大鼠海马和杏仁体记忆相关受体和基因的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
NMDA受体在突触可塑性中发挥重要作用,长时程增强(LTP)被认为是学习记忆的突触机制。在许多脑区,如杏仁体和海马,LTP的诱导需要NMDA受体的激活。尤其是在海马CA1区,NMDA受体的NR2A亚基参与LTP的诱导,而NR2B亚基参与LTD的诱导。然而,NR2A和NR2B在学习记忆中的作用,知之甚少。
     条件恐惧是研究学习记忆非常好的行为模型。杏仁体基底外侧核(BLA)是产生条件恐惧,及发生与其相关的突触可塑性的关键位点。本工作中,我们分别研究了BLA和CA1区NR2A和NR2B在条件恐惧记忆中的作用。
     1)我们在BLA局部注射NR2A或NR2B选择性拮抗剂,及使用基因递送技术抑制BLA的NR2A和NR2B功能。结果显示,BLA的NR2A和NR2B均参与恐惧记忆的获得,但不参与恐惧记忆的表达。
     2)我们在CA1区局部注射NR2A或NR2B选择性拮抗剂,观察对海马依赖的场景恐惧记忆的影响。结果显示,CA1区NR2A参与场景恐惧记忆的获得,而NR2B不参与;NR2A和NR2B均参与场景恐惧记忆的表达。
     学习记忆是脑的基本功能,许多基因与这一功能相关。我们利用行为学方法,筛选到新基因hippyragranin(HGN)和已知在外周系统具有抗增殖作用的基因Tob。
     Tob(Transducer of ErbB2)是一种细胞周期的抑制性调控因子,在外周组织发挥抑制细胞增殖的作用,而在中枢神经系统的功能不明确。使用行为学模型筛选的方法,我们发现Tob在脑内有表达,并且可能参与学习记忆过程。行为训练可以导致脑内Tob蛋白表达量的一过性升高,而且这一表达升高发生在长时记忆形成之前。在大鼠海马CA1区注射Tob蛋白的反义核酸下调Tob蛋白的表达,大鼠在Morris水迷宫行为任务中的空间学习和记忆及场景恐惧行为任务中的长时程记忆均受到伤害。另外,在CA1区局部注射Tob反义核酸,会抑制海马长时程增强。因此,这些结果表明,细胞周期的抑制性调控因子Tob是一种参与海马学习和记忆的多功能蛋白。
     记忆的形成、保持和读取是一个动态过程,反映的是新记忆形成和旧记忆被压抑(或清除)两个方面结合的一个结果。关于新记忆的形成已了解很多,而对参与记忆压抑(或清除)功能的分子成分和分子过程了解很少。我们鉴定出一个新的蛋白——HGN,它在海马有表达,海马的去神经支配可以降低其表达。用HGN的反义核酸下调大鼠海马CA1区HGN的表达,增强大鼠在Morris水迷宫行为任务中的学习和记忆能力,同时也能增强突触传递的长时程增强(LTP)。这些结果表明,HGN可能参与了记忆的抑制性调控。
     杏仁体、海马等脑区广泛接受来自蓝斑的去甲肾上腺素能投射。已知,杏仁体β受体参与情绪唤起经验相关的记忆巩固。在离体海马脑片上,激活海马CA1区β肾上腺素能受体(β受体)易化突触传递的长时程增强(LTP)。提示,CA1区β受体在海马依赖的学习和记忆中可能发挥重要作用。然而,CA1区β受体是否参与海马依赖性的学习记忆,是否参与在体LTP的诱导,尚无实验证据。这里,我们考察了CA1区β受体对在体突触可塑性的调控作用,以及对Morris水迷宫空间学习和记忆巩固的影响。
     在体电生理实验中,激活CA1区β受体后,正常情况下对突触传递效能仅有微小调控作用的10Hz的θ节律刺激(每串150个脉冲,1串)可显著地诱导出LTP;阻断CA1区β受体,正常情况下能显著诱导LTP的5Hz的θ节律刺激(每串150个脉冲,3串),此时不能诱导出LTP。
     在Morris水迷宫实验中,训练前阻断CA1区β受体,大鼠的学习速度显著慢于对照组;训练后5分钟阻断CA1区β受体,损害48小时的空间记忆,而训练后6小时阻断CA1区β受体,对48小时空间记忆没有影响。
     以上结果显示,CA1区β受体参与对在体LTP的调控,参与海马依赖的空间学习和记忆
NMDA receptor plays a vital role in synaptic plasticity. Long-term potentiation (LTP), known as a synaptic mechanism of learning and memory, requires the activation of NMDA receptor in many regions, such as amygdala and hippocampus. In particular, it is suggested that NR2A subtype is involved in LTP induction, whereas NR2B in LTD induction in CA1 region. However, the roles of NR2A and NR2B subunits in memory are not well understood. Here, we investigated the effects of NR2A and NR2B subunits in amygdala and hippocampus on fear memory, respectively.
    1) We investigated the effects on fear memory of intra-BLA infusion of selective antagonist to NR2A or NR2B, or inhibiting the functions of NR2A or NR2B in BLA with gene delivery technology. Our results demonstrate that, both NR2A and NR2B in BLA are involved in acquisition of fear memory, but not in expression of the memory.
    2) We investigated the effects on fear memory of intra-CA1 of infusion of elective antagonist to NR2A or NR2B, a hippocampus-dependent task. Our data demonstrate that NR2A in area CA1 is required for both acquisition and expression of contextual fear memory, whereas NR2B is not important for acquisition, but is required for expression, of the memory.
    Tob (transducer of ErbB2) is a negative cell cycle regulator with anti-proliferative activity in the periphery. Using a behavioral screening paradigm to look for novel gene functions in the brain, we identified Tob as a brain-expressed protein involved in learning and memory. Behavioral training of fear-conditioning triggered a transient elevation of Tob protein, which preceded the formation of long-term memory. Functional perturbation of Tob by intra-CA1 infusion of antisense oligonucleotides in rats impaired spatial learning and memory in the Morris water maze and long-term memory for contextual fear conditioning, two behavioral paradigms that require the hippocampus. Furthermore, long-term potentiation was suppressed by Tob antisense infusion into the CA1 region. Together, these results indicate that the negative cell cycle regulator Tob is a multifunctional protein involved in hippocampus-dependent learning and memory.
    Memory formation, maintenance and retrieval are a dynamic process, reflecting a combined outcome of new memory formation on one hand, and older memory suppression/clearance on the other. Although much knowledge has been gained regarding new memory formation, less is known about the molecular components and processes that serve the function of memory suppression/clearance. Here we report the identification of a novel protein, termed hippyragranin (HGN), that is expressed in the rat hippocampus and its expression is reduced by hippocampal denervation. Inhibition of HGN by antisense oligonucleotide in area CA1 results in enhanced performance in Morris water maze, as well as elevated long-term potentiation (LTP). These results suggest that HGN is involved in negative memory regulator.
    Previous studies showed that β-adrenoceptors in amygdala are involved in the memory consolidation for emotional arousing experience and the activation of β-adrenoceptors in hippocampal CA1 region facilitates in vitro long-term potentiation (LTP). It is unclear if hippocampus-dependent learning is subjected to β-adrenergic regulation. Here, we studied roles of β-adrenoceptors in area CA1 in spatial learning and memory consolidation, and in synaptic plasticity in vivo.
