二化螟对几种杀虫剂的抗药性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
二化螟(Chilo suppressalis Walker)是亚洲地区最重要的水稻害虫之一。因其具有钻蛀危害特点,防治一直比较困难。近年来,随着化学农药的大量使用,导致了二化螟抗药性的发生和发展,加大了防治的难度。因此开展二化螟的抗药性监测、抗性机理研究、以及新农药制剂的研制,对开展二化螟的抗性治理工作具有重要的意义。
     本研究在对四川省六个市(县)08-09两年的二化螟田间种群对近年来防治二化螟常用药剂的抗药性监测基础上,研究了二化螟田间种群产生抗药性的机制,筛选了对二化螟田间种群生物活性较高、作用机制不同单剂并进行复配,并结合稻田生态系特点进行泡腾片剂的研究。研究结果不仅有助于明确四川省二化螟的抗药性现状和不同地理种群抗药性生理生化机制,而且能为了解我国二化螟不同地理种群抗药性水平及开展抗性治理提供重要参考。本研究取得如下主要研究结果:
     1.二化螟的抗药性监测
     采用微量点滴法监测了四川省南部县、雨城区、彭山县、双流县、乐至县以及邛崃市6个市(县)二化螟田间种群对杀虫单、三唑磷、毒死蜱、敌百虫、氟虫腈、阿维菌素和甲维盐的抗药性。结果表明:①六个市(县)二化螟田间种群对三唑磷、杀虫单、毒死蜱已经表现出了中到高水平的抗性,通过2008~2009两年的抗性监测结果可以看出抗性呈现明显增长趋势。其中双流县二化螟种群抗性倍数增长十分显著,由2008年的43.4981倍上升到2009年的93.7325倍;六个市(县)二化螟田间种群对杀虫单的抗性倍数增长较三唑磷相对平缓,只有邛崃市的二化螟种群增长了17.5181倍;对毒死蜱抗性倍数增长最快的是彭山和双流的二化螟种群,分别增长了14.0251倍和23.0121倍。②六个市(县)二化螟田间种群对敌百虫的抗药性维持在敏感性下降或中等抗性水平,通过2008-2009两年的监测结果可以看出二化螟田间种群对其抗药性平稳中有升有降,总体变化幅度不大。其中雨城区、乐至县两地的二化螟种群抗性倍数分别增长1.3591倍和1.7558倍。南部、彭山、双流、邛崃4个市(县)二化螟种群抗性倍数分别下降2.3004倍、2.1328倍、1.1929倍和0.2349倍。③六个市(县)二化螟田间种群对氟虫腈、阿维菌素和甲维盐三种药剂的抗药性相对较低,三种药剂对二化螟具有较高的活性,其中甲维盐的活性最高。2009年的监测结果显示,LD50在0.00022~0.000535μg/larva之间。通过2008-2009两年的抗性监测结果可以看出二化螟对以上三种药剂的抗药性呈缓慢上升的趋势。其中对已经禁止在水稻上使用的氟虫腈,仍然保持较高的生物活性。相比其它药剂,二化螟对阿维菌素和甲维盐抗性增长缓慢。对阿维菌素抗性增长最快的是双流二化螟种群,2009年比2008年增长了2.479倍。对甲维盐抗性增长最为缓慢,增长最快的邛崃二化螟种群也只增长了0.5172倍。
     2.二化螟田间种群抗药性生理生化机制
     以二化螟田间抗性种群和室内敏感种群作为研究材料。①测定了不同品系二化螟种群羧酸酯酶(CarE)、磷酸酯酶(ACP,ALP)、乙酰胆碱酯酶(AchE)、谷胱甘肽-S-转移酶(GSTs)、多功能氧化酶(MFO)、蛋白水解酶(Proteinase)、三种保护酶(POD, SOD,CAT)活性以及粗脂(Fat)含量。结果显示田间抗性种群与室内敏感种群的各种酶系活性及粗脂含量均存在着显著性差异,说明了以上所测酶系及粗脂含量可能与二化螟产生抗性的机制有关。②二化螟种群各酶系活性与其对三唑磷、杀虫单、氟虫腈、甲维盐四种药剂的抗性水平(LD50)进行相关性分析表明:二化螟田间种群对以上四种药剂的抗性水平与GSTs, MFO, AchE, SOD, CAT活性间存在显著相关性。其中GSTs活性与二化螟对三唑磷抗性之间有极显著的相关性(r=0.86**);MFO活性与二化螟对氟虫腈抗性之间有显著的相关性(r=0.74*); AchE活性与二化螟对杀虫单、三唑磷、氟虫腈、甲维盐抗性均呈明显得负相关性,相关系数分别为-0.86**,-0.79*,-0.60,-0.55;SOD活性与二化螟对甲维盐抗性有显著相关性(r=0.71*);CAT活性与二化螟对杀虫单抗性有显著相关性(r=0.78*)。
     3.复配剂型——泡腾片剂的研究
     依据抗性监测和抗性机理研究结果,选择了两种作用机制不同,无交互抗性的杀虫单和甲维盐进行复配和剂型加工的研究。结果表明,①甲维盐和杀虫单混配具有明显的增效作用,且具有很宽的有效配比谱。室内毒力测定表明甲维盐LDso为0.5964ng/larva,杀虫单LDso为21501ng/larva,两者的毒力差异达36051.31倍。共毒系数研究表明甲维盐和杀虫单的配比在1:1000-1:36051(质量比)均有显著的增效作用。②泡腾片剂试验结果表明,片剂最佳配方为:甲维盐,0.04%;杀虫单,39.6%:分散剂NNO,3%;润湿剂Tween-80,2%;粘结剂聚乙二醇6000,3%;崩解剂:碳酸氢钠+柠檬酸(1:1),40%;填料:乳糖+硫酸钠(1:1),12%。③与市售甲维盐和杀虫单各单剂的商品药相比,其毒力效果显著。对各制剂的LD50 (ng/larva)进行比对,室内复配研制的甲维盐·杀虫单泡腾片剂的杀虫效果(LD50约为335ng/larva)显著优于市场上销售的3.6%的杀虫单大粒剂(LD50为2714ng/larva)。由于本制剂中甲维盐所占比例很小,与0.2%的甲维盐高渗可溶性粉剂(LD50为13.71ng/larva)相比,甲维盐在两种制剂中的使用量比约为0.335:13.71=1:41,因此本制剂大大减少了甲维盐的使用量。
