    [109]KudoY, Hiraoka M, Kitagawa S. et al. Establishment of Human Cementifying Fibroma Cell Lines by Transfection With Temperature-sensitive Simian Virus-40 T-antigen Gene and hTERT Gene. Bone,2002,30 (5):712-717
    [110]Bi CM, Zhang SQ, Zhang Y, et al. Immortalization of bovine germ line stem cells by c-myc and hTERT. Animal Reproduction Science,2007,100:371-378
    [111]Wei LL, Gao K, Liu PQ, et al. Mesenchymal Stem Cells From Chinese Guizhou Mini pig by hTERT Gene Transfection. Transplantation Proceedings,2008,40:547-550
    [112]Uebing-Czipura AU, Dawson HD, Scherb G. Immortalization and characterization of lineage-restricted neuronal progenitor cells derived from the porcine olfactory bulb. Journal of Neuroscience Methods,2008,170(2):262-276
    [113]Nakagawa H, Opitz OG. Inducing cellular senescence using defined genetic elements. Methods Mol Biol.2007,371:167-178
    [114]Liu X, Disbrow GL, Yuan H, et al. Myc and human papillomavirus type 16 E7 genes cooperate to immortalize human keratinocytes. J Virol,2007,81(22):12689-12695
    [115]Counter CM, Avilion AA, LeFeuvre CE, et al. Telomere shortening associated with chromosome instability is arrested in immortal cells which express telomerase activity. EMBO J.1992,11(5):1921-1929
    [116]Honda T, Sadamori N, Oshimura M, et al. Spontaneous immortalization of cultured skin fibroblasts obtained from a high-dose atomic bomb survivor. Mutation Research, 1996,354(1):15-26
    [117]Endo A, Kano Y, Mihara K, et al. Alteration in the retinoblastoma gene associated with immortalization of human fibroblasts treated with 60Co gamma rays. J Cancer Res Clin Oncol,1993,119(9):522-524
    [118]Namba M, Nishitani K, Fukushima F, Kimoto T and YuasaY. Multistep neoplastic transformation of normal human fibroblasts by Co-60 gamma rays and Ha-ras oncogenes. Mutation Res.1988,199(2):415-423
    [119]O'Reilly JP, Mothersill AC. Comparative effects of UV A and UV B on clonogenic survival and delayed cell death in skin cell lines from humans and fish. Int J Radiat Biol.1997,72,111-119
    [120]Kim NW, Piatyszek MA, Prowse KR, et al. Specific association of human telomerase activity with immortal cells and cancer. Science,1994,266:2011-2015
    [121]Wright WE, Shay JW, Piatyszek MA, et al. Modifications of a telomeric repeat amplification protocol (TRAP) result in increased reliability, linearity and sensitivity. Nucleic Acids Res,1995,23(18):3794-3795.
    [122]Wen JM, Sun LB, Zhang M, et al. A non-isotopic method for the detection of telomerase activity in tumour tissues:TRAP-silver staining assay. Mol Pathol,1998, 51(2):110-112
    [123]Savoysky E, Akamatsu K, Tsuchiya M, et al. Detection of telomerase activity by combination of TRAP method and scintillation proximity assay (SPA). Nucleic Acids Res,1996,24(6):1175-1176.
    [124]Gonzalez-Quevedo R, de Juan C, Massa MJ, et al. Detection of telomerase activity in human carcinomas using a trap-ELISA method:correlation with hTR and hTERT expression. Int J Oncol,2000,16(3):623-628.
    [125]Ohyashiki K, Ohyashiki JH, Nishimaki J, et al. Cytological detection of telomerase activity using an in situ telomeric repeat amplification protocol assay. Cancer Res, 1997,57 (11):2100-2103

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700