    In Morris water maze experiment, pretraining blockade of β-adrenoceptors in area CA1, impaired spatial learning; 5-min, but not 6-h postraining blockade impaired 48-h spatial memory in rats, In electrophysiological experiment, the theta-pulse stimulation (10 Hz, 150 pulses/train, 1 train), a frequency that weakly modifies synaptic strength, induced a robust LTP when p-adrenoceptors in area CA1 were activated. By contrast, the theta-pulse stimulation (5 Hz, 150 pulses/train, 3 train), a frequency that vstrongly modifies synaptic strength, induced a significantly smaller LTP when β-adrenoceptors in area CA1 were blocked.
    Our results demonstrate that β-adrenoceptors in area CA1 are involved in regulating learning and memory in Morris water maze, and in vivo long-term potentioation.
引文
1. Blair, H.T., Schafe, G.E., Bauer, E.P., Rodrigues, S.M., and LeDoux, J.E. , Synaptic plasticity in the lateral amygdala: a cellular hypothesis of fear conditioning. Learn. Mem., 2001. 8: p. 229-242.
    2. Fanselow, M.S., and LeDoux, J.E. , Why we think plasticity underlying Pavlovian fear conditioning occurs in the basolateral amygdala. Neuron, 1999. 23: p. 229-232.
    3. Maren, S., Long-term potentiation in the amygdala: a mechanism for emotional learning and memory. Trends Neurosci., 1999. 22(561-567.).
    4. Hemstetter FJ, a.B.P., Effects of muscimol applied to the basolateral amygdala on acquisition and expression of contextual fear conditioning in rats. Behav. Neurosci., 1994. 108: p. 1005-1009.
    5. Rogan, M.T., Staubli, U.V., and LeDoux, J.E. 390, 604-607., Fear conditioning induces associative long-term potentiation in the amygdala. Nature 1997. 390: p. 604-607.
    6. Kandel ER, S.J.a.J.T., Principle of neural science (McGraw-Hill, New York, N.Y.). 2000.
    7. Rempel-Clower NL, Z.S., Squire LR and Amaral DG., Three cases of enduring memory impairment after bilateral damage limited to the hippocmapal formation. J Neurosci, 1996. 16: p.5233-55.
    8. Zola, S.M., et al., Impaired recognition memory in monkeys after damage limited to the hippocampal region. J Neurosci 2000. 20: p. 451-63.
    9. Kandel, E.R., Tmbomsadbgas.S., 1030-1038., The molecular biology of memory storage: a dialogue between genes and synapses. Science 2001.294: p. 1030-1038.
    10. Maren S, A.G., Fanselow MS. (1997). Neurotoxic lesions of the dorsal hippocampus and Pavlovian fear conditioning in rats. Behav Brain Res 88: 261-274., Neurotoxic lesions of the dorsal hippocampus and Pavlovian fear conditioning in rats. Behav Brain Res 1997. 88: p. 261-274..
    11. Hou QL, G.X., Zhang XH, Kong LW, Wang XM, Bian W, Tu YY, Jin ML, Zhao GP, Bao-Ming LiCA, Jing NHCA, Yu LCA (2004). SNAP-25 in hippocampal CA1 region is involved in memory consolidation. European Journal of Neuroscience, 20: 1593-1603., SNAP-25 in hippocampal CA1 region is involved in memory consolidation. E. J. Neurosci., (2004). 20 1593-1603: p. 1593-1603
    12. Meilei Jin, X.-M.W.Y.T.X.-H.Z., Xiang Gao, Ning Guo, Zhiqin Xie, Guoping Zhao, Naihe Jing, Bao-Ming Li and Lei Yu Tob (Transducer of ERBB-2), is a multifunctional protein involved in hippocampus-dependent learning and memory. Neuroscience. Neurosci. 131: 647-659., 2005(131): p. 647-659..
    13. Cajal, S.R., Histologie du systeme nerveux de I'bomme et des vertebres, (ed. A. Maloine) Paris, France. 1909.
    14. DO, H., The Organization of behavior. John Wiley and Sons, New York. 1949.
    15. Eccles, J.C., Conscious experience and memory. Academic address. Recent Adv. Biol. Psychiatry, 1965. 8 235-256(): p. 235-256.
    16. Kandel, E.R., and Spencer, W.A., Cellular neurophysiological approaches to the study of learning. Physiol. Rev., 1968. 48 p. 65-134.
    17. McNaughton, B.L., Douglas, R.M., and Goddard, G.V. , Synaptic enhancement in fascia dentata: Cooperativity among coactive afferents. Brain Res., 1978. 157 p. 277-293
    18. Levy, W.B.a.S., O. 1979. Synapses as associative memory elements in the hippocampal formation. Brain Res. 175: 233-245, Synapses as associative memory elements in the hippocampal formation. Brain Res., 1979. 175 p. 233-245..
    19. Hawkins, R.D., Abrams, T.W., Carew, T.J., and Kandel, E.R. , A cellular mechanism of classical conditioning in Aplysia: Activity-dependent amplification of presynaptic facilitation. Science 1999. 219: p. 400-405.
    20. LeDoux, J.E., Emotion circuits in the brain. Annu. Rev. Neurosci, 2000. 23: p. 155-184..
    21. Sah, P., Faber, E.S., Lopez, D.A., and Power, J., The amygdaloid complex: anatomy and physiology.. Physiol. Rev., 2003. 83: p. 803-834..
    22. Schafe, G.E., Nader, K., Blair, H.T., and LeDoux, J.E. (2001). Memory consolidation of Pavlovian fear conditioning: a cellular and molecular perspective. Trends Neurosci. 24, 540-546, Memory consolidation of Pavlovian fear conditioning: a cellular and molecular perspective. Trends Neurosci., 2001. 24 p. 540-546..
    23. Lynch, G, Synapses, Circuits, and the Beginnings of Memory (Cambridge, MA: The MIT Press), 1986.
    24. Collingridge, G.L., and Bliss, T.V., Memories of NMDA recep-tors and LTP. Trends Neurosci., 1995. 18: p. 54-56..
    25. Tsien, J.Z., et al. Linking Hebb's coincidence-detection to memory formation. Curr. Opin. Neurobiol., 2000. 10: p. 266-273.
    26. Riedel, G, Platt, B., and Micheau, J. (2003). Glutamate receptor function in learning and memory. Behav. Brain Res. 140,1-47.
    27. Dingledine, R., Borges, K., Bowie, D., and Traynelis, S.F., The glutamate receptor ion channels.. Pharmacol. Rev., 1999. 51: p. 7-61.
    28. Malenka, R.C., and Nicoll, R.A., NMDA-receptor-dependent synaptic plasticity: multiple forms and mechanisms. Trends Neurosci 1993. 16: p. 521-527.
    29. Martin, S.J., Grimwood, P.D., and Morris, R.G, Synaptic plasticity and memory: an evaluation of the hypothesis. Annu. Rev. Neurosci., 2000. 23 p. 649-711..
