偏微分方程和小波在图像处理中的建模理论及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,以小波多分辨分析和偏微分方程(PDEs)方法为代表的数学工具活跃在图像处理的各个研究领域,它们已经成为研究图像处理和计算机视觉的两大基本工具。本论文主要围绕二者在图像处理中的应用进行建模和算法研究。主要做了以下几个方面的工作:
     1.小波迭代正则化方法及其在图像去噪中的应用。
     建立了基于平移不变小波的迭代正则化和逆尺度空间方法。推导了尺度参数的估计,尺度参数随着迭代次数的变化而更新。这种带自适应尺度参数的小波迭代正则化方法在小波域上能更精确地控制小波阈值的范围。该方法最终是通过全局迭代小波阈值来实现的。我们证明了带变参数小波迭代正则化的收敛性,并得到了迭代过程的停止准则。实验表明,提出的方法在去噪的同时能较好地保留图像的细节特征。
     2.图像去噪的改进迭代非局部平均滤波方法。
     提出了两种非局部平均滤波的迭代方法。第一种方法可以看作是加权非局部极小化正则泛函的不动点迭代法。该算法保证了迭代过程的稳定性。第二种方法是对第一种算法的推广,我们用迭代更新后的图像灰度值进行图像块相似度的计算,接着对更新后的图像进行加权平均。数值实验表明,提出的算法在去噪的同时能较好地保持图像的纹理结构且处理后的图像对比度更清晰。
     3.基于小波和偏微分方程的图像放大建模。
     提出了基于小波多分辨分析和尺度型扩散方程的带噪图像放大。利用原图像作为放大图像的小波低频子带,估计高频,小波重构,最后,对得到的放大图像用前向—后向扩散方程离散一步迭代。接着,提出了基于小波和矩阵型扩散方程的图像放大模型。把原图像作为放大图像的小波低频子带,初始高频置零小波重构,接着用矩阵型扩散方程处理,对处理后的图像进行小波分解,得到估计的高频再与原图像重构。实验结果表明,提出的两种图像放大方法在放大的同时既去除了噪声又有效地保持了边缘。
     4.基于耦合小波阈值的图像放大模型。
     利用单尺度平移不变Haar小波变换和扩散方程离散一步迭代的等价性,建立了一种图像放大增强的新模型。我们把原图像作为放大图像的小波低频子带,估计高频,进行小波重构。对重构后的图像进行平移不变小波分解,用基于扩散方程的耦合小波阈值对得到的高频进行处理,然后小波重构得到放大的图像。该方法简单易实现,数值结果表明,该模型在图像放大的同时能较好地增强图像的边缘部分。
     5.结合小波阈值与逆尺度空间理论(ISS)的图像去噪模型。
     利用ISS中的曲率项能够消弱小波带来的边缘震荡效应并能很好地保持图像的边缘特征的特点,我们把逆尺度空间理论应用到小波变换上。在小波域上利用Bregman距离,得到迭代的停止准则。实验表明,处理后的图像细节表现更丰富,在去噪的同时抑制小波阈值引起的边缘震荡效应。
     综上所述,本文结合小波多分辨分析和偏微分方程(PDEs)在图像去噪和图像放大方面的优点,提出几种有效的变分正则化算法。论文提出的图像去噪和图像放大算法在计算机视觉、图像处理以及模式识别中有广泛的应用前景。
In recent years, wavelet multi-resolution analysis and partial differential equations (PDEs) play active roles in many image processing fields. They have become two basic tools for image processing and computer vision. This dissertation mainly studies the models and applications of wavelet multi-resolution and PDEs in image processing. The main work can be summarized as follows:
     1.Wavelet iterative regularization method and its application in image denoising.
     Firstly, we generalize the wavelet-based iterative regularization method and the wavelet-based inverse scale space to shift invariant wavelet-based cases. Then, a stepwise parameter is derived from wavelet-based iterative regularization. The wavelet-based iterative regularization with the new parameters, which controls the extent of denoising more precisely in the wavelet domain, leads to iterative global wavelet shrinkage. We provide a proof of the convergence and obtain a stopping criterion for the iterative procedure with the new scale parameter based on wavelet transform. Numerical examples show that the proposed iterative regularized method can well preserve the details of images.