Rice stem borer (Chilo suppressalis Walker) is one of the main rice pests in Asia. It is always difficult to control for features of rilling decayed hazard. In recent years, with the large-scale use of chemical insecticide, both the occurrence and development of resistance of Chilo suppressalis to chemical insecticide are enhanced, which increase the difficulty of prevention. So it is signality for the task of resistance management to carry out resistance monitoring, biochemical resistance mechanism and new pesticide development.
     Based on the resistance monitoring of Chilo suppressalis with several kinds of common insecticides in six counties of Sichuan province between 2008 and 2009, we studied the resistant mechanism among field populations and screen for higher biological activity and different mechanisms to formulate. Meanwhile, we also involved the study on effervescent tablet, considering the ecology system. The results explicited the resistant situation, physiological and biochemical resistant mechanism among field populations. These data also provided important reference on understanding of the resistant level and the resistant management in different geographic populations in China. The main results were as follows:
     1. Resistance monitoring of Chilo suppressalis
     Micro-drop method was used to monitor the susceptibility of Chilo suppressalis to monosultap, triazophos, chlorpyrifos, Dipterex, fipronil, Avermectins, emamectin benzoate, collected in Nanbu, Yucheng, Pengshan, Shuangliu, Lezhi and Qionglai, respectively. The results showed as follows:
     ①Populations of Chilo suppressalis in Sichuan province produced medium to high level resistance to monosultap, triazophos, chlorpyrifos. Through the resistance monitoring results, we could see a clearly resistance growth. The resistance ratio in Shuangliu witnessed a significant growth, from 43.4981 in 2008 to 93.7325 in 2009. The pest resistances multiples growth to monosultap was flat in the six regions, only Qionglai increased 17.5181 times. The resistance ratio to chlorpyrifos increased fast only in Pengshan and Shuangliu,14.0251 and 23.0121 times, respectively.
     ②Populations of Chilo suppressalis in Sichuan province produced in sensitivity to decreasing or medium resistance level from 2008 to 2009 in the six regions. Compared to triazophos, the pest resistances multiples growth to Dipterex was gradual in the six regions. Yucheng and Lezhi increased 1.3591 and 1.7558 times respectively. Nanbu, Pengshan, Shuangliu and Qionglai decreased 2.3004,2.1328,1.1929 and 0.2349 times, respectively.