    30. Kiyama, Y., Manabe, T., Sakimura, K., Kawakami, F., Mori, H., and Mishina, M., Increased thresholds for long-term potentiation and contextual learning in mice lacking the NMDA-type glutamate receptor NR1 subunit. J. Neurosci., 1998. 18: p. 6704-6712.
    31. Tang, Y.P., Shimizu, E., Dube, GR., Rampon, C, Kerchner, G.A., Zhuo, M., Liu, G, and Tsien, J.Z., Genetic enhancement of learning and memory in mice. Nature, 1999. 401: p. 63-69.
    32. Tang, Y.P., Wang, H., Feng, R., Kyin, M., and Tsien, J.Z. ()., Differential effects of enrichment on learning and memory function in NR2B transgenic mice. Neuropharmacology 2001. 41: p. 779-790.
    33. Huerta, P.T., Sun, L.D., Wilson, M.A., and Tonegawa, S., Formation of temporal memory requires NMDA receptors within CA1 pyramidal neurons. Neuron, 2000. 25: p. 473-480.
    34. Cui, Z., Wang, H., Tan, Y., Zaia, K.A., Zhang, S., and Tsien, J.Z., Inducible and reversible NR1 knockout reveals crucial role of the NMDA receptor in preserving remote memories in the brain. Neuron, 2004. 41: p. 781-793.
    35. Behe, P., Stern, P., Wyllie, D.J., Nassar, M., Schoepfer, R., and Colquhoun, D., Determination of NMDA NR1 subunit copy number in recombinant NMDA receptors. . Proc. R. Soc. Lond., 1995. 262: p. 205-213.
    36. Premkumar LS, A.A., Stochiometry of recombinant N-methyl-D-aspartate receptor channels inferred from single channel current patterns. J Gen Physiol, 1997. 110: p. 485-502.
    37. Laube B, K.J., Betz H Evidence for a tetrameric structure of recombinant NMDA receptors. J Neurosci, 1998. 18: p. 2954-2961.
    38. Kutsuwada T, K.N., Mori H, Sakimura K, Ksiya E, Araki K, Meguro H, Masaki H, Kumanishi T, Arakawa M, Mishina M. Molecular diversity of the NMDA receptor channel. Nature 358:36-41.
    39. Loftis JM, J.A., The N-methyl-D-aspartate receptor subunit NR2B: localisation, functional properties, regulation and clinical implications. . Pharmacol Ther, 2003. 97: p. 55-85.
    40. Sheng, M., Cummings, J., Roldan, L.A., Jan, Y.N., and Jan, L.Y., Changing subunit composition of heteromeric NMDA receptors during development of rat cortex. Nature, 1994. 368: p. 144-147.
    41. Charton, J.P., Herkert, M., Becker, C.M., and Schroder, H., Cellular and subcellular localization of the 2B-subunit of the NMDA receptor in the adult rat telenecphalon. Brain Res., 1999. 816: p. 609-617.
    42. Monyer, H., Sprengel, R., Schoepfer, R., Herb, A., Higuchi, M., Lomeli, H., Burnashev, N., Sakmann, B., and Seeburg, P.H., Heteromeric NMDA receptors: molecular and functional distinction of subtypes. Science, 1992. 256: p. 1217-1221.
    43. Maren, S., Synaptic mechanisms of associative memory in the amygdala. Neuron, 2005. 47: p. 783-786.
    44. Monyer H, B.N., Laurie DJ, Sakmann B, Seeburg PH Developmental and regional expression in the rat brain and functional properties of four NMDA receptors. Neuron, 1994. 12: p. 529-540.
    45. Erreger K, D.S., Banke TG, et al., Subunit-specific gating controls rat NR1/NR2A and NR1/NR2B NMDA channel kinetics and synaptic signaling profiles. J Physiol. (Lond). 2005. 563: p.345-358.
    46. Husi H, W.M., Choudhary JS, Blackstock WP, Grant SG, Proteomic analysis of NMDA recptor-adhesion protein signaling complexes. Nat. Neurosci., 2000. 3: p. 661-669.
    47. Walikonis RS, J.O., Mann M, Provance DW, Mercer JA, Kennedy MB, Identification of proteins in the postsynaptic density fraction by mass spectrometry. J Neurosci, 2000. 21: p. 1211-1217.
    48. Kennedy, M.B., Signal-processing machines at the postsynaptic density. Science, 2000. 290: p. 750-754.
    49. Sheng, M., Pak DT, Ligand-gated ion channel interactions with cytoskeletal and signaling proteins. Annu. Rev. Physiol., 2000. 62: p. 755-778.
    50. Georg K., et al., Intracellular domains of NMDA receptor subtypes are determinants for long-term potentiation induction. J Neurosci, 2003. 23(34): p. 10791-10799.
    51. Sprengel, R., Importance of the intracellular domain of NR2 subunits for NMDA receptor function in Vivo. Cell, 1998. 92: p. 279-289.
    52. Lundstrom, K., Abenavoli, A., Malgaroli,A., and Ehrengruber, M., Novel Semliki Forest virus vectors with reduced cytotoxicity and temperature sensitivity for long-term enhancement of transgene expression. Mol Therapy, 2003. 7(2): p. 202-209.
    53. Lee, H., and Kim, J.J., Amygdalar NMDA receptors are critical for new fear learning in previously fear-conditioned rats.. J. Neurosci., 1998. 18: p. 8444-8454.
    54. Fanselow, M.S.a.K., J.J., Acquisition of contextual Pavlovian fear conditioning is blocked by application of an NMDA receptor antagonist D,L-2-amino-5-phosphonovaleric acid to the basolateral amygdala. Behav. Neurosci., 1994. 108: p. 210-212.
    55. Maren, S., Aharonov, G, Stote, D.L., and Fanselow, M.S. , N-methyl-D-aspartate receptors in the basolateral amygdala are required for both acquisition and expression of conditional fear in rats. Behav. Neurosci., 1996. 110: p. 1365-1374.
    56. Lidong Liu, T.P.W., Mario F. Pozza et al., Role of NMDA receptor subtypes in governing the direction of hippocampal synaptic plasticity. Science, 2004. 304: p. 1021-1024.
    57. Massey, P.V., et al. , Differential roles of NR2A and NR2B-containing NMDA receptors in cortical long-term potentiation and long-term depression. J Neurosci, 2004. 24(36): p. 7821-7828.
    58. Rodrigues, S.M., Schafe, GE., and LeDoux, J.E., Intra-amygdala blockade of the NR2B subunit of the NMDA receptor disrupts the acquisition but not the expression of fear conditioning. J. Neurosci., 2001. 21: p. 6889-6896.
    59. Williams, K., Modulation and block of ion channels: a new biology of polyamines. . Cell. Signal., 1997. 9: 1-13.
    60. Johnson, T.D., Modulation of channel function by polyamines. Trends Pharmacol. Sci. , 1996. 17: p. 22-27.
    61. Rubin, M.A., Berlese, D.B., Stiegemeier, J.A., Volkweis, M.A., Oliveira, D.M., dos Santos, T.L., Fenili, A.C., and Mello, C.F., Intra-amygdala administration of polyamines modulates fear conditioning in rats. J. Neurosci., 2004. 24: p. 2328-2334.