     2.The modified iterative non-local means (NLM) for image denoising.
     We propose two iterative NLM algorithms for image denoising. The first one can be in-terpreted as a fixed point method for minimizing a weighted non-local regularization functional. The stability of the iterative procedures is guaranteed. The second one generalizes the first one. The computation of the similarity is based on the gray value of the last iterated image, and then the weighted averaging is computed over the last iterated image. Numerical experiments illustrate that the proposed algorithms can preserve the texture structures well, and the contrast of the processed images are much more clearer.
     3.Image zooming models based on wavelet and partial differential equations.
     We first give a noisy image zooming method which is based on wavelet and diffusion equations with scalar diffusivity. We use the original image as the low pass and estimate its high pass, and then reconstruct to obtain a zoomed image. Finally, to enhance the edges, forward and backward (FAB) diffusion filtering is used. The second model is based on the wavelet and diffusion equation with matrix valued diffusivity. The high pass are set to zeros. The diffusion equation with matrix-valued diffusivity is used to the zoomed image. Then we apply wavelet analysis to estimate high pass again. Numerical examples illustrate that with the proposed two models while the image is zoomed it is denoised and edges are preserved well.
     4. Image zooming and enhancing models based on coupled wavelet shrinkage.
     A new image zooming and enhancing method is proposed using the relationship between wavelet transform and diffusion equations. We use the wavelet method to obtain the initial zoomed image. We apply the shift invariant wavelet analysis to the initial zoomed image, use the coupled wavelet shrinkage to the high pass, and finally reconstruct to obtain the final zoomed image. The proposed model is easy to implement. Numerical experiments illustrate that it is a valid image zooming and enhancing algorithm.
     5. Image denoising based on wavelet shrinkage and inverse scale space method (ISS).
     The curvature term of the ISS can suppress the edge artifacts and preserve sharp edges. Based on this property, we apply inverse scale space to wavelet transform. A stopping criterion is obtained by Bregman distance on wavelet domain. Numerical examples show that the pro-posed model can improve the denoising ability. The details of the processed images are well preserved.
     In conclusion, based on the advantages of wavelet multi-resolution and partial differential equations (PDEs) in image denoising and image zooming, several variational regularization algorithms are proposed. The proposed image denoising and zooming algorithms are valuable for the study of computer vision, image processing and pattern recognition.
引文
[1]P.Perona, J.Malik. Scale-space and edge-detection using anisotropic dif-fusion. IEEE Transactions on Pattern Analysis and Machine Intelligence. 1990,12(7):629-639.
    [2]L.I.Rudin, S.Osher and R.Fatemi. Nonlinear total variation based noise removal algorithm. Physica. D,1992,60(1-4):259-268.
    [3]S.Mallat. A wavelet tour of signal processing. Academic Press, San Diego, CA, USA,1999.
    [4]张恩东,黄文浩.基于小波变换和Kalman滤波的语音增强方法.模式识别与人工智能,2009,22(1):28-31.
    [5]向家伟,刘毅,陈雪峰,何正嘉.轴承转子系统分析的小波有限元法.振动工程学报,2009,22(4):406-412.
    [6]陶玲,王惠南,颜廷勇.二维小波变换及其在医学图像处理中的应用.南京航空航天大学学报,2004,36(3):373-377.
    [7]徐涛,吴登峰等.多小波扩充算法在图像处理中的应用.吉林大学学报(工学版),2006,36(5):778-781.
    [8]A.S.Tolba. Wavelet packet compression fo medical images. Digital signal processing,2002,12(4):441-447.
    [9]孙中苗,翟振和.航空重力测量数据的小波阈值滤波.武汉大学学报,2009,34(10):1222-1225.
    [10]G. M. Davis. A wavelet-based analysis of fractal image compression. IEEE Transactions on Image Processing,1998,7(2):141-154.
    [11]杜建卫,王超峰.小波分析方法在金融股票数据预测中的应用.数学的实践与认识,2008,38(7):68-75.
    [12]V. Wu, R. Manmaha, E. M. Riseman. Textfinder:an automatic system to detect and recognize text in images. IEEE Transactions on Pattern Analysis and Machine Intelligence,1999,21:1224-1229.
    [13]马岭,朱心雄.PDE造型方法在复杂曲面设计中的应用.计算机学报,1998,21:357-362.