     ③The resistance of Chilo suppressalis field populations in six regions to fipronil, abamectins and emamectin benzoate was relatively low. Emamectin benzoate had higher activity:LD50=0.00022~0.000535ng/larva in 2009. Through resistance monitoring results between 2008 and 2009, it showed a slowly rising trend to the three reagents mentioned above. Fipronil, which has been banned to use for rice growth, remained showing high biological activity. The resistance of Chilo suppressali to Abamectins and Emamectin benzoate was much slower than other pesticides. The fastest growing resistance to abamectins was the Shuangliu population,2.479 times from 2008 to 2009. The slowest one was the resistance to Emamectin benzoate:the fastest growth field was Qionglai population, which only 0.5172 times.
     2. Biochemical mechanism of resistance of Chilo suppressalis field populations
     The research materials were from resistance population and indoor sensitive strain.①We tested the activity of CarE, ACP, ALP, AchE, GSTs, MFO, Proteinase, POD, SOD, CAT and the content of FAT in different strains. The results showed that each enzyme and crude fat content were significant different existing in the field resistance population and indoor sensitive, which might mean that it had some connect with resistant mechanism;②Comparing various enzymes activity with insect resistance level of monosultap, triazophos, fipronil, emamectin benzoate (LD50) correlation analysis, we learned that there were significant correlation between the resistance and the biology activity of AchE, GSTs, MFO, SOD, CAT. GSTs's activity and insect resistance to triazophos had significant correlation (r=0.86*); MFO's activity and insect resistance to fipronil had significant correlation (r=0.74*); AchE activity and resistanceof Chilo suppressalis to monosultap, triazophos, fipronil, emamectin benzoate were obvious negative correlation, related coefficient was -0.86**,-0.79*,-0.60,-0.55; SOD activity and resistance of Chilo suppressalis to emamectin benzoate had significant correlation (r=0.71). CAT activity and resistance of Chilo suppressalis to monosultap had significant correlation (r=0.78*).
     3. Study on formulation-effervescent tablet
     Based on the resistance monitoring and resistance mechanism, emamectin benzoate and monosultap were chosen for formulation and processing, which were in two different mechanism and no cross-resistance, The results were as follows:①Emamectin benzoat and monosultap mixed significant synergistic effect, and had a wide spectrum of the effective ratio. LD50 of emamectin benzoate was 0.5964ng/larva and the LD50 of monosultap was 21501ng/larva. The difference of the virulence between them was 36051.31 times. The research of co-toxicity coefficient showed that the ratio among 1:1000~1:36051 had significantl synergy effect.②The results of effervescent tablet test showed that the best recipe was:emamectin benzoate,0.04%; monosultap:39.96%; dispersant NNO,3%; Wetting agent:Tween-80,2%; Binder:polyethylene glycol 6000,3 %; Disintegrating agent:sodium bicarbonate+citric acid (1:1),40%; Packing:lactose+ sodium(1:1),12%.③Compared with single agent of emamectin benzoat and monosultap, its chemical toxic effect was more remarkable. For the preparation in the LD50 (ng/larva), the insecticidal effect of emamectin benzoate and monosultap effervescent tablet was (LD50≈335ng/larva) more significant than market 3.6% monosultap big granule (LD50=2714ng/larva). Due to the little proportion of emamectin benzoate in this tablet, when compared with the 0.2% emamectin benzoate soluble powder in LD50, the usage rate on emamectin benzoate between them was about(0.335:13.71)1:41, So it could greatly reduce the use of emamectin benzoate.
引文
[1]唐振华.昆虫抗药性及其治理[M].北京:农业出版社,1993.
    [2]Metcalf, R.L.Insect resistance to insecticides. Pestic.Sci.1989,26:333.
    [3]唐振华,黄刚.农业害虫抗药性[M].北京:农业出版社.1982.
    [4]Melander, A.L. Can insects become resistence to sprays[J].Econ Entomol,1914,7:167~173.
    [5]Georghiou,G.P. Pesticide Resistance:Strategies and Tactis for Management[J]. Nati Acad Press Washington D.C.,1986:13~14.
    [6]韩熹莱.中国农业百科全书<农药卷>[M].北京:农业出版社,1993.
    [7]周群芳.安徽省农作物害虫抗药性现状与对策[J].安徽农学通报,2008,14(13):136.
