丹参叶遗传转化体系的建立及HMGR基因3’片段的克隆
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
丹参(Salvia miltiorrhiza Bunge)是我国的一种传统中药材。现代药理研究表明,丹参对心血管系统和血液系统的作用十分显著。以丹参为主的多种复方制剂如复方丹参注射液、复方丹参片、复方丹参胶囊和复方丹参滴丸(1997年向美国FDA以治疗药身份申报的品种)等已被广泛用于临床治疗心血管疾病、肾病、肝病及抗感染等。但是,由于丹参生长周期长(2年以上),在传统的栽培模式下,面临着品质严重退化、生产成本相对过高等诸多弊端;离体条件下产生的丹参组培苗,其药用活性成分的积累量还远达不到商业化开发利用的要求。因此,利用现代基因工程技术将丹参药用活性成分生物合成途径中的关键酶基因导入到丹参中,获得转基因的发根、细胞系或再生植株,并进行大规模的培养,是提高丹参药用活性成分的含量和解决丹参药源问题的最佳途径之一。而深入地研究丹参的遗传转化体系,分离克隆其药用活性成分生物合成途径中的关键酶基因,是解决这一问题的前提和关键。
     本文以丹参为实验材料,从丹参叶的不同部位对愈伤诱导及分化的影响、不同激素及培养基等对植株生根的影响、丹参毛状根的转化频率的影响因素、毛状根的离体培养条件和植株再生条件、毛状根药用活性成分的积累规律的初探和药用活性成分生物合成途径中的关键酶基因的分离克隆等角度开展了一系列的工作,取得了以下结果:
     一、丹参叶再生体系的建立。试验结果表明叶的不同部位对愈伤诱导分化具有差异,其中以叶的形态学下端愈伤诱导率最高,达到了88.9%;其次是叶柄,为80%;而叶的形态学上端最差,仅为61.10%。不同来源的愈伤对丹参的出芽率和平均出芽数都存在极显著的影响,其中叶柄愈伤的出芽率最高,达到了92.6%;平均出芽个数最多,为6.3个;与另外三种培养基(White、1/2MS和MS)相比,B5培养基为促进生根的最适基本培养基;在生根阶段加入一定量的生长激素能有效地提高芽的生根率、平均根数和平均根长,以1mg/L的IBA为最佳。
     二、优化了丹参毛状根的诱导条件。实验表明:菌株和外植体类型对丹参毛状根诱导率存在着显著的差异。与A4和R1601相比,C58C1(改造过)为最适菌株;三种外植体(叶片、叶柄和茎段)中,以叶片为外植体更有利于丹参毛状根的产生;最佳共培养时间为3-4天;乙酰丁香酮(AS)浓度为400 uM/L最有利于促进毛状根的产生。
     三、研究了丹参毛状根的离体培养条件。实验表明,1/2MS液体培养基最适合丹参毛状根的生长;蔗糖为最适合丹参毛状根生长的碳源,无机铵盐与有机氨(如水解乳蛋白、酵母粉、蛋白胨、牛肉浸膏)相比更适合丹参毛状根的生长; 0.5 mg/L的6-BA有利于促进离体丹参毛状根的生长。
     四、进行了稀土元素对丹参毛状根中药用活性成分的诱导合成的初步研究。实验表明,稀土元素处理样中的三种丹参酮的含量皆远大于丹参植株的根和未处理的普通毛状根,其总丹参酮的含量达到了1.800mg/g,分别是植株的根和普通毛状根的1.49倍和4.85倍。
     五、研究了丹参毛状根再生条件。实验表明,不同的培养基对丹参毛状根分化出芽存在着显著的影响,MS液体基本培养基与其它三种液体基本培养基相比,更适合丹参毛状根芽的分化。丹参毛状根离体培养在MS液体培养基中15天后,其芽的分化率可以达到37.5%。
     六、成功地从丹参中克隆得到了HMGR基因的3’片段,该片段长622bp,通过生物信息学分析,结果表明所得到的序列即为丹参HMGR基因的3’片段。本项研究成功地建立了丹参叶的离体再生系统,为利用根癌农杆菌介导的遗传转化技术进行丹参的品质改良继而获得丹参优良品系提供了转化技术的保障;本文成功地建立了丹参的发根诱导体系,这为丹参的遗传改良提供了另一条候选途径,通过对丹参发根的离体培养条件的优化研究,为今后利用发酵培养技术商业化生产丹参活性成分提供了参考依据;此外,本文还从丹参中克隆了其药用活性成分生物合成途径中的关键酶基因HMGR的3’片段(全长基因正在克隆当中),为利用基因工程手段进行丹参代谢活性成分的分子调控奠定了基础,开展上述研究具有重要的理论和实际意义。
Salvia miltiorrhiza Bunge (Dan-shen) is a famious traditional Chinese medicine in our country. Modern pharmacological and clinical studies have demonstrated that the roots of S. miltiorrhiza possess very effective activities for treatment of cardiovascular and cerebrovascular diseases. Some compound drugs such as injection reagent、troche、capsule、pilula (which has applied for approvement by FDA as the therapeutic medicine 1997) mainly made of Dan-shen, were widely used to cure heart diseases, nephropathy, liver diseases, infection and so on. Whereas, some shortcomings including relative long growth period (more than two years), badly degenerate quality and high cost of production in traditional culture condition, limited the increasing market demanded for Dan-shen. The development of modern biotechn- ology provides one of promising ways to shorten culture period, improve the content of active components and resolve the problem of Dan-shen resources by transferring genes involved in the active components biosynthetic pathway into S. miltiorrhiza and culturing transgenic cell lines,tissues or regenerated plants in a large scale.This, however, significantly relies upon the detailed understanding of the transgenic system and the grope of clone condition of the rate-limiting enzymes on the pathway for active medicine components biosynthesis.