    [14]王利生,徐宗本.偏微分方程在生物医学图像分析中的应用.工程数学学报,2004,21(4):475-490.
    [15]S.Mallat著,杨力华等译.信号处理的小波导引.北京:机械工业出版社,2002.
    [16]A.K.Louis, P.Maass, and A.Rieder. Wavelets:theory and application. Wi-ley, Chichester,1997.
    [17]冯象初,甘小冰,宋国乡.数值范函与小波理论.西安电子科技大学出版社,西安,2003。
    [18]I.Daubechies. Ten lectures on wavelets. In Cbms-Nsf Regional Conference Series in Applied Mathematics, SIAM,1992.
    [19]R.A.DeVore, B.J.Lucier. Wavelets. Acta Numerica,1992,1-56.
    [20]W.Rudin. Real and complex analysis. McGraw-Hill,3rd edition,1987.
    [21]D.Donoho. De-noising by soft thresholding. IEEE Trans. Inf. Th,1995,41: 613-627.
    [22]D.Donoho. Wedgelet:Nearly-minimax estimation of edges. Tech. Report. Dept. of Stat., Stanford Univ.,1997.
    [23]D.Donoho. Orthonormal ridgelets and linear singularities. Tech. Report. Dept. of Stat.,Stanford Univ.,1998.
    [24]E.Candes, D.Donoho. Curvelets:a surprisingly effective nonadaptive rep-resentative of objects with edges. Tech. Report, Dept. of Stat., Stanford Univ.,1999.
    [25]D.Gabor Information theory in electron microscopy. Laboratory Investiga-tion,1965,14:801-807.
    [26]A.K.Jain. Partial differential equations and finite-difference methods in im-age processing, part 1:Image representation. Optimization Theory and Applications,1977,23:65-91.
    [27]J.Koenderink. The structure of images. Biological Cybernetics,1984:363-370.
    [28]A.P.Witkin. Scale-space filtering. In Eighth International Joint conference on Artificial Intelligence, Karlsruhe,1983,2:1019-1022.
    [29]R.A.Hummel. Representations based on zero-crossing in scale-space. Pro-ceedings of the IEEE Conference on Computer Vision and Pattern Recog-nition, IEEE New York,1986:204-209.
    [30]O.Scherzer and J.Weickert. Relations between regularization and diffusion filtering. J. Mathematical Imaging and Vision,2000,12(1):43-63.
    [31]F.Catte. Image selective smoothing and edge detection using anisotropic diffusion. SIAM J Numerical Analysis,1992,29(1):182-193.
    [32]E.B.Romeny. Geometry driven diffusion in computer Vision. Boston, MA: Kluwer,1994.
    [33]S.Osher, L.I.Rudin. Feature-oriented image-enhancement using shock fil-ters. SIAM Journal on Numerical Analysis,1990,27(4):919-940.
    [34]S.J.Osher. and J.A.Sethian. Fronts propagation with curvature dependent speed:Algorithms based on Hamilton-Jacobi formulations. Journal of Com-putational Physics,1988,79:12-49.
    [35]R.T.Whitaker, S.M.Pizer. A multi-scale approach to nonuniform diffusion. CVGIP:Image Understanding,1993,57(1):99-110.
    [36]J.Weickert. Multiscale texture enhancement. Computer analysis of images and patterns. Lecture Notes in Computer Science, Berlin:Springer,970: 230-237.
    [37]R.A.Carmona, S.F.Zhong. Adaptive smoothing respecting feature direc-tions. IEEE Trans. on IP,1998,7(3):353-358.
    [38]Y.Chen, B.C.Vemuri, L.Wang. Image denoising and segmentation via nonlinear diffusion. Computers and Mathematics with Application,2000, 39:131-149.
    [39]F.Torkamaniazar, K.E.Tait. Image recovery using the anisotropic diffusion equation. IEEE Transactions on Image Processing,1996,5(11):1573-1578.
    [40]Z.Wu, G.T.Herman and J.A.Broune. Edge preserving reconstruction using adaptive smoothing in wavelet domain. IEEE Trans. on Image Processing. 1994,7(3):1917-1921.
    [41]C.Andrew, et al. Morphological anisotropic diffusion. Proc of International Conference on Image Processing,1997,3:348-351.