    62. Bauer, E.P., Schafe, G.E., and LeDoux, J.E., NMDA receptors and L-type voltage-gated calcium channels contribute to long-term potentiation and different components of fear memory formation in the lateral amygdala. J. Neurosci., 2002. 22: p. 5239-5249..
    63. Cull-Candy S, B.S., Farrant M NMDA receptor subunits: diversity, development and disease. Curr Opin Neurobiol 2001. 11: p. 327-335.
    64. Malenka, R.C., and Nicoll, R. A., NMDA-receptor-dependent synaptic plasticity: multiple forms and mechanisms. Trends Neurosci, 1993. 16: p. 521-527.
    65. Holt W, M.S., Muscimol inactivation of the dorsal hippocampus impairs contextual retrieval of fear memory. J Neurosci., 1999. 19 (20): p. 9054-62.
    66. Matus-Amat P, H.E., Barrientos RM, Rudy JW, The role of the dorsal hippocampus in the acquisition and retrieval of context memory representations. J Neurosci, 2004. 24(10): p. 2431-9.
    67. Bast T, Z.W., Feldon J Dorsal hippocampus and classical fear conditioning to tone and context in rats: effects of local NMDA-receptor blockade and stimulation.. Hippocampus, 2003. 13(6): p. 657-75.
    68. Fanselow MS, et al. Differential effects of the N-methyl-D-aspartate antagonist DL-2-amino-5-phosphonovalerate on acquisition of fear auditory and contextual cues. Behav. Neurosci., 1994. 108: p. 235-240.
    69. Paxions, G, The rat brain in stereotaxic coordinates. 1986. Second Edition.
    70. Phillips RG, L.J., Differential contribution of amygdale and hippocampus to cued and contextual fear conditioning. Behav Neurosci 1992. 106: p. 274-285.
    71. Racca C, S.F., Streit P, Roberts JDB, Somogui P, NMDA receptor content of synapses in stratum radiatum of the hippocampal CA1 area.. J Neurosci 2000. 20:2512-2522.
    72. Takumi Y, R.L.V., Laake P, Rinvik, Ottersen OP Different modes of expression of AMPA and NMDA receptors in hippocampal synapses.. Nat Neurosci, 1999. 2: p. 618-624.
    73. Bliss TV., a.C., GL, A synaptic model of memory: long-term potentiation in the hippocampus.. Nature, 1973. 361: p. 31-9.
    74. Liang KC, H.W., Tyan YM, Liao WL., Involvement of hippocampal NMDA and AMPA receptors in acquisition, formation and retrieval of spatial memory in the Morris water maze. Chin J Physiol., 1994. 37(4): p. 201-12.
    75. Lee I, K.R., Differential contributions of dorsal hippocampal subregions to memory acquisition and retrieval in contextual fear-conditioning. Hippocampus, 2004. 14(3): p. 301-10.
    76. Maren S, H.W., Hippocampus and Pavlovian fear conditioning in rats: muscimol infusion into the ventral, but not dorsal, hippocampus impair the acquisition of conditional freezing to an auditory conditional stimulus. Behav Neurosci, 2004. 118(1): p. 97-110.
    77. Melik E, B.E., Ozen E, Ozgunen T., Hypofunction of the dorsal hippocampal NMDA receptors impairs retrieval of memory to partially presented foreground context in a single-trial fear conditioning in rats. Eur Neuropsychopharmacol., 2005. [Epub ahead of print].
    78. Quinn JJ, L.F., Ma QD, Fanselow MS, Dorsal hippocampus NMDA receptors differentially mediate trace and contextual fear conditioning.. Hippocampus., 2005. 15: p. 665-674.
    79. Moiseeva LA, F.L., Difference of neurophysiological mechanisms of delayed reaction and trace conditioned reflex. Neurosci Behav Physiol., 1983. 13(6): p. 464-9.
    1. Barski JJ, K.-K.J.a.S.A., Current views on the structure and function of the hippocampus. Neurol neurochir Pol, 1992. 26: p. 224-31.
    2. Bliss TV., a.C, GL, A synaptic model of memory: long-term potentiation in the hippocampus.. Nature, 1973. 361: p. 31-9.
    3. Tzachamis D, e.a., Tob is a negative regulator of activation that is expressed in anergic and quiescent T cells. Nat Immunol, 2001. 2: p. 1174-82.
    4. Mastsuda, S., RouaultJ., Magaud, J and Berthet, C, In search fo a function for the TIS21/PC3?BTG1/TOB family. FEBS Lett, 2001.497: p. 67-72.
    5. Yoshida, Y.e.a., Mice lacking a transcriptional corepressor Tob are predisposed to cancer. Genes Dev., 2003. 17: p. 1201-1206.
    6. Yoshida Y, M.S., Ikematsu N, Kawamura-Tsuzuku J, Inazawa J, Umemori H, Yamamoto T. , ANA, a novel member of Tob/BTG1 family, is expressed in the ventricular zone of the developing central nervous system. Oncogene, 1998. 16: p. 2687-2693.
    7. Rouault JP, F.N., Guehenneux F, Guillot C, Rimokh R, Wang Q, Berthet C, Moyret-Lalle C, Savatier P, Pain B, Shaw P, Berger R, Samarut J, Magaud JP, Ozturk M, Samarut C, Puisieux A., Identification of BTG2, an antiproliferative p53-dependent component of the DNA damage cellular response pathway. Nat Genet 1996. 14(4): p. 482-486.
    8. Chen PJ, S.A., Kimble J, Ellis RE. , A novel member of the TOB family of proteins controls sexual fate in Caenorhabditis elegans germ cells.. Dev Biol 2000. 217: p. 77-90.
    9. Cortes U, M.-L.C., Falette N, Duriez C, Ghissassi FE, Barnas C, Morel AP, Hainaut P, Magaud JP, Puisieux A. , BTG gene expression in the p53-dependent and -independent cellular response to DNA damage. Mol Carcinog, 2000. 27(2): p. 57-64.
    10. Raburn DJ, H.K., Tsuruta JK, O'Brien DA, Hall SH., Stage-specific expression of B cell translocation gene 1 in rat testic.. Endocrinology 1995. 136: p. 5769-5777.
    11. Rodier A, M.-V.S., Rochard P, Casas F, Cassar-Malek I, Rouault JP, Magaud JP, Mason DY, Wrutniak C, Cabello G , BTG1: a triiodothyronine target involved in the myogenic influence of the hormone. Exp Cell Res, 1999. 249(2): p. 337-348.
    12. El-Ghissassi F et al. (2002) BTG2(TIS21/PC3) induces neuronal differentiation and prevents apoptosis of terminally differentiated PC12 cells. Oncogene 21, -.
    13. El-Ghissassi, F.e.a., BTG2(TIS21/PC3) induces neuronal differentiation and prevents apoptosis of terminally differentiated PC12 cells. Oncogene, 2002. 21: p. 6772-78.
    14. Ito, Y.e.a., Phosphorylation and inactivation of Tob contributes to the progression of papillary carcinoma of the thyroid. Cancer Letters, 2005. 220: p. 237-242.