     In this paper, in order to establish and optimize genetic transform system of S. miltiorrhiza, several experiments such as the effect of callus inducement and differentiation based on different parts of leaf from S. miltiorrhiza, the fluencing factors on the induction frequency of hairy roots, the culture condition on hairy roots and the accumulation of active medicine components in vitro, the condition on regenerated plants and the reaction condition on cloning of genes encoding the rate-limiting enzymes involved in the active medicine components biosynthetic pathway of S. miltiorrhiza, were performed and the results were reported as follows:
     1) The regeneration system from leaf of S. miltiorrhiza was established. The results indicated that calli was induced with various frequency based on different parts of leaf and the highest callus inducement frequency could reach to 88.9% using the morphological underside of leaf as the explant followed by petiole with 80% and then morphological uperside of with 61.10%. Calli from different resoureces displayed various effects to shoot regeneration frequency and numbers among which calli induced from pestiole showed the highest differentiation frequency of 92.6% with the most average number of shoots reaching to 6.3. Compared to other three media (White, 1/2MS and MS), B5 was the most suitable medium to promote root regeneration. Adding some growth hormone to medium could improve the rooting frequence, average number of root and average length of root, and our results showed that the most suitable growth hormone was IBA with concentration of 1mg/L.
     2) The inducement condition of hairy roots from S. miltiorrhiza was optimized. The results indicated that remarkable difference was existent using different kinds of bacterium strains and explant types on hairy roots inducement. Compared with A4 and R1601,C58C1 showed much more inducement effect on hairy roots and used as in our subsequent experiment. Lamina was the most suitable explant among the three explants (lamina, petiole and stem) to induce hairy roots and the optimal duration of co-cultivation was about 3-4 days. Acetosyringo (As) of 400uM/L was the most beneficial to promote induct frequencies of hairy roots.
     3) The culture condition of hairy roots in vitro was investigated. The results indicated that 1/2MS was the as the most suitable culture medium and sucrose was the optimal carbon source. The growth of hairy roots in the medium containg inorganic ammonium salt as nitrogen source was significantly improved compared to that containg organic ammonia. Adding some growth hormone to medium could significantly accelerate the growth of hairy roots, among which 6-BA with the content of 0.5 mg/L exhibited higher promotion effect compared with other kinds of growth hormone.
     4) The effect of rare-earth element on pharmaceutical components in hairy roots of Dan-shen was determinated. The results indicated that the tanshinones content obviously increased and could reach to 1.800mg/g in the roots treated by rare-earth element with the concentration of 10mg/L, which increased 0.49 and 3.85 folds, respectively, compared with ordinary plant roots and hairy roots untreated.