    [42]A.Yezzi. Modified curvature motion for image smoothing and enhance-ment [J]. IEEE Trans. on Image Processing,1998,7(3):345-351.
    [43]Y.Yu, S.T.Acton. Speckle reducing anisotropic diffusion. IEEE Transaction on Image Processing,2002, 11(11):1260-1270.
    [44]Y.You, M.Kaveh. Fourth-order partial differential equations for noise re-moval. IEEE Trans. on Image Processing,1998,7(3):1723-1730.
    [45]P.Perona. Orientation diffusions. IEEE Trans. on Image Processing,1998, 7(3):357-365.
    [46]G.Gilboa, N.Sochen, Y.Y.Zeevi. Complex diffusion processes for image fil-tering. In:Michael Kerckhove, eds. Scale-space and morphology in com-puter vision:Third International Conference, Scale-Space 2001. New York: Springer,2001:299-307.
    [47]J.Weickert and B.Romeny. Efficient and reliable schemes for nonlinear dif-fusion filtering[J]. IEEE Transactions on Image Processing,1998,7(3):398-409.
    [48]L.Vese, T.Chan. A multiphase level set framework for image segmentation using the mumford and shah model, International Journal of Computer Vision,2004,50(3):271-293.
    [49]P.Perano, J.Malik. Scale space and edge detection using anisotropic diffu-sion, IEEE Transactions on Pattern Recognition and Machine Intelligence, 1990,12(7):629-639.
    [50]朱宁,吴静,王忠谦.图像放大的偏微分方程方法.计算机辅助设计与图形学学报,2005,17(9):1941-1945.
    [51]Y.Meyer. Oscillating patterns in image processing and nonlinear evolution equations, Boston:American Mathematical Society,2002.
    [52]M.Kass, A.Witkin and D.Terzopoulos. Snakes-active contour models. In-ternaltional Journal of Computer Vision,1987,1(4):321-331.
    [53]T.Chan, L.Vese. Active contours without edges. IEEE Trans. on Image Processing,2001,10(2):266-277.
    [54]马波.基于主动轮廓线模型的跟踪及初始化方法研究.[哈尔滨工业大学博士学位论文],2003,6.
    [55]L.D.Cohen. Finite element methods for active contour models and balloons for 2-D and 3-D images. IEEE Trans. PAMI,1993,15(11):1131-1147.
    [56]L.D.Cohen. Note on active contour models balloons. CVGIP:Image understanding,1991,53(2):211-218.
    [57]C.Xu, J.L.Prince. Generalized gradient vector flow exterma force for active contours. Signal Processing,1998,71:131-139.
    [58]G.Aubert, P.Kornprobst. Mathematical problems in image processing:par-tial differential equations and the calculus of variations. Springer Verlag, 2001.
    [59]A.N.Tikhonov, V.Y.Arsenin. Solutions of ill-posed problems. Winston and Wieley, Washington, DC,1977.
    [60]D.Marr, E.Hildreth. Theory of edge-detection. Proceedings of the Royal Society of London Series B-Biological Sciences,1980,207(1167):187-217.
    [61]J.Canny. A computational approach to edge-detection. IEEE Transactions on Pattern Analysis and Machine Intelligence,1986,8(6):679-698.
    [62]G.Aubert, L.Vese. A variational method in image recovery. SIAM Journal on Numerical Analysis,1997,34(5):1948-1979.
    [63]G.Gilboa, N.Sochen, and Y.Y.Zeevi. Image sharpening by flows based on triple Well potentials. Journal of Mathematical Image and Vision,2004, 20(1-2):121-131.
    [64]Y.Gousseau, J.M.Morel. Are natural images of bounded variation? SIAM Journal on Mathematical Analysis,2001,33(3):634-648.
    [65]L.Vese, S.Osher. Modeling textures with total variation minimization and oscillating pattern in image processing. Journal of Scientific Computing, 2003,19(1-3):553-572.
    [66]J.F.Aujol, G.Aubert, L.B.Feraud, and A.chambolle. Image decomposition application to SAR images. Scale Space Methods in Computer Vision, Pro-ceedings,2003,2695:297-312.
    [67]S.Osher, A.Sol, and L.Vese. Image decomposion and restoration using total variation minimization and the H-1 norm. SIAM Jouranl on Multiscale Modeling and Simulation,2003,1(3):349-370.