    15. Iwnaga, K.e.a., Alteration of expression or phosphorylation status of tob, a novel tumor suppressor gene product, is an early event in lung cancer. Cancer Letters, 2003. 202: p. 71-79.
    16. Yoshida Y, T.S., Umemori H, Minowa O, Usui M, Ikematsu N, Hosoda E, Imamura T, Kuno J, Yamashita T, Miyazono K, Noda M, Noda T, Yamamoto T. , Negative regulation of BMP/Smad signaling by Tob in osteoblasts. Cell, 2000. 103(7): p. 1085-1097.
    17. Dragon S, O.N.a.b.R., cAMP and in vivo hyoxia induce tob, ifrl, and fos expression in erythroid cells of the chick embryo.. Am J Physiol Regul Integr Comp Physiol, 2002. 282: p. R1219-1226.
    18. Guzowski, J.H., et al., Antisense oligodeoxynucleotide-mediated disruption of hippocampal cAMP response element binding protein levels impairs consolidation of memory for water maze training. Proc. Natl. Acad. Sci., 1997. 94: p. 2693-2698.
    19. Paxions, G, The rat brain in stereotaxic coordinates. 1986. Second Edition.
    20. Phillips RG, L.J., Differential contribution of amygdale and hippocampus to cued and contextual fear conditioning. Behav Neurosci 1992. 106: p. 274-285.
    21. Izquierdo I, B.D., Mello e Souza T, de Souza MM, Izquierdo LA, Medina JH., Mechanisms for memory types differ. Nature, 1998. 393(635-636.).
    22. McGaugh, J.L., Memory: a century of consolidation. Science 2000. 287: p. 248-251.
    23. Gomi, H.e.a., Learning induces a CDC2-realted protein kinase, KKIAME. J Neurosci, 1999. 24(9530-7).
    24. Berke, J.D., et al., Dopamine and glutamate induce distinct striatal splice forms of Ania-6, an RNA Polymerase II-Associated Cyclin. Neuron, 2001. 32: p. 277-287.
    25. Li, B.S., et al. , Regulation of NMDA receptors by cyclin-dependent kinase-5. Proc Natl Acad Sci USA 2001. 98: p. 12742-7.
    26. Fischer A, S.F., Schrick C, Spiess J and Radulovic J., Cyclin-depent kinase 5 is required for associative learning.. J Neurosci, 2002. 22: p. 3700-7.
    27. Angelo M, P.F., Irvine EE and Giese KP . , Improved reversal learning and altered fear conditioning in transgenic mic with regionally restricted p25 expression. . Eur J Neurosci, 2003. 18: p.423-31.
    28. N., E.S.M., Cyclin S: a new member of the cyclin family plays a role in long-term memory. Eur J Neurosci 2004. 19: p. 365-75.
    29. Suzuki T, e.a., Phosphorylation of three regulatory serines of Tob by Erkl and Erk2 is required for Ras-mediated cell proliferation and transformation. . Genes Dev., 2002(16:): p. 1356-70.
    30. Maekawa M, N.E.a.T.T., Identification of the anti-proliferative protein tob as a MAPK substrate. J Biol Chem., 2002(277): p. 37783-37787.
    31. Suzuki T, M.S., Tsuzuku JK, Yoshida Y, Yamamoto T., A serine/threonine kinase p90rskl phosphorylates the anti-proliferative protein Tob.. Gene Cells, 2001. 6: p. 131-8.
    32. Lubbers, K., and Frotscher, M., Fine structure and synaptic connections of identified neurons in the rat fascia dentate.. Anat Embryol (Berl), 1987. 177: p. 1-14.
    33. Cotman, C.W.a.N.-S., M., Progress in facilitating the recovery of function after central nervous system trauma. Ann N Y Acad Sci, 1985. 457: p. 83-104.
    34. Steward, O., Reorganization of neuronal connections following CNS trauma principles and experimental paradigms. J Neurotrauma, 1989. 6: p. 99-152.
    35. Kelley, M.S., Steward O. , Injury-induced physiological events that may modulate gene expression in neurons and glia. Rev Neurosci, 1997. 8: p. 147-77.
    36. Deller T, a.F.M., Lesion-induced plasticity of central neurons: sprouting of single fibres in the rat hippocampus after unilateral etorhinal cortex lesion. Prog neurobiol, 1997. 53: p. 687-727.
    37. Frotscher, M., Heimrich B, and Deller Sprouting in the hippocampus is layer-specific. Trends Neurosci, 1997. 20: p. 218-23.
    38. Zhou, C.F., Li, Y, Raisman, G, Embryonic entorhinal transplants project selectively to the deafferented entorhinal zone of adult mouse hippocampi, as demonstrated by the use of Thy-1 allelic immunohistochemistry: effect of timing of transplantation in relation to deafferentation,. Neuroscience, 1989. 32: p. 349-362.
    39. Zhou, W., Jiang D., Raisman G and Zhou C., Embryonic entorhinal transplants partially ameliorate the deficits in spatial memory in adult rats with entorhinal cortex lesions. . Brain Res 1998. 792: p. 97-104.
    40. Zhou, W., Raisman G and Zhou C. , Transplanted embryonic entorhinal neurons make functional synapses in adult host hippocampus. Brain Res, 1998. 788: p. 202-6.
    41.Tsien JZ., H.P., Tonegawa S, () The essential role of hippocampal CAl NMDA receptor-dependent synaptic plasticity in spatial memory., The essential role of hippocampal CAl NMDA receptor-dependent synaptic plasticity in spatial memory,. Cell, 1996. 87: p. 1327-1338.
    42. Mansuy IM, M.M., Jacob B, Kandel ER., Bach ME Restricted and regulated overexpression reveals calcineurin as a key component in the transition from short-term to long-term memory,. Cell 1998. 92: p. 39-49.
    43. Malleret G, H.U., Genoux D., Jones MW., Bliss TV, Vanhoose AM., Weitlauf C., Kandel ER., Winder DG, Mansuy IM. , Inducible and reversible enhancement of learning, memory, and long-term potentiation by genetic inhibition of calcineurin. Cell 2001. 104: p. 675-686.
    44. Zhang, H.T., Crissman AM, Dorairaj NR, Chandler LJ., O_Donnell JM. , nhibition of cyclic AMP phosphodiesterase (PDE4) reverses memory deficits associated with NMDA receptor antagonism. Neuropsychopharmacology, 2000. 23: p. 198-204.
    45. Prickaerts,J., et al.., Effects of two selective phosphodiesterase type 5 inhibitor, sildenafil and vardenafil, on object recognition memory and hippocampal cyclic GMP Levels in the rat. Neurosci, 2002. 113: p. 351-61.
    46. Bourtchouladze, et al., B.R.e., A mouse model of Rubinstein-Taybi syndrome: defective long-term memory is ameliorated by inhibitors of phosphodiesterase 4. Proc Natl Acad Sci USA, 2002. 100: p. 10518-22.
    47. Strerneck, E.et al., Selectively enhanced contextual fear conditioning in mice lacking the transcriptional regulator CCAAT/enhancer binding protein delta. Proc Natl Acad Sci USA, 1998. 95: p. 100908-13.
