无刷直流电动机直接转矩控制的一体化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文核心内容是无刷直流电动机直接转矩控制技术的研究,包括理论与实践两个方面。迄今为止,直接转矩控制技术已成功地应用于异步电动机和正弦波永磁同步电动机,但无刷直流电动机现在仍然是直接转矩控制技术尚未深入涉及的领域,所以该项研究具有理论意义。直接转矩控制技术具有优良的动态性能,实现简单,也便于实现无速度传感器运行。对于结构简单的无刷直流电动机而言,应用该技术有望达到两个目的:首先是提高无刷直流电动机调速系统的动、静态性能,其次是不增加系统的复杂性,保持无刷直流电动机调速系统原有的简洁,所以本文研究具有现实意义。
     本文提出了无刷直流电动机直接转矩控制方案,通过转矩滞环比较器与磁链滞环比较器选择最优电压空间矢量作用于电机,定子磁链跟踪圆锯齿轨迹。解决了以下三个具有普遍性的问题:两相导通模式下的电压空间矢量计算;两相导通模式下的磁链计算;非正弦量的坐标变换,为后续的进一步深入研究奠定了基础。
     直接转矩控制方案中系统比较复杂,为解决这一不足,本文提出了无刷直流电动机直接自控制方案,将直接自控制技术首次应用于无刷直流电动机。该方案采用三相导通方式,不存在关断相,定子磁链跟踪六边形轨迹,系统组成简单,实现容易。
     直接转矩控制方案实现起来比较复杂,直接自控制方案的电流脉动较大。为解决上述两种方案的不足,达到增强实用性的目的,本文在前述研究的基础上提出了一种全新的理论:无刷直流电动机超空间矢量理论。该理论采用两相导通方式,使用三维正交空间坐标系,将关断相的电压放置到与xy平面垂直的z轴,电压空间矢量与磁链空间矢量均在三维空间中运动变化,并将其定义为超空间矢量,利用电压超空间矢量在xy平面上的投影来控制定子磁链超空间矢量在xy平面上的投影。根据该理论构建的系统在本文所提出的三种方案中实现最简单。
     因为电机仅是调速系统的一个组成部分,把系统割裂开来的研究方法是不完整的。本文根据一体化的思想,将研究范围延伸到电机本体上,以期望取得整体最优控制效果。首先分析了无刷直流电动机参数与电流脉动的关系,包括稳态时的电流脉动与起动过程中的电流冲击,指出影响电流脉动的主要电机参数是自感。针对无刷直流电动机自感偏小的特点,分析了增大自感的方法及其优缺点。
     将一体化的思想从无刷直流电动机延伸到正弦波永磁同步电动机,分析了三个关键参数:直轴电抗、交轴电抗、永磁体磁链对调速性能的影响,提出一种图形优选法来优选这三个参数,使得整个调速系统的利用率最大。
The core content was direct torque control of brushless direct current motor, including theory and experiment. Up to now, direct torque control had used successfully in asynchronous motor and permanent magnet synchronous motor, but not in brushless direct current motor. Therefore, the research of this paper had theory creation. Direct torque control had excellent dynamic performance, easy realization, convenient for realization of non-velocity sensor. For the simple structure brushless direct current motor,application of direct torque control would acquire two result: firstly, the dynamic and stable performance of brushless direct current motor get improvement, secondly, the complex of brushless direct current motor control system did not increase. So the research of this paper get practical meaning.
     The direct torque control strategy of brushless direct current motor was proposed. The optimal voltage space vector was chosen to control the motor by torque comparator and flux comparator. The locus of stator flux was sawtoothed circle. The direct torque control strategy created whole fundamental theory, and solved three problem: voltage vector’s calculation under two-phase conduction mode; the flux calculation under two-phase conduction mode; the coordinate transformation of non-sinusoidal variable. That was the foundation of next research.
     To solve the complex of direct torque control strategy, the direct self control strategy of brushless direct current motor was proposed. The strategy used three phase conduction mode to eliminate turn-off phase, as a result, the control system get simplified. The stator flux followed hexagon locus. The system’s combination was simple and easily realization.
     The direct torque control strategy was complicated, and the direct self control strategy had the deficiency of current pulsation. To solve these two problems, a newly theory: hyper space vector theory of brushless direct current motor was proposed. The theory used two phase conduction mode, and three dimension space coordinate was applied. The voltage of turn-off phase was put on the z axis, which perpendicular to xy plane. The voltage space vector and flux space vector moved in three dimension space. The project of voltage space vector were used to control the project of flux space vector. The control system of hyper space vector theory was simplest within the three mentioned strategy. It had bright development in practice.