    [68]E.Tadmor, S.Nezzar, and L.Vese. A multiscale image represention using hi-erarchical (BV, L2) decomposition. Preprint, Multiscale Modeling and Sim-ulation,2003.
    [69]K.R.Castleman. Digital image processing. Prentice Hall,1996.
    [70]S.W.Lee, Joon Ki Paik. Image interpolation using adaptive fast B-spline fil-tering. Proceedings of IEEE International Conference on Acoustics, Speech, Signal Processing. Minneapolis, Minnesota, USA, IEEE,1993,5:177-180.
    [71]马杜祥,刘铁根,江俊峰.基于二进小波变换的边缘保持图像插值算法,光电子·激光,2005,16(7):871-875.
    [72]F.Guichard, F.Malgouyres. Edge direction preserving image zooming:a mathematical and numerical analysis. SIAM Journal of Numerical Analysis, 2001,39(1):1-37.
    [73]D.Mumford, J.Shah. Optimal approximations by piecewise smooth func-tions and associated variational-problems. Communications on Pure and Applied Mathematics,1989,42(5):577-685.
    [74]V.Caselles, F.Catte, T.Coll, and F.Dibos. A geometric model for active contour in image-processing. Numerische Mathematik,1993,66(1):1-31.
    [75]R.Malladi, J.A.Sethian, and B.C.Vemuri. Shape modeling with front propagarion-a level set approach. IEEE Transactions on Pattern Analysis and Machine Intelligence,1995,17(2):158-175.
    [76]V.Caselles, R.Kimmel, and G.Sapiro. Geodesic active contours. Interna-tional Journal of Computer Vision,1997,22(1):61-79.
    [77]S.Kichenassamy, A.Kumar, P.Olver, A.Tannenbaum, and A.Yezzi. Confor-mal curvature flows:from phase transitions to active vision. Archive for Rational Mechanics and Analysis,1996,134(3):275-301.
    [78]R.M.Haralick and J.S.Lee. The facet approach to optical flow. In Image Understanding Workshop,1983,84-93.
    [79]B.K.P.Horn and B.G.Schunck. Determining optical-flow. Aritificial Intelli-gence,1981,17(1-3):185-203.
    [80]A.Kumar, A.R.Tannenbaum, and G.J.Balas. Optical flow:a curve evolution approach. IEEE Transactions on Image Processing.1996,5(4):598-610.
    [81]G.Aubert, R.Deriche, and P.Kornprobst. Computing optical flow via vari-ational techniques. SIAM Journal on Applied Mathematics,1999,60(1): 156-182.
    [82]T.Chan, J.Shen. Mathematical models for non-texture inpaintings. SIAM Journal on Applied Mathematics,2001,62(3):1019-1043.
    [83]A.Chambolle, R.Devore, et.al. Nonlinear wavelet image process-ing:variational problems, compression, and noise removal though wavelet shrinkage. IEEE Transactions on Image Processing,1998,7(3):319-333.
    [84]P.Horn and J.Brooks. Shape from shading. MIT press, Cambridge, MA, 1989.
    [85]P.L.Worthington and E.R.Hancock. Needle map recovery using robust reg-ularizers. Image and Vision Computing,1999,17(8):545-557.
    [86]M.G.Crandau, H.Ishii and P.L.Lions. User's guide to viscosity solutions of second order partial linear differential equations. Bull Amer Math Soc, 1992,1-67.
    [87]J.Morel, S.Solimini. Variational methods in image segmentation. Boston: Birkh user,1995.
    [88]G.Aubert, L.Vese. A variational method in image recovery. SIAM J Numer. Anal,1997,34:1948-1979.
    [89]A.Chambolle, P.L.Lions. Image recovery via total variation minimization and related problems. Numer. Math,1997,76(2):167-188.
    [90]S.Osher, A.Sole, L.Vese. Image decomposition and restoration using to-tal variation minimization and the H-1 norm. SI AM Journal of Multiscale Modeling and Simulation,2003,1(3):349-370.
    [91]R.Devore, B.Jawerth, and B.Lucier. Image compression through wavelet transform coding. IEEE Trans. Inform. Theory, Special Issue Wavelet Transforms Multires. Anal.,1992,38:719-746.