     5) The plantlet regeneration condition for hairy roots of S. miltiorrhiza was examined. The results indicated that different media showed notable difference on shoot differentiation from hairy roots of Dan-shen. Compared with the three other kinds of liquid medium, MS was the most suitable medium for shoot differentiation. The regeneration frequency of shoot could reach to 37.5% when hairy roots were cultured in MS liquid medium for 15 days.
     6) 3’-end of cDNA encoding 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR) was cloned from S. miltiorrhiza and analysed. The length of fragment isolated was 622bp and bioinformatics analysis results indicated this fragment was a 3’end of HMGR from S. miltiorrhiza.
     In summary, a high frequency regeneration system from leaf of S. miltiorrhiza was successfully established, which provided technical support for genetic improvement of S. miltiorrhiza using Agrobacterium tumefaciens mediated transform- ation method. Different factors such as A. rhizogenes strains, explants type, and various concentration of bacterium infected, duration of co-cultivation and acetosyringe(As), were investigated for their influence on hairy root induction from S. miltiorrhiza, which provided another candidate approach for genetic improvement of S. miltiorrhiza. The in vitro culture conditions of hairy roots of S. miltiorrhiza were optimized, which was useful to produce pharmaceutical components of S. miltiorrhiza by ferment culcture technique in large scale. In addition, 3’end of HMGR was cloned from S. miltiorrhiza and the cloning of full-length cDNA was in process, which served the initiation step to molecular regulate pharmaceutical components biosynthetic pathway in the furture.
引文
[1] 张惠源,赵润怀.中国中药资源普查[J].医学研究通讯,1999,28(10):16.
    [2] 梁文,裕曹雯,王俊,等.生物技术在我国药用植物研究中的应用[J].宁夏农学学院,2003,24(4):92–10.
    [3] Ooms G, Twell D, Bossen ME, Hoge JHC, Burrell MM. Development regulation of Ri T DNA gene expression in roots, shoots and tubers of transformed potato(Solanum tuberosum cv. Desiree) [J].Plant Mol Biol,1986,6:321–330.
    [4] Shen WH, Petit A, Guern J, Tempe J. Hairy roots are more sensitive to auxin than normal roots[J]. Proc Natl Acad Sci USA,1988,35:3417–3421.
    [5] Chilton MD, Tepfer DA, Petit A, David C, Casse-Delbart F, Tempe J. Agrobacterium rhizogenes inserts T-DNA into the genome of the host plant root cells[J]. Nature,1982,295:432–434.
    [6] Stachel SE, Messens E, Van Montagu M, Zambryski P. Identification of signal molecules produced by wounded plant cells that activate T-DNA transfer in Agrobacterium tumefaciens[J]. Nature,1985,318:624–629.
    [7] Hu ZB, Alfermann AW. Diterpenoid production in hairy root cultures of S. miltiorrhiza[J]. Phytochemistry,1993,32:699–703.
    [8] Kumar V, Jones B, Davey MR. Transformation by Agrobacterium rhizogenes and regeneration of transgenic shoots of the wild soybean Glycine argyrea[J]. Plant Cell Reports,1991,10:135–138.
    [9] Giri A, Banerjee S, Ahuja PS, Giri CC. Production of hairy roots in Aconitum heterophyllum wall Using Agrobacterium rhizogenes[J].In Vitro Cell Dev Biol Plant, 1997,33:280–284.
    [10] Nguyen C, Bourgaud F, Forlot P, Guckert A. Establishment of hairy root cultures of Psoralea species[J].Plant Cell Reports,1992,11:424–427.
    [11] Linsmaier EM, Skoog F. Organic growth factor requirements of tobacco tissue cultures[J].Physiol Plant,1965,18:100–127.
    [12] Murashige T, Skoog F. A revised medium for rapid growth and bioassays with tobacco tissue cultures[J].Physiol Plant,1962,15:473–497.
    [13] Gamborg OL, Murashige T, Thorpe TA, Vasil IK. Plant tissue culture media[J].In Vitro,1976,7:473–478.
    [14] Kumar V, Jones B, Davey MR. Transformation by Agrobacterium rhizogenes and regeneration of transgenic shoots of the wild soybean Glycine argyrea[J].Plant Cell Reports,1991,10:135–138.