     The motor was only a fraction of speed control system, it was not a scientific method to research only one part of a whole system. Besides the control strategy, the aim of this paper was to research the motor, so as the whole system performance get optimized. The relation between the brushless direct current motor parameters and current pulsation was analyzed firstly, including stable current pulsation and start-up current shock. The critical parameter was induction. As the induction of brushless direct current motor was always small, the paper analyzed the method how to increase the induction, with their merits and disadvantage.
     The permanent magnet synchronous motor was analysed according to the whole system theory, and three critical parameters were selected: direct axis reactance, quadrature axis reactance, permanent magnet flux. The effects of these three parameter on speed control performance was analyzed, furthermore, a graphic method was proposed to optimize these three parameter, as a result, the control system maintained maximum utilization.
引文
[1] L Zhong,M F Rahman,W Y Hu,et al. Analysis of Direct Torque Control in Permanent Magnet Synchronous Motor Drives[J]. IEEE Trans Power Electronics,1997,12(3):528-536.
    [2]唐任远.现代永磁电机理论与设计[M].北京,机械工业出版社,2002.
    [3] Pragasen Pillay,Ramu Krishman. Modeling Simulation and Analysis of Permanent Magnet Motor Drives Part I:the Permanent Magnet Synchronous Motor Drives[J]. IEEE Trans Ind applicat,1989,25(2):265-273.
    [4] T M Jahns. Flux-Weakening Regime Operation of an Interior Permanent Magnet Synchronous Motor Dirve[J]. IEEE Trans Ind applicat,1987,23(4):681-689.
    [5] T Sebastian,G R Slemon. Operation Limits of Inverter-Driven Permanent Magnet Motor Drives[J]. IEEE Trans Ind appl,1987,33:327-333.
    [6] W L Soong. Theoretical Limitations to the Field-Weakening Performance of the Five Classes of Brushless Synchronous AC Motor Drive[C]. Electrical Machines and Drives Conference,1993:127-132.
    [7] Yoji Takeda,Takao Hirasa. Current Phase Control Methods for Permanent Magnet Synchronous Motors Condidering Saliency. PESC’88,1988:409-414.
    [8] Roy S Colby,D W Novoty. Efficient Operation of Surface Mounted PM Synchronous Motors. IEEE 1986:806-813.
    [9] R Dhaouadi. Analysis of Current Regulated Voltage Source Inverter for Permanent Magnet Synchronous Motor Drives and Extended Speed Ranges[J]. IEEE Trans Energy Conversion, 1990,5(1):137-144.
    [10] S Morimoto. Expansion of Operating Limits for Permanent Magnet Motor by Current Vector Control Considering Inverter Capacity[J]. IEEE Trans Ind applicat,1990: 866-871.
    [11] S Morimoto,M Sanada. Wide-Speed Operation of Interior Permanent Magnet Synchronous Motors with High-Performance Current Regulator[J]. IEEE Trans Ind Applica,1994, 30(4):920-926.
    [12] S Morimoto,K Hantanaka,Yi Tong,et al. Servo Drive System and Control Characteristics of Salient Pole PM Synchronous Motor. IEEE Trans.On IA, 1993,29(2):338-341.
    [13] Shigeo Morimoto,Masayudi Sanada,Yoji Takeda. Effects and Compensation of Magnetic Saturation in Flux-Weakening Controlled Permanent Magnet Synchronous Motor Drives. IEEE Trans. On IA, 1994,30(4):1632-1637.
    [14] R F Schiferl. Power Capability of Salient Pole Permanent Magnet Synchronous Motor in Variable Speed Drive Applications[J]. IEEE Trans Ind applicat,1990,26:115-123.
    [15] A K Adnanes. Torque Analysis of Permanent Magnet Synchronous Motors[C]. Power Electronics Specialiste Conference,1991:695-701.
    [16] A K Adnanes. Optimal Torque Performance in PMSM Drives above Rated Speed[C]. Ind Appl Society Annual Meeting,1991:169-175.
    [17] R Monajemy. Implementation Strategies for Concurrent Flux Weakening and Torque Control of the PM Synchronous Motor[C]. Ind Applications Conference,1995:238-245.