    [92]A.Chambolle, R.Devore, N.Y.Lee, and B.Lucier. Nonlinear wavelet image processing:variational problems, compression, and noise removoal through wavelet shrinkage. IEEE Trans. Image Proc., Mar.1998,7(3):319-335.
    [93]K.Bredies, D.Lorenz, P.Maass. Mathematical concepts of multiscale smoothing. Applied and Computational Harmonic Analysis,2005,19, (2): 141-161.
    [94]I.Daubechies and G.Teschke. Variational image restoration by means of wavelets:simultaneous decomposition, deblurring and denoising. Applied and Computational Harmonic Analysis,2005,19(1):1-16.
    [95]G.Steidl, J.Weickert, T.Brox, P.MraZek, and M. Welk. On the equvalence of soft wavelet shrinkage, total variation diffusion, total variation regular-ization, and SIDEs. SIAM J. Numer. Anal,2004,42(2):686-713.
    [96]H.Triebel. Interpolation theory, function spaces, differential operators. Ver-lag der Widdendchaften, Berlin,1978.
    [97]S.Osher, M.Burger, D.Goldfarb, J.Xu, and W.Yin. An iterative regulariza-tion method for total variation based image restoration. Multiscale Model and Simul,2005,4:460-489.
    [98]L.M.Bregman. The relaxation method for finding the common point of con-vex sets and its application to the solution of problems in convex program-ming. USSR Comput. Math. Math. Phys.,1967,7:200-217.
    [99]M.Burger, G.Gilboa, S.Osher, and J.Xu. Nonlinear inverse scale space methods. Comm. Math. Sci.,2006,4(1):175-208.
    [100]M.Burger, S.Osher, J.Xu, and G.Gilboa. Nonlinear inverse scale space methods for image restoration. Lecture Notes in Computer Science 3752, 2005,25-36.
    [101]J.Xu, S.Osher. Iterative regularization and nonlinear inverse scale space applied to wavelet-based denoising. IEEE Trans. Image Proc., Feb.2007, 16(2):534-543.
    [102]M.Li, B.Hao and X.Feng. Iterative regularization and nonlinear inverse scale space based on translation invariant wavelet shrinkage. International Jour-nal of Wavelets. Multiresolution and Information Processing.2008,6(1): 1-13.
    [103]I.Daubechies, G.Teschke. Wavelet based image decomposition by varia-tional functionals. Proceedings of SPIE, Wavelet Applications in Industrial Processing. Editor(s):Frederic Truchetet,2004,5266:94-105.
    [104]A.Chambolle, B.J.Lucier, Interpreting translation-invariant wavelet shrink-age as a new image smoothing scale space. IEEE Transactions on Image Processing,2001,10:993-1000.
    [105]R.Devore. Nonlinear approximation, Acta Numerica. Cambridge University Press,1998,51-150.
    [106]R.Devore, B.Jawerth, and V.Popov. Interpolation of besov spaces. Trans. Math. Soc.1998,305:397-414.
    [107]R.R.Coifman D.L.Donoho. Translation invariant de-noising. Wavelets in Statistics of Lecture Notes in statistics 103. New York:Springer-Verlag, 1994,125-150.
    [108]D.A.Lorenz. Wavelet shrinkage in signal and image processing-An Inves-tigation of Relations and Equivalences. Ph. D. thesis, University Bremen, 2005.
    [109]J.Lie, J.M.Nordbotten. Inverse scale spaces for nonlinear regularization. Journal of Mathematical Imaging and Vision,2007,27(1):41-50.
    [110]M.Burger, S.Osher. Convergence rates of convex variational regularization. Inverse Problems,2004,20:1411-1421.
    [111]M.Burger, E.Resmerita and L.He. Error estimation for bregman iterations and inverse scale space methods in image restoration. CAM Report 07-01, Feb 2007.
    [112]A.Buades, B.Coll, and J.M.Morel. On image denoising method. Technical Report, CMLA,2004.
    [113]A.Buades, B.Coll, and J.M.Morel. Neighborhood filters and PDE's. Tech-nical Report 04, CMLA,2005.
    [114]L.P.Yaroslavsky. Digital picture processing-an introduction. Springer,1985.