    [8]凌炎,范桂霞.广西不同地区褐飞虱种群对三种杀虫剂的抗药性监测[J].中国植保导刊,2008,9:40~42.
    [9]王境岩.生物化学[M].北京:高等教育出版社,2006.
    [10]Whitehead, GH.and J.A.F.Baker,1961,Bull.Entomol. Res.,51:255.
    [11]黄菁,乔传令.昆虫解毒酶降解机理及其在农药污染治理中应用[J].农业环境保护,2002,21(3):285~287.
    [12]Pielou,D.P.1950.Selectionfor DDT tolerance in Macrocentrus ancylivorus.Ann, Rep.Entomol.Soc. Ontario,81st:44~5.
    [13]Morse,J.G.Comprative resistance to arinphosmethyl in the predatory mite, Amblyseius fallacis.and its prey,Tetranvchus urticae in greenhouse experiments. N S thesis,Michigan Stats Univ. East Lansing,MI.1978:65.
    [14]王平远.中国经济昆虫志第二十一册(鳞翅目:螟蛾科)[M].北京:科学出版社,1980.
    [15]王平远,宋士美.中国禾草螟的研究(鳞翅目:螟蛾科)[M].动物分类学报,1981,6(1):85~95.
    [16]舒畅,汪笃栋.二化螟成灾规律与控制[M].北京:中国农业科学技术出版社,2009.
    [17]周圻.防治稻螟四十年[J].昆虫知识,1990,27(3):178~181.
    [18]王建强,汤金仪,张跃进.我国水稻螟虫发生现状原因分析与治理对策[M].北京:北京中国农业出版社2004.
    [19]盛承发,王红托,盛世余.我国稻螟灾害的现状及损失估计[J].昆虫知识.2003,40(4):289~294.
    [20]曹明章,沈晋良,张金振,等.二化螟抗药性监测和对三唑磷抗性的遗传分析[J].中国水稻科学,2004,18(1):73~79.
    [21]Qu M,Han Z,Xu X, et al.Triazophos resistance mechanism in rice stem borer(Chilo suppressalis Walker) [J]. Pestic Biochem Physiol,2003,77:99~105.
    [22]熊件妹,朱杏芬,程丽霞.南昌地区二化螟抗药性现状和治理对策[J].江西植保,2004,27(1):3~5.
    [23]Cao M, Shen J,Liu X, et al. The insecticide resistance in striped stem borer, Chilo suppressalis (Walker) [J]. CRRN,2001,9(1):6~7.
    [24]Ozaki K, T Kassai. Cross resistance to insecticides in malathion and fenitrothion-resistence of the smaller brown planthopper, Laodelphax striatellus Fallen[J]. Botyu-Kagaku,1971,36(3):111~116.
    [25]邰德良,杨秋萍,李瑛,等.水稻二化螟抗药性监测与治理对策[J].植保技术与推广,2001,21(6):24~25.
    [26]蒋学辉,章强华,胡仕孟,等.浙江省水稻二化螟抗药性现状与治理对策[J].植保技术与推广2001,21(3):27~29.
    [27]曲明静,徐新辉,韩召军,等.二化螟对三唑磷抗药性发生动态及风险平估[J].南京农业大学学报,2005,28(3):38~42.
    [28]田学志,高宝宗,石家胜,等.安庆地区水稻二化螟抗药性研究[J].安徽农业科学,1991,1(1):61~66.
    [29]李秀峰,韩召军,陈长坤,等.二化螟对杀虫单等4种杀虫剂的抗药性[J].南京农业大学学报,2001,24(1):43~46.
    [30]胡仕孟,谢世杰,徐善刚,等.浙江慈溪水稻二化螟抗药性研究初报[J].浙江农业学报,2001,13(1):8~41.
    [31]陆玉荣,徐广和,苏建坤,等.扬州地区二化螟抗药性监测[J].安徽农业科学,2003,31(1):123~124.
    [32]徐心植,邓小强.江西省二化螟抗药性及其防治对策[J].江西农业学报,1992,4(1):42~50.
    [33]苏建坤,刘怀阿,徐建,等.江苏里下河地区水稻二化螟抗药性监测[J].南京农业大学学报,1996,19(增刊):28~33.
    [34]韩招久,韩召军,王荫长,等.二化螟抗性种群的生化特性研究[J].昆虫学报,2003,46(2):161~170.