    48. Chen A, M.I., Malleret G, Bartsch D, Verbitsky M, Pavlidis P, Yonan AL, Vronskaya S, Grody MB, Cepeda I, Gilliam TC, Kandel ER. , Inducible enhancement of memory storage and synaptic plasticity in transgenic mice expressing an inhibitor of ATF4 (CREB-2) and C/EBP proteins. Neuron, 2003. 39: p. 655-669.
    1. Paxinos G, Watson C. The Rat Brain in Stereotaxic Coordinates (2nd edition). 1986, Academic Press. San Diego, California, USA.
    2. Morris R G M, Garrud P, Rawlins J N, et al. Place navigation impaired in rats with hippocampal lesions. Nature1982, 297:681-683.
    3. Morris R G M, Anderson, E, Lynch, G S, et al. Selective impairment of learning and blockade of long-term potentiation by an N-methyl-D-aspartate receptor antagonist, AP5. Nature 1986, 319: 774-776.
    4. Sandin J, Nylander I, Georgieva J, et al. Hippocampal dynorphin B injections impair spatial learning in rats: a kappa-opioid receptor-mediated effect. Neuroscience 1998, 85: 375-382.
    5. Blum S, Moore AN, Adams F, et al. A mitogen-activated protein kinase cascade in the CA1/CA2 subfield of the dorsal hippocampus is essential for long-term spatial memory. J Neurosci 1999, 19: 3535~3544.
    6. Cahill L, Prins B, Weber M, McGaugh JL. Beta-adrenergic activation and memory for emotional events. Nature 1994, 371:702-704.
    7. McGaugh J L, Cahill L, Roozendaal B. Involvement of the amygdala in memory storage: interaction with other brain systems. Proc Natl Acad Sci USA 1996, 93: 13508-13514.
    8. Ferry B, Roozendaal B, McGaugh J L. Role of norepinephrine in mediating stress hormone regulation of long-term memory storage: a critical involvement of the amygdala. Biol Psychiatry 1999, 46:1140-1152.
    9. Mabry TR, Gold PE, McCarty R. Age-related changes in plasma catecholamine responses to acute swim stress. Neurobiol Learn Mem 1995, 63: 260-268.
    10. Abel T, Nguyen P V, Barad M, et al. Genetic demonstration of a role for PKA in the late phase of LTP and in hippocampus-based long-term memory. Cell 1997, 88:615-626.
    11. Blum S, Moore AN, Adams F, et al. A mitogen-activated protein kinase cascade in the CA1/CA2 subfield of the dorsal hippocampus is essential for long-term spatial memory. J Neurosci 1999, 19: 3535-3544.
    12. Schafe G E, Nadel N V, Sullivan G M, et al. Memory consolidation for contextual and autitory fear conditioning is dependent on protein synthesis, PKA, and MAP Kinase. Learn Mem 1999, 6: 97-110.
    13. Selcher J C, Atikins C M, Trzaskos J M, et al. A necessity for MAP kinase activation in mammalian spatial learning. Learn Mem 1999, 6: 478-490.
    14. Silva A J, Kogan J H, Frankland P W, et al. CREB and memory. Annu Rev Neurosci 1998, 21: 127-148.
    15. Impey S, Obrietan K, Storm D R. Making new connections: role of ERK/MAP kinase signaling in neuronal plasticity. Neuron 1999, 23: 11-14.
    16. Kandel E R. The molecular biology of memory storage: A dialogue between genes and synapses. Science 2001, 294: 1030-1038.
    17. Guzowski, J.F., & McGaugh, J.L. Antisense oligodeoxynucleotide-mediated disruption of hippocampal cAMP response element binding protein levels impairs consolidation of memory for water maze training. Proc Natl Acad Sci USA 1997, 94: 2693-2698.
    18. Ji, J.-Z., Wang, X.-M. , & Li, B.-M. Deficit in long-term contextual fear memory induced by blockade of P-adrenoceptors in hippocampal CA1 region. European Journal of Neuroscience 2003,17: 1947-1952.
    19. McGaugh, J.L. Memory: a century of consolidation. Science 2000, 287: 248-251.
    20. Nguyen, P.V., Abel, T., & Kendal, E.R. Requirement of a critical period of transcription for induction of a late phase of LTP. Science 1994, 265: 1104-1107.
    21. Bevilaqua, L., Ardenghi, P., Schroder, N., Bromberg, E., Schmitz, P.K., Schaeffer, E., Quevedo, J., Bianchin, M., Walz, R., Medina, J.H., & Izquierdo, I. Drugs acting upon the cyclic adenosine monophosphate/protein kinase A signalling pathway modulate memory consolidation when given late after training into rat hippocampus but not amygdala. Behavioral Pharmacolology 1997, 8: 331-338.
    22. Bourtchouladze, R., Abel, T., Berman, N., Gordon, R., Lapidus, K., & Kandel, E.R. Different training procedures recruit either one or two critical periods for contextual memory consolidation, each of which requires protein synthesis and PKA. Learn Mem 1998, 5: 365-374.
    23. Roberson, E.D., English, J.D., Adams, J.P., Selcher, J.C., Kondratick, C, & Sweatt, J.D. The mitogen-activated protein kinase cascade couples PKA and PKC to cAMP response element binding protein phosphorylation in area CA1 of hippocampus. Journal of Neuroscience 1999, 19: 4337-4348.
    1. Doron, N.N.a.L., J.E. , Organization of projections to the lateral amygdala from auditory and visual areas of the thalamus in the rat. J. Comp. Neurol., 1999. 412: p. 383-409.
    2. Davis, M.a.L., Y., Fear and anxiety: Possible roles of the amygdala and bed nucleus of the stria terminalis. Cognit. Emotion, 1998. 12: p. 277-305.
    3. Amorapanth, P., LeDoux, J.E., and Nader, K., Different lateral amygdala outputs mediate reactions and actions elicited by a fear-arousing stimulus. Nat. Neurosci., 2000. 3: p. 74-79.
    4. Cajal, S.R., Histologie du systeme nerveux de I'bomme et des vertebres, (ed. A. Maloine) Paris, France. 1909
    5. Hebb, D.O., The Organization of behavior. John Wiley and Sons, New York. 1949.
    6. Eccles, J.C., Conscious experience and memory. Academic address. . Recent Adv. Biol. Psychiatry, 1965. 8: p. 235-256
    7. Kandel, E.R., and Spencer, W.A., Cellular neurophysiological approaches to the study of learning. Physiol. Rev., 1968. 48:p. 65-134.
    8. McNaughton, B.L., Douglas, R.M., and Goddard, GV. , Synaptic enhancement in fascia dentata: Cooperativity among coactive afferents.. Brain Res., 1978. 157: p. 277-293.
    9. Levy, W.B.a.S., O. 1979. Synapses as associative memory elements in the hippocampal formation. Brain Res. 175: 233-245., Synapses as associative memory elements in the hippocampal formation.. Brain Res., 1979. 175: p. 233-245..
    10. Hawkins, R.D., Abrams, T.W., Carew, T.J., and Kandel, E.R. , A cellular mechanism of classical conditioning in Aplysia: Activity-dependent amplification of presynaptic facilitation.. Science 1999 219: p. 400-405..