    [115]A.Buades, B.Coll and J.M.Morel. A non-local algorithm for image denois-ing. CVPR 2005. IEEE Computer Society Conference on Computer Vision and Pattern Recognition,2005.
    [116]S.Smith and J.Brady. SUSAN-a new approach to low level image process-ing. Internatianl Journal of Computer Vision,1997,23(1):45-7.
    [117]C.Tomasi and R.Manduchi. Bilateral filtering for gray and color images. In proceedings of the Sixth International Conference on Computer Vi-sion,1998,839-846.
    [118]S.Kindermann, S.Osher, and P.W.Jones. Deblurring and denoising of im-ages by nonlocal funcionals. SIAM Multiscale Modeling and Simulation 2005,4(4):1091-1115.
    [119]G.Gilboa, S.Osher. Nonlocal linear image regularization and supervised segmention. SIAM Multiscale Modeling and Simulation (MMS),2007, 6(2):595-630.
    [120]T.Brox, O.Kleinschmidt, and D.Cremers. Efficient nonlocal means for de-noising of textural patterns. IEEE Transactions on Image Processing,2008, 17(7):1083-1092.
    [121]T.Li, Y.Wu, et al. Study of two Image zooming algorithms. Signal Process-ing, June,2003,19(3):234-236.
    [122]J.Babaud, et al. Uniqueness of the Gaussian kernel for scale-space filtering, IEEE Trans Pattern Analysis and Machine Intelligence,1986,8(1):26-33.
    [123]S.Battiato, G.Gallo, F.Stanco. Smart interpolation by anisotropic diffusion IEEE Int.Conf. Image Analysis and Processing, Mantova, IEEE,2003, 12:572-577.
    [124]M.Li,X.Feng. A denoising model using the total variation and wavelet method. Journal of Xidian University,2006,33(6):980-984.
    [125]G.Giliboa, Y.Y.Zeevi, A.N. Sochen. Forward and backward diffusion pro-cesses for adaptive image enhancement denoising. IEEE Transaction on image processing,2002,11 (7):689703.
    [126]J.Canny. A computational approach to edgedetection. IEEE Transactions on Pattern Analysis on Machine Intelligence,1986,8(6):679-698.
    [127]J.Weickert, B.Benhamouda. A semidiscrete nonlinear scale-space theory and its relation to the Perona-Malik paradox. F. Solina, W. G. Kropatsch, R. Klette, R. Bajcsy (Eds.), Advances in Computer Vision, Wien, Springer, 1997,1-10.
    [128]李天倩,吴援明,杨建君等.两种图像放大算法研究.信号处理,2003,19(3):234-236.
    [129]J.Weickert. Anisotropic diffusion in image processing. Germany, the Uni-versity of Kaiserslauterm,1996.
    [130]M.Kass, A.Witkin. Analyzing oriented patterns. Computer Vision, Graph-ics and Image Processing,1987,37:362-385.
    [131]M.A.Fostner, E.Gulch. A fast operator for detection and precise Location of distinct points, corners and centers of circular features. Proc.ISPRS Inter-commision Conf. on Fast Processing of Photogrammetric Data (Interlaken, June 2-4,1987),1987,281-305.
    [132]A.R.Rao, B.G.Schunck. Computing oriented texture fields. CVGIP:Graph-ical Models and Image Processing,1991,5:157-185.
    [133]M.Nitzberg, T.Shiota. Nonlinear image filtering with edge and corner en-hancement. IEEE Transactions on Pattern Analysis and Machine Intelli-gence.1992,14:826-833.
    [134]T.Lindberg, J.Garding. Shape-adapted smoothing in estimation of 3-D depth cues from affine distortions of local 2-D brightness structure. Image and Vision Computing,1997,15:415-434.
    [135]B.Jahne. Spatio-temporal image processing-theory and scientific applica-tions. Lecture Notes in Comp. Science, Springer Berlin,1993.
    [136]石澄贤,吴建成,夏德深.各项异性扩散方程和一种图像放大方法.南京大学学报数学半年刊,2005,22(1):153-160.
    [137]G.Steidl, J.Weickert. Relations between soft wavelet shrinkage and total variation denoising. In L.Van Gool, editors, Pattern Recognition, volume 2449 of Lecture Notes in Computer Science, Berlin, Springer,2002,198-205.