    [15] 王莉,于荣敏,张辉,等.何首乌毛状根培养及其活性成分的产生[J].生物工程学报,2002,18(1):69-73.
    [16] 胡忠,杨军,郭光沁,等.宁夏枸杞发根农杆菌转化系的建立及影响转化因素的研究[J].西北植物学报,2000,20(5):767-771.
    [17] 王关林,方宏筠.植物基因工程原理与技术[M].北京:科学出版社,1998.
    [18] Giri A, Banerjee S, Ahuja PS, Giri CC. Production of hairy roots in Aconitum heterophyllum wall Using Agrobacterium rhizogenes[J].In Vitro Cell Dev Biol-Plant, 1997,33:280–284.
    [19] Rhodes MJC, Parr AJ, Ceielutt A, Aird ELH. Influence of exogenous hormone on the growth and secondary metabolite formation in transformed root cultures[J].Plant Cell ,1994,38:143–151.
    [20] Srinivasan V, Pestchanker L, Moser S, Hirasuna TJ, Taticek RA, Shuler ML. Taxol production in bioreactors: Kinetics of biomass accumulation, nutrient uptake and taxol production by cell suspension of Taxus baccata[J].Biotechnol Bioeng,1995,47:666–676.
    [21] 张秀省,张荣涛,聂莉莉,等.长春花叶片中吲哚生物碱增产的研究[J].中草药,2005,36(2):265-267.
    [22] Ketchum RE,Gibson DM,Croteau RB,et a1.The kinetics of taxoid accumulation in cell suspension cultures of Taxus following elicitation with methyl jasmonate[J].Biotechnol Bioeng,1999,62(1):97-105.
    [23] 于树宏,李玲,潘瑞炽,等.茉莉酸甲酯和 ABA 对野葛毛状根中异黄酮含量的影响[J].植物生理学通讯,2002,38(4):344-346.
    [24] 肖春桥,高洪,池汝安.诱导子促进植物次生代谢产物生产的研究进展[J].天然产物研究与开发,2004,16(5):473-477.
    [25] 李家儒,管志勇,刘曼西,等.Cu2 +对红豆杉培养细胞中紫杉醇形成的影响[J].华中农业 大学学报,1999,18:117-120.
    [26] Kwok KH, Doran PM. Kinetic and stoichiometric analysis of hairy roots in a segmented bubble column reactor[J].Biotechnol Prog,1995,11:429–435.
    [27] Yu S, Kwok KH, Doran PM. Effect of sucrose, exogenous product concentration and other culture conditions on growth and steroidal alkaloid production by Solanum aviculare hairy roots[J]. Enzyme Microbiol Technol,1996,18:238–243.
    [28] Stougaard J, Abildsten D, Marcher KA. The Agrobacterium rhizogenes pRi TL-DNA segment as a gene vector system for transformation of plants[J]. Mol Gen Genet, 1987,207:251–255.
    [29] Zambryski P, Tempe J, Schell J. Transfer and function of T-DNA genes from Agrobacterium Ti and Ri plasmids in plants[J].Cell,1989,56:193–201.
    [30] Cardarelli M, Mariotti D, Pomponi M, Spano L, Capone I, Constantino P. Agrobacterium rhizogenes T-DNA genes capable of inducing hairy root phenotype[J]. Mol Gen Genet,1987,209:475–480.
    [31] Van Altvorst AC, Bino RJ, Van Dijk AJ, Lamers AMJ, Lindhout WH, Mark FV, Dons JJM. Effects of the introduction of Agrobacterium rhizogenes rol genes on tomato plant and flower development[J].Plant Science,1992,83:77–85.
    [32] Palazon J, Cusido RM, Roig C, Pinol MT. Expression of the rol gene and nicotine production in transgenic hairy roots and their regenerated plants[J].Plant Cell Reports,1998,17:384–390.
    [33] Giovanni A, Pecchioni N, Rabaglio M, Allavena A. Characterization of ornamental Datura plants transformed by Agrobacterium rhizogenes[J].In Vitro Cell Dev Biol–Plant ,1997,33:101–106.
    [34] Pellegrineschi A, Damon JP, Valtorta N, Paillard N, Tepfer D. Improvement of ornamental characters and fragrance production in lemon scented geranium through genetic transformation by Agrobacterium rhizogenes[J].Bio/Technol,1994,12:64–68.