    11. Lynch, G, Synapses, Circuits, and the Beginnings of Memory (Cambridge, MA: The MIT Press). 1986.
    12. Bliss TV., a.C, GL, A synaptic model of memory: long-term potentiation in the hippocampus.. Nature, 1973. 361: p. 31-9.
    13. Malenka, R.C., and Nicoll, R.A. , Long-term potentiation-a decade of progress? Science, 1999. 285: p.1870-1874..
    14. Martin, S.J., Grimwood, P.D., and Morris, R.G , Synaptic plasticity and memory: an evaluation of the hypothesis.. Annu. Rev. Neurosci., 2000. 23:p. 649-711..
    15. Andersen, P., et al. Specific long-lasting potentiation of synaptic transmission in hippocampal slices. Nature, 1977. 266: p. 736-737.
    16. Brown, T.H., Chapman, P.F., Kairiss, E.W., and Keenan, C.L., Long-term synaptic potentiation. Science, 1988. 242: p. 724-728.
    17. Aniksztejn, L.a.B.-A., Y. , Novel form of long-term potentiation produced by a K.+ channel blocker in the hippocampus. Nature, 1991. 349: p. 67-69.
    18. Blair, H.T., Schafe, GE., Bauer, E.P., Rodrigues, S.M., and LeDoux, J.E. , Synaptic plasticity in the lateral amygdala: a cellular hypothesis of fear conditioning. Learn. Mem., 2001. 8: p. 229-242.
    19. Yuste, R., and Tank, D.W., Dendritic integration in mammalian neurons, a after Neuron, 1996. 16: p. 701-716.
    20. Stuart, G, Spruston, N., Sakmann, B., and Hausser, M. , Action potential initiation and backpropagation in neurons of the mammalian CNS. . Trends Neurosci. , 1997. 20: p. 125-131.
    21. Magee, J.C., and Johnston, D., A synaptically controlled, associative signal for Hebbian plasticity in hippocampal neurons. Science, 1997. 275: p. 209-213.
    22. Rogan, M.T., Staubli, U.V., and LeDoux, J.E. 390, 604-607., Fear conditioning induces associative long-term potentiation in the amygdala. . Nature 1997. 390: p. 604-607.
    23. Rogan, M.T., and LeDoux, J.E. , LTP is accompanied by commensurate enhancement of auditory-evoked responses in a fear conditioning circuit. Neuron, 1995. 15: p. 127-136..
    24. Collins, D.R.a.P., D. , Differential fear conditioning induces reciprocal changes in the sensory responses of lateral amygdale neurons to the CS(+) and CS(-). Learn. Mem., 2000. 7: p. 97-103.
    25. Blair, H.T.a.L., J.E. , Single-unit recording of auditory and nociceptive responses from lateral amygdala neurons during auditory fear conditioning in freely behaving rats. Soc. Neurosci. Abs., 2000. 26: p. 1254.
    26. Huang, Y.Y., and Kandel, E.R., Postsynaptic induction and PKA-dependent expression of LTP in the lateral amygdala. Neuron 1998. 21: p. 169-178..
    27. Huang, Y.Y., Martin, K.C., and Kandel, E.R. , Both protein kinase A and mitogen-activated protein kinase are required in the amygdala for the macromolecular synthesis-dependent late phase of long-term potentiation. J. Neurosci., 2000. 20: p. 6317-6325.
    28. Lee, O., Lee, C.J., and Choi, S. , Induction mechanisms for L-LTP at thalamic input synapses to the lateral amygdala: require-ment of mGluR5 activation. Neuroreport, 2002. 13: p. 685-691.
    29. Bauer, E.P., Schafe, GE., and LeDoux, J.E., NMDA receptors and L-type voltage-gated calcium channels contribute to long-term potentiation and different components of fear memory formation in the lateral amygdala.. J. Neurosci., 2002. 22: p. 5239-5249..
    30. Weisskopf, M.G, and LeDoux, J.E. , Distinct populations of NMDA receptors at subcortical and cortical inputs to principal cells of the lateral amygdala. J. Neurophysiol., 1999. 81: p. 930-934.
    31. Bauer, E.P., Schafe, G.E., and LeDoux, J.E., Different induction protocols recruit NMDA and L-type calcium channel-dependent LTP in the lateral amygdala:Correlation with fear memory.. Soc. Neurosci.Abs, 2000. 26: p. 1253.
    32. Fanselow, M.S., and LeDoux, J.E. , Why we think plasticity underlying Pavlovian fear conditioning occurs in the basolateral amygdala.. Neuron, 1999. 23: p. 229-232.
    33. LeDoux, J.E., Emotion circuits in the brain. Annu. Rev. Neurosci, 2000. 23: p. 155-184..
    34. Dudai, Y.T.et al., New York., The neurobiology of memory. Oxford University Press, New York.. 1989.
    35. Maren, S., Aharonov, G, Stote, D.L., and Fanselow, M.S. , N-methyl-D-aspartate receptors in the basolateral amygdala are required for both acquisition and expression of conditional fear in rats. Behav. Neurosci., 1996. 110: p. 1365-1374.
    36. Lee, H., and Kim, J.J. , Amygdalar NMDA receptors are critical for new fear learning in previously fear-conditioned rats.. J. Neurosci., 1998. 18: p. 8444-8454.
    37. Walker, D.L., and Davis, M. (). , The role of amygdala glutamate receptors in fear learning, fear-potentiated startle, and extinction.. Pharmacol. Biochem. Behav., 2002. 71: p. 379-392.
    38. Miserendino, M.J., Sananes, C.B., Melia, K.R., and Davis, M. , Blocking of acquisition but not expression of conditioned fear-potentiated startle by NMDA antagonists in the amygdala. Nature, 1990. 345: p. 716-718.
    39. Dingledine, R., Borges, K., Bowie, D., and Traynelis, S.F. , The glutamate receptor ion channels.. Pharmacol. Rev., 1999. 51: p. 7-61.
    40. Cull-Candy S, B.S., Farrant M NMDA receptor subunits: diversity, development and disease. Curr Opin Neurobiol 2001. 11: p. 327-335.
    41. Behe, P., Stern, P., Wyllie, D.J., Nassar, M., Schoepfer, R., and Colquhoun, D. , Determination of NMDA NRl subunit copy number in recombinant NMDA receptors. . Proc. R. Soc. Lond., 1995. 262: p. 205-213.
    42. Laube B, K.J., Betz H Evidence for a tetrameric structure of recombinant NMDA receptors.. J Neurosci, 1998. 18: p. 2954-2961.
    43. Monyer, H., Sprengel, R., Schoepfer, R., Herb, A., Higuchi, M., Lomeli, H., Burnashev, N., Sakmann, B., and Seeburg, P.H., Heteromeric NMDA receptors: molecular and functional distinction of subtypes. Science, 1992. 256: p. 1217-1221.
    44. Tsien, J.Z.L.H.s.c.-d.t.m.f.C.O.N., 266-273. van Rossum, D., and Hanisch, U.K. (1999). Cytoskeletal dynamics in dendritic spines: direct modulation by glutamate receptors? Trends Neurosci. 22, 290-295. , Linking Hebb's coincidence-detection to memory formation. Curr. Opin. Neurobiol., 2000. 10: p. 266-273.