    [35]赵学平,王强,吴长兴,等.二化螟对杀虫剂的敏感性和抗药性研究[J].浙江农业学报,2003,12(6):382~386.
    [36]彭宇,陈长坤,韩召军,等.二化螟对3种杀虫剂的抗性测定及增效作用研究[J].湖北大学学报(自然科学版),2001,23(3):265~268.
    [37]彭丽年,李德,袁鸣,等.四川稻区水稻二化螟的抗药性现状及治理[J].农业生物灾害预防与控制研究,2005,364~369.
    [38]王玲,余周苹,齐立,等.荆州市几种主要害虫抗性状况及抗性治理用药方案[J].湖北植保,2004,(2):13~14.
    [39]刘华林,刘梦泽,李星洲,等.孝感市水稻二化螟抗药性治理对策研究[J].湖北植保,2005.
    [40]何月平,邵振润,陈文明,等.防治水稻二化螟的高毒农药替代药剂的室内筛选[J].水稻科学,2008,22(3):313~320.
    [41]姜卫华,韩召军,郝明丽.二化螟对氟虫腈抗药性初探[J].中国水稻科学,2005,19(6):577~579.
    [42]吕亮,陈其志,张舒,等.湖北省水稻螟虫抗药性测定与分析[J].湖北农业科学,2007,46(2):71~73.
    [43]毕富春,徐凤波.甲氨基阿维菌素苯甲酸盐研究概述[J],农药科学与管理,2001,22(1):47.
    [44]Hemingway J. The molecular basis of two contrasting metabolic mechanisms of insecticide resistance[J]. Insect Biochem. Mol. Biol,2000,30:1009~1015.
    [45]Hemingway J, Karunaratne, S. H. P. Mosquito carboxylesterases:A review of the molecular biology and biochemistry of a major insecticide resistance mechanism[J]. Med. Vet. Entomol,1998, 12:1-12.
    [46]Sparks T C, Lockwood J A, Byford R L, et al. The role of behavior in insecticide resistance [J]. Pestic. Sci,1989,26:383-399.
    [47]Forgash A J,Cook B J, Riley R C. Mechanisms of resistance in diazinon-selected multi-resistant Musca domestica. [J]. Econ. Entomol.,1962,55:545.
    [48]Vinson S B and Low P K. Cuticular composition and DDT resistance in the tobacco budworm[J]. Econ. Entomol.,1971,64:1387.
    [49]Konno Y, Shishido T. Metabolism of fenitrothion in the organophosphorus-resistant and susceptible strains of rice stem borers, Chilo suppressalis [J]. Pesticide Science,1987,12:469~476.
    [50]Konno Y, Shishido T. Resistance mechanism of the rice stem borer to organophosphorus insecticides[J]. Pesticide Science,1985,10:285~287.
    [51]Wen Z M, Scott J G. Genetic and biochemical mechanisms limiting fipronil toxicity in the LPR strain of house fly Musca domestica[J].Pestic. Sci.,1999,55:988~992.
    [52]黄诚华.二化螟、大螟对氟虫腈和三唑磷的敏感性差异和机理.浙江大学,博士论文,2006.
    [53]吴文君.农药学原理[M].北京:中国农业出版社,2000.
    [54]Konno Y, Shishido T. Inheritance of resistance to fenitrothion and pirimiphos-methyl in the rice stem borer, Chilo suppressalis (Lepidoptera:Pyralidae) [J].Entomol.Zool,1991,26(4):535~541.
    [55]Konno Y. Carboxylesterase of the rice stem borer Chilo suppressalis Walker (Lepidoptera: pyralidae), responsible for feniteothion resistance as sequesting protein[J].Pestic.Sci.,1996,21: 425~429.
    [56]韩启发,庄佩君,唐振华.二化螟对杀螟硫磷产生抗性的机理[J].昆虫学报,1995,38(3):266~271.
    [57]Tabashnik B E,McGanghey W H.Resistance risk assessment for single and multiple insecticides: responses of Indian meal moth to Bacillus thuringiensis[J].Econ.Entomol,1994,87(4):834~841.
    [58]彭宇,陈长琨,韩召军,等.江苏省水稻二化螟的抗药性测定及对甲胺磷的抗性机制[J].植物保护学报,2001,28(2):173~177.
    [59]Keiding J. Prediction or resistance risk assessment. Pesticide resistance strategies and tactics for management[J]. National Academics Press, Washington D. C.,1986,279~297.