    [35] Handa T, Sujimura T, Kato E, Kamada H, Takayanagi K. Genetic transformation of Eustoma grandiflorum with rol genes[J].Acta Hort,1995,392:209–218.
    [36] Damiani F, Aricioni S. Transformation of Medicago arborea L. with Agrobacteriumrhizogenes binary vector carrying the hygromycin resistance genes[J].Plant Cell Reports,1991,10:300–303.
    [37] Huang Y, Diner A, Karnosky F. Agrobacterium rhizogenes mediated genetic transformation of a conifer: Larix decidua[J].In Vitro Cell Dev Biol–Plant,1991,27:201–207.
    [38] Zhan XC, Jones DD, Kerr A. Regeneration of flax plants transformed by Agrobacterium rhizogenes[J].Plant Mol Biol,1988,11:551–560.
    [39] McGranahan GH, Leslie CA, Uratsu SL. Agrobacterium-mediated transformation of walnut somatic embryos and regeneration of transgenic plants[J].Bio/Technol,1988,6:800–804.
    [40] McGranahan GH, Leslie CA, Dandekar AM. Transformation of pecan and regeneration of transgenic plants[J].Plant Cell Reports,1993,12:634–638.
    [41] Cabrera-Ponce JC, Vegas-Garcia A, Herrera-Estrella L. Regeneration of transgenic papaya plants via somatic embryogenesis induced by Agrobacterium rhizogenes[J].In Vitro Cell Dev Biol–Plant,1996,32:86–90.
    [42] Roy MC. Plant growth response to Agrobacterium rhizogenes M Appl Sc Thesis, Lincoln College[M].University of Canterbury, New Zealand, 1989.
    [43] McAfee BJ, White EE, Pelcher LE, Lapp MS. Root induction in pine (Pinus) and larch (Larix) Spp. Using Agrobacterium rhizogenes[J].Plant Cell Tiss Organ Cult,1993,34:53–62.
    [44] Rugini E, Mariotti D. Agrobacterium rhizogenes T-DNA genes and rooting in woody species[J].Acta Hort,1991,300:301–308.
    [45] 余世春,琚小龙,段广勋.丹参的化学成分和药理活性研究概况(综述)[J].安徽卫生职业技术学院学报,2002,1(2):43-47.
    [46] 董继萃,徐纳李.乙酰丹酚酸 A 对大鼠大脑中动脉栓所致局部缺血性损伤的保护[J].药学学报,1996,31(1):6-9.
    [47] Jang-Yang Chang,Chi-Yen Chang, Ching-Chuan Kuo,et al. Salvinal, a Novel Microtubule Inhibitor Isolated from S. miltiorrhizae Bunge (Danshen), with Antimitotic Activity in Multidrug-Sensitive and -Resistant Human Tumor Cells[J].Mol Pharmacol 2004,65:77-84.
    [48] 胡义杨,刘平,刘成,等.丹酚酸 A 抗四氯化碳中毒致大鼠肝损伤和肝纤维化作用[J].中国药理学报,1997,18(5):478-480.
    [49] 金和筠,王爱民,王玉坤.丹参对实验性肾衰竭的防治作用[J].中国中药杂志,1997,22(4):236-238.
    [50] 王芋,曹德君.丹参对培养德人瘢痕成纤维细胞生长和胶原形成的影响[J].中国临床药学杂志,2002,11(1):46-48.
    [51] 刘学安.丹参组织培养技术研究及组培苗生产试验[D].四川农业大学硕士学位论文,四川农业大学图书馆,2004.
    [52] 冯玲玲.丹参组织培养的初步研究[D].华中师范大学硕士学位论文,华中师范大学图书馆,2004.
    [53] 张跃非,雷家容,代其林.丹参的组织培养及快速繁殖[J].植物生理学通讯,2003,39(2).
    [54] 温春秀,谢晓亮,吴志明,等.丹参脱病毒及组培快繁技术研究[J].中草药,2004,35(9).
    [55] 田宇红,王吉吉之.丹参组织培养及植株再生研究[J].陕西师范大学学报 (自然科学版 ),2003,31(1).