    45. Tang, Y.P., Shimizu, E., Dube, G.R., Rampon, C, Kerchner, G.A., Zhuo, M., Liu, G, and Tsien, J.Z., Genetic enhancement of learning and memory in mice. Nature, 1999. 401: p. 63-69.
    46. Rodrigues, S.M., Schafe, G.E., and LeDoux, J.E., Intra-amygdala blockade of the NR2B subunit of the NMDA receptor disrupts the acquisition but not the expression of fear conditioning. J. Neurosci., 2001. 21: p. 6889-6896.
    47. Erreger K, D.S., Banke TG, et al. , Subunit-specific gating controls rat NR1/NR2A and NR1/NR2B NMDA channel kinetics and synaptic signaling profiles. . J Physiol. (Lond). 2005. 563: p.345-358.
    48. Kandel ER, S.J.a.J.T., Principle of neural science (McGraw-Hill, New York, N.Y.). 2000.
    49. Rempel-Clower NL, Z.S., Squire LR and Amaral DG , Three cases of enduring memory impairment after bilateral damage limited to the hippocmapal formation. J Neurosci, 1996. 16: p.5233-55.
    50. Zola, S.M., et al., Impaired recognition memory in monkeys after damage limited to the hippocampal region.. J Neurosci 2000. 20: p. 451-63.
    51. Richter-Levin, G, The amygdala, the hippocampus, and emotional modulation of memory. The Neuroxientist, 2004. 10(1): p. 31-39.
    52. Kim, J.J., Rison, R.A., Fanselow, M.S., Effects of amygdala, hippocampus, and periaqueductal gray lesions on short- and long-term contextual fear. . Behav. Neurosci., 1993. 107: p.1093-1098.
    53. Young, S.J., Bohenek, D.L., Fanselow, M.S., NMDA processes mediate anterograde amnesia of contextual fear conditioning induced by hippocampal damage: immunizatin against amnesia by context preexposure.. Behav. Neurosci., 1994.108: p. 19-29.
    54. Kim, J.J., Fanselow, M.S., Modality-specific retrograde amnesia of fear. Science, 1992. 256: p. 675-677.
    55. Maren S, A.G, Fanselow MS. (1997). Neurotoxic lesions of the dorsal hippocampus and Pavlovian fear conditioning in rats. Behav Brain Res 88: 261-274., Neurotoxic lesions of the dorsal hippocampus and Pavlovian fear conditioning in rats. Behav Brain Res 1997. 88: p. 261-274..
    56. Lee I, K.R., Differential contributions of dorsal hippocampal subregions to memory acquisition and retrieval in contextual fear-conditioning. Hippocampus, 2004. 14(3): p. 301-10.
    57. Matus-Amat P, H.E., Barrientos RM, Rudy JW, The role of the dorsal hippocampus in the acquisition and retrieval of context memory representations. J Neurosci, 2004. 24(10): p. 2431-9.
    58. Teyler, T.J., DiScenna, P., Long-term potentiation. Ann Rev Neurosci, 1987. 10: p. 131-61.
    59. Lidong Liu, et al., Role of NMDA receptor subtypes in governing the direction of hippocampal synaptic plasticity. Science, 2004. 304: p. 1021-1024.
    60. Bast T, et al. Dorsal hippocampus and classical fear conditioning to tone and context in rats: effects of local NMDA-receptor blockade and stimulation. Hippocampus, 2003. 13(6): p. 657-75.
    61. Fanselow, M.S., Kim., J.J., Acquisition of contextual Pavlovian fear conditioning is blocked by application of an NMDA receptor antagonist D,L-2-amino-5-phosphonovaleric acid to the basolateral amygdala. Behav. Neurosci., 1994. 108: p. 210-212.
    62. Zhao, M.Ge.a., Roles of NMDA NR2B subtype receptor in prefrontal long-term potentiation and contextual fear memory. Neuron, 2005. 47: p. 859-872.
    63. Melik E, B.E., Ozen E, Ozgunen T., Hypofunction of the dorsal hippocampal NMDA receptors impairs retrieval of memory to partially presented foreground context in a single-trial fear conditioning in rats. Eur Neuropsychopharmacol., 2005. [Epub ahead of print].
    64. Devinsky, O., Morrell, M.J., and Vogt, B.A., Contributions of anterior cingulate cortex to behavior. Brain, 1995. 118: p. 279-306.
    65. Wiltgen, B.J., Brown R.A., Talton, L.E., and Silva A.J., New circuits for old memories: the role of the neocortex in consolidaiton. Neuron, 2004. 44(101-108).
    66. Zhuo, M., Calcium calmodulin-dependent protein kinase IV is required for fear memory. Nat Neurosci, 2002. 5: p. 573-579.
    67. Frankland, P.W., O'Brien,C.,Ohno,M., et al., alpha-CaMKII-dependent plasticity in the cortex is required for permanent memory. Nature, 2001. 411: p. 309-313.
    68. Maviel, T.e.a., Sites of meocortical reorganization critical for remote spatial memory. Science, 2004. 305: p. 96-99.
    69. Cui, Z., Wang, H., Tan, Y., Zaia, K.A., Zhang, S., and Tsien, J.Z. , Inducible and reversible NR1 knockout reveals crucial role of the NMDA receptor in preserving remote memories in the brain.. Neuron, 2004. 41: p. 781-793.
    70. Johansen, J.P., and Fields, H.L., Glutamatergic activation of anterior cingulate cortex produces an aversive teaching signal. Nat Neurosci, 2004. 7: p. 398-403.
    71. knight, D.C., et al., Neural substrates mediating human delay and trace fear conditioning. J.Neurosci., 2004. 24: p. 21-228.
    72. Shallice, T., et al., Brain regions associated with acquisition and retrieval of verbal episodic memory. Nature, 1994. 368: p. 633-635.
    73. Tang, J.e.a., Pavlovian fear memory induced by activation in the anterior cingulate cortex. Molecular Pain, 2005. 1: p. 6.
    74. Morrow, B.A., et al., An antisense oligonucleotide reverses the footshock-induced expression of fos in the rat medial prefrontal cortex and the subsequent expression of conditioned fear-induced immobility. J. Neurosci., 1999. 9: p. 5666-5673.
    75. Sah, P., and Nicoll R.A., Mechanisms underlying potentiation of synaptic transmission in rat anterior cingulate cortex in vitro. J.Physiol., 1991. 433(615-630).
    76. Wei F., L., P. and Zhuo, M, Loss of synaptic depression in mammalian anterior cingulate cortex after amputation. J. Neurosci., 1999. 19: p. 9346-9354.
    77. Gewirtz, J.C.e.a., Normal conditioned inhibition and extinction of freezing and fear-potentiated startle following electrolytic lesions of medial prefrontal cortex. 111, 1997(712-726).
    78. Morgan, M.A., and LeDoux, J.E.,, Contribution of ventrolateral prefrontal cortex to the acquisition and extinction of conditioned fear in rats. Neurobiol. learn. Mem, 1999. 72: p. 244-251.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700