    [60]周序国.玉米根叶甲:研究昆虫抗药性的一个模式系统.见:刘同先,康乐主编.昆虫学研究进展与展望[J].科学出版社,2005,250~267.
    [61]唐振华,吴士雄.昆虫抗药性的遗传和进化[M].上海:上海科技文献出版社,2000,120~156.
    [62]唐振华.我国昆虫抗药性研究的现状与展望[J].昆虫知识,2000,37(2):97~102.
    [63]李洪波,张锴.水稻二化螟防治技术[J].现代农业科技,2008,24:132~136.
    [64]齐超,陈东亮,卢丽华,等.水稻二化螟防治技术[J].吉林农业,2008,12:25.
    [65]张舒,张巧玲,陈小山,等.不同栽培方式对水稻主要病虫害发生的影响[J].华中农业大学学报,2009,4:426~430.
    [66]曾晓楠,聂乾忠.湖南水稻二化螟的综合防治技术[J].现代农业科技,2009,10:94~95.
    [67]仲野恭助,平野千里.土壤硅酸对二化螟发生的影响[J].日本应用动物昆虫学会志,1961,5(1):17~26.
    [68]三宝,黄东林,吴达璋.二化螟绒茧蜂对寄主二化螟幼虫取食量和生长发育的影响[J].江苏农学院学报,1989,10(3):33~36.
    [69]陈华才,娄永根,陈家安.二化螟绒茧蜂研究与应用概况[J].中国生物防治,2000,18(2):90~93.
    [70]项志强.“稻鸭共育”对水稻田主要病虫草害控制作用的实验报告[J].湖北植保,2004,5:14~15.
    [71]盛承发,杨辅安,韦永保,等.性诱剂诱杀二化螟的田间效果试验[J].植物保护,2002,26(5):4~5.
    [72]盛承发,王文锋,焦晓国,等.应用性信息素诱杀二化螟效果的初步研究[J].吉林农业大学学报,2002,24(5):58~61,65.
    [73]罗鉴多,汪恩国,方辉.水稻二化螟性诱监测与灯诱监测效果比较试验[J].现代农业科技,2009,23:169~170.
    [74]邹剑明,黄志农,张宗泽,等.三种二化螟防控措施的效果及效益分析[J].现代农业科技,2009,19:159~161.
    [75]张天才,黄丕娇.频振式杀虫灯对水稻二化螟的诱杀效果[J].中国农技推广,2005,(2):47~48.
    [76]刘祥贵,田径,蔡长亚,等.佳多频振式杀虫灯对水稻主要害虫控制作用研究[J].西南农业大学学报,2004,26(2):173~176.
    [77]李毅.阿维菌素与杀虫单复配对水稻二化螟室内活性测定[J].农药研究与应用,2008,12(2):24~25.
    [78]赖庆满,金流斌,任伟春,等.20%三唑磷·阿维微乳剂防治水稻二化螟药效试验简报[J].上海农业科技,2006,(1):119.
    [79]张一宾,张怿.世界农药新进展[M].北京:化学工业出版社,2007.
    [80]凌世海.农药剂型加工工业现状和发展趋势[J].安徽化工,2006,(3):3~9.
    [81]Lionel S. Water dispersible granular agricultural compositions made by heat extrusion:US,5474971[P]. S Lionel,1995:12.
    [82]刘步林.农药剂型加工技术[M].北京:化学工业出版社,1998.
    [83]明亮,娄远来.国内外农药剂型研究进展及发展方向[J].江苏农业科学,2007,6:102~105.
    [84]朱炳煜.四种有机改性膨润土在农药悬浮剂中的应用初探[J].博士论文,2009.
    [85]Patel Arvind D. Water Soluble invert emulsions[J]. United States Patent: 5,990,050. November 23,1999.
    [86]杨蕾,叶非.农药缓释剂的研究进展[J].农药科学与管理,2009,30(10):36~39.
    [87]华乃震.农药水分散粒剂的开发和进展[J].现代农药,2006,5(2):32~37.
    [88]Gary J.,Glenn David Michael,Sekutowski Dennis G. Pesticide delivery system[J]. USP Application:20030077309,2003:4-24.
    [89]陈蔚林,韩谋国,温家均.绿色农药新剂型的开发[J],安徽化工,2004,2:2~5.
    [90]凌世海.农药剂型进展综述[J].农药,1998,37(8):6~9.