    [138]P.Mrazek, J.Weickert. From two dimensional nonlinear diffusion to coupled haar wavelet shrinkage. J. Visual Communication and Image Representa-tion,2007,18(2):162-175.
    [139]P.Mrazek, J.Weickert. Rotationally invariant wavelet shrinkage. In B. Michaelis and G. Krell, editors, Pattern Recognition, Lecture Notes in Com-puter Science, Berlin:Springer,2003,2781:156-163.
    [140]P.Mrazek, J.Weickert, G.Steidl, M.Welk. On iterations and scales of non-linear filters. In:Drbohlav, O. (Ed.), Proceedings of the Eighth Computer Vision Winter Workshop, Czech Pattern Recognition Society, Valtice, Czech Republic.2003,61-66.
    [141]E.Le Pennec, S.Mallat. Image compression with geometrical wavelets. in IEEE Conference on Image Processing (ICIP), Vancouver, September,2000.
    [142]M.N.Do, M.Vetterli. Contourlets:a new directional multiresolution image representation. Thirty Sixth Asilomar Conference on Signal, Systems and Computers, IEEE,2002.
    [143]L.Demanet, L.Ying. Wave atoms and sparsity of oscillatory patterns. Appl. Comput. Harmon. Anal.,2007, Vol.23(3):368-387.
    [144]T.F.Chan, H.M.Zhou. Total variation wavelet thresholding in image com-pression. Proceedings.2000 International Conference on Image Processing, 2000,2:391-394.
    [145]T.F.Chan, H.M.Zhou. Total variation wavelet thresholding. SIAM Journal of Scientific Computing,2007,32(2):315-341.
    [146]S.Durand, J.Froment. Reconstruction of wavelet coefficients using total variation minimization. SIAM Journal of Scientific Computing,2002,24(5): 1754-1767.
    [147]D.Donoho, I.Johnstone. Ideal spatial adaptation via wavelet shrinkage. Biometrika,1994,81:425-455.
    [148]H.Y.Gao, A.G.Bruce. WaveShrink with firm shrinkage. Statist. Sin.1997, 7(4):855-874.
    [149]F.Chung. Spectral graph theory. Number 92 in CBMS Regional Conference Series in Mathematics, American Mathematical Society,1997.
    [150]M.Lindenbaum, M.Fischer, and A. Bruckstein. On gabor contribution to image enhancement. Pattern Recognition,1994,27:1-8.
    [151]A.A.Efros and T.K.Leung. Texture synthesis by non-parametric sampling. In Proceedings of the Int. Conf. Computer Vision, Sept.1999,2:1033-1038.
    [152]L.Yang, S.Li, X.Lu, and Z.Guo. A new approach to select the optimum neighborhood for edge preserving filter. IEEE Fourth International Confer-ence on Image and Graphics,2007,96-99.
    [153]G.Gilboa, S.Osher. Nonlocal operators with application to image process-ing. UCLA CAM Report, Tech. Rep.,2007, cam07-23.
    [154]J.Weickert. Coherence-enhancing diffusion filtering. International Journal of Computer Vision, April,1999,31(2/3):111-127.
    [155]白键.脊波、曲线波和偏微分方程在图像处理中的算法研究.[西安电子科技大学博士学位论文],2007,12.
    [156]S.P.Awate, R.T.Whitaker. Unsupervised,informationtheoretic, adaptive im-age filtering with applications to image restoration. IEEE Trans. Pattern Analysis and Machine Intelligence (PAMI),2006,28(3):364-376.
    [157]K.Dabov, A.Foi, V.Katkovnik, and K.Egiazarian. Image denoising with block-matching and 3D filtering. Proc. SPIE Electronic Imaging'06, San Jose, California, USA, January 2006, no.6064A-30,
    [158]K.Dabov, A.Foi, V.Katkovnik, and K.Egiazarian. Image denoising by sparse 3D transform-domain collaborative filtering. IEEE Trans. Image Pro-cess.,August 2007,16(8):2080-2095.
    [159]K.Dabov, A.Foi, V.Katkovnik, and K.Egiazarian. A nonlocal and shape-adaptive transform-domain collaborative filtering. Proc. Int. Workshop on Local and Non-Local Approx. in Image Process., LNLA 2008, Lausanne, Switzerland, August 2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700