    [56] 张爱民,常莉,薛建平.药用植物多倍体诱导研究进展[J].中国中药杂志,2005,30(9):645-649.
    [57] 高山林,朱丹妮,蔡朝晖,等.丹参多倍体形状和药材质量的关系[J].植物资源与环境,1996,5(2):1.
    [58] 钟建江,王威,岳才军. 植物次级代谢物的多样性及其在细胞培养中的调控研究进展[J].化学世界,2005(8):498-503.
    [59] 陶璐璐,袁静明.丹参愈伤组织细胞固定化及其转化产物的特征[J].生物工程学报,1990,6(3):218-223.
    [60] 黄炼栋,周吉燕.丹参组织培养研究及葬水溶性有效成分——迷选香酸的含量测定[J].上海中医药大学学报,1999,13(4).
    [61] 王康才,罗庆云,陈红霞.丹参愈伤组织中次生代谢产物形成的研究[J].中国中药杂志,1998,23(10).
    [62] Chin-Tung WU,Vanisree MULABAGAL,Satish Manohar NALAWADE,et al. Isolation and Quantitative Analysis of Cryptotanshinone, an ActiveQuinoid Diterpene Formedin Callus of S. miltiorrhiza Bunge[J]. Biol. Pharm. Bull,2003,26(6):845-848.
    [63] 邱德有,宋经元,马小军.丹参毛状根生物反应器大规模培养的研究[J].分子植物育种,2004,2(5):699-703.
    [64] 黄炼栋,胡之壁,刘涤.丹参发状根再生植株的研究[J].上海中医药杂志,1995,(10):40.
    [65] 黄柏青,刘曼西.真菌诱导物对丹参毛状根氧化酶活性的影响[J].华中科技大学学报,2001,29(8):111-113.
    [66] 李国婧,王树才,夏凯.酵母激发子与水杨酸对Ti转化的丹参组培物内源激素含量的影响[J].南京农业大学学报,2001,24( 1) :13-16.
    [67] 程小萍,刘曼西,张一竹,等.酵母葡聚糖对丹参毛状根过氧化物酶和苯丙氨酸解氨酶的影响[J].生物技术,2003,13(6):26-28.
    [68] Qiong Yan,Zongding Hua, Ren Xiang Tan,et al.Efficient production and recovery of diterpenoid tanshinones in S. miltiorrhiza hairy root cultures with in situ adsorption, elicitation and semi-continuous operation[J]. Journal of Biotechnology,2005,119: 416-424.
    [69] Xiuchun Ge,Jianyong Wu.Induction and potentiation of diterpenoid tanshinone accumulation in S. miltiorrhiza hairy roots by β-aminobutyric acid[J]. Appl Microbiol Biotechno,.2005,68:183-188.
    [70] Xiuchun Ge, Jianyong Wu.Tanshinone production and isoprenoid pathways in S. miltiorrhiza hairy roots induced by Ag+ and yeast elicitor[J].Plant Science,2005,168:487-491.
    [71] 王倩.HMGR 基因表达载体构建及其对丹参遗传转化的研究[D].陕西师范大学硕士学位,陕西师范大学图书馆,2005.
    [72] Guo Shen ,Yongzhen Pang, Weisheng Wu,etal.Cloning and characterization of a root-specific expressing gene encoding 3-hydroxy-3-methylglutaryl coenzyme A reductase from Ginkgo biloba[J].Mol Biol Rep,2006,33 :117-127.
    [73] Ronald J.Burnett, Ignacio E.Maldonado-Mendoza, Thomas D.MCKnight,etal. Expression of a 3-Hydroxy-3-Methylglutaryl Coenzyme A Reductase Gene from Camptotheca acuminate Is Differentially Regulated by Wounding and Methyl Jasmonate.[J].Plant Physiol.1993, 103:41-48.
    [74] 王丽娟.TaLea_3 基因植物表达载体构建及其对丹参遗传转化的研究[D].陕西师范大学硕士学位论文,陕西师范大学图书馆,2005.
    [75] 汤章城,王国强,史益敏,等. 现代植物生理学实验指南[M].科学出版社.1999, 374-375.
    [76] 金冬雁, 黎孟枫,侯云德, 等. 分子克隆实验指南(第二版)[M]. 科学出版社,1996.