    [91]罗延红,段玲,陈安良,等.除虫脲泡腾片剂的制备及毒力测定[J].西北农林科技大学学报2001,29(5):111~114.
    [92]郑和斌,王金辉,刘年喜.水稻螟虫化学防治药剂筛选及抗性水平测定[J].中国植保导刊,2006,26(12):34~38.
    [93]尚稚珍,王银淑,邹永华.二化螟饲养方法的研究[J].昆虫学报,1979,22(2):164~167.
    [94]谭福杰.农业害虫抗药性测定方法[J].南京农业大学学报,1987,4(增刊):107~122.
    [95]唐启义,冯明光.实用统计分析及其DPS数据处理系统[M].北京:北京科学出版社,2002.
    [96]张志祥,徐汉红,程东美.EXCEL在毒力回归中的应用[J].昆虫知识,2002,39(1):67~70.
    [97]曹明章.二化螟抗药性监测对三唑磷和杀虫单抗性遗传分析及对氟虫腈抗性风险评估.博士论文,南京农业大学,2004.
    [98]Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding [J].Anal. Biochem.,1976,72:248~254.
    [99]Wu Gand Miyata T. Susceptibilities to methamidophos and enzymatic characteristics in 18 species of pest insects and their natural enemies in crucifer vegetablecrops[J]. Pesticide Biochemistry and physiology,2005,82:79~93.
    [100]He L, Zhao Z M, Den X P, et al. Estimation of realized heritabiliy of resistance to fenpropathrin, abamectin, Pyridabn and their mixtures in acaricide-selected strains of (Tetranychus cinnabarinus) [J]. Entomalogia Sinica,2003,10(1):35~41.
    [101]王晓丽,苟琳.Folin-酚法测定蛋白质含量.生物化学实验教程[M].四川:四川科学技术出版社,2005:72~74.
    [102]覃佐一,王智.农药对稻田蜘蛛优势种蛋白水解酶活性的影响分析[J].湖南农业科学,2008,(4):102~103.
    [103]王智,李科,魏宝阳.敌敌畏对食虫沟瘤蛛体内消化酶活性的影响[J].中国生物防治,2008,24(2):179~181.
    [104]Nakamatsu Y, Tanaka T.Venom of ectoparasitoid Euplectrus sp.Near plathypenae (Hymenoptera: Eulophidae) regulates the physiological state of Pseudaletia separate (Lepidoptera:Noctuidae) host as a food resource[J]. Jounral of insect physiology,2003,49:149~159.
    [105]Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding [J].Anal. Biochem.,1976,72:248~254.
    [106]唐振华,毕强.杀虫剂作用的分子行为[M].上海:上海远东出版社,2003.
    [107]孙锦城,郝蕙玲.农药泡腾剂的研究与开发[J].中华卫生杀虫药械,2009,15(5):351~354.
    [108]许小龙.顾中言.韩丽娟.阿维菌素对十字花科蔬菜主要害虫的生物活性及防治小菜蛾、菜青虫的田间应用研究[J].农药学学报,2002,4(1):39~43.
    [109]凌世海.固体制剂(第三版)[M].北京:化学工业出版社,2003.
    [110]蔡贵忠.农药新剂型-泡腾片剂[J].福建化工,2000,2:6~11.
    [111]王勇,孔宪滨,张文革,等.农药新剂型-水分散片剂[J].农药,2004,43(60):254~256.
    [112]胡东松,沈德龙,裴琛,等.5%氟腈·杀螟丹水漂浮泡腾分散颗粒剂的研制[J].现代农药,2009,2(1):35~36.
    [113]王淑华,林永强.泡腾片的常用辅料及制备方法[J].食品与农药,2006,8(03A):70~72.
    [114]CIPAC.可湿性粉剂的悬浮性[J].农药译丛,1985,7(5):32~33.
    [115]物理化学实验[M].北京:北京大学出版社,2003.
    [116]毕殿洲.药剂学[M].北京:人民卫生出版社,1999.
    [117]李树生,徐进才,汪明春,等.沿江地区水稻二化螟的抗药性测定[J].安徽农业科学,2002,30(6):928.
    [118]Qu Mingjing, Han Zhaojun, Xu Xinjun, Yue Lina. Triazophes resistance mechanisms in rice stem borer(Chilo suppressalis Walker) [J].Pesticide Biochemistry and Physiology.2003.77:99~105.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700