    [77] Maurel C, Brevet J, Barbier-brygoo H. Auxin regulates the promoter of the root-inducing rolB gene of Agrobacterium rhizogenes in transgenic tobacco. Mol Gen Genet, 1990, 223: 58-64.
    [78] 孙红炜,尚佑芬,杨崇良,等.影响玉米愈伤组织诱导和植株再生的有关因素研究[J].山东农业科学,2002,(6):30-31.
    [79] 陈莉,窦秉德,白光宏,等.玉米成熟胚和茎尖愈伤诱导及其植株再生能力比较[J]. 新疆农业大学学报 2006,29(3):46-49.
    [80] Wang FJ, Zhang LM, Cui ML. Transformation of several vegetable crops by Agrobacterium rhizogenes[J]. Beijing: Proc Asia-Pacific Confon Agri Biot, 1992, 284-285.
    [81] Damgaard O, Rusmussen O. Direct regeneration of transformed shoot in Brassica napus from hypocotyls infections with Agrobacterium rhizogenes[J]. Plant Mol Biol, 1991, 17: 1-8.
    [82] 倪德详, 李建兵, 邓志龙,等.发根农杆菌对两种豆科植物发状根诱导的形态发生[J]. 复旦学报(自然科学版), 1993,9: 308-315.
    [83] Maurel C, Brevet J, Barbier-brygoo H. Auxin regulates the promoter of the root-inducing rolB gene of Agrobacterium rhizogenes in transgenic tobacco[J]. Mol Gen Genet, 1990,223: 58-64.
    [84] 何艺园. 农杆菌介导的水稻遗传转化[M].复旦大学硕士学位论文,1999,4-5.
    [85] 戴均贵,朱蔚华.发根培养技术在植物次生代谢物生产中的应用[J].植物生理学通讯,1999,35(1):69-75.
    [86] Shanks jv,Morgan J.Plant‘chairy root’culture[J].CurrOpin Biotechnol,1999,10(2)151-155.
    [87] 许铁峰,张磊 ,张汉明,等.药用植物商陆毛状根培养系统的建立[J]. 第二军医大学学报,2003,24(10):1112-1115.
    [88] 李博华,张汉明,丁如贤,等.四倍体菘蓝毛状根培养系统的建立及外界因子对其生长的影响[J].中草药,2000.31(2):132-134.
    [89] 张荫麟,宋经元,吕桂兰,等.丹参毛状根培养的建立和丹参酮的产生.中国中药杂志,1995,20(5):269-271.
    [90] 晏琼,胡宗定,吴建勇,等.生物和非生物诱导子对丹参毛状根培养生产丹参酮的影响[J].中草药,2006,37(2):262-265.
    [91] Cardarelli M, Mariotti D, Pomponi M, Spano L, Capone I, Constantino P. Agrobacterium rhizogenes T-DNA genes capable of inducing hairy root phenotype. Mol Gen Genet,1987,209:475–80.
    [92] Van Altvorst AC, Bino RJ, Van Dijk AJ, Lamers AMJ, Lindhout WH, Mark FV, Dons JJM. Effects of the introduction of Agrobacterium rhizogenes rol genes on tomato plant and flower development. Plant Science,1992,83:77–85.
    [93] Palazon J, Cusido RM, Roig C, Pinol MT. Expression of the rol gene and nicotine production in transgenic hairy roots and their regenerated plants. Plant Cell Reports,1998,17:384–90.
    [94] Newman JD, Chappell J. Isoprenoid biosynthesis in plants: carbon partitioning within the cytoplasmic pathway. Crit Rev Biochem Mol Biol. 1999,34(2):95-106.
    [95] Guoan Shen, Yongzhen Pang, Weisheng Wu, etal. Cloning and characterization of a root-specific expressing gene encoding 3-hydroxy-3-methylglutaryl coenzyme A reductase from Ginkgo biloba[J].Mol Biol Rep.2006,33:117-127.
    [96] Katsuyoshi KONDO, IKUZO URITANI, Kazuko OBA. Induction Mechanism of 3-Hydroxy-3 -methylglutaryl-CoA Reductase in Potato Tuber and Sweet Potato Root Tissues[J]. Biosci. Biotechnol.Biochem,2003, 67(5),1007-1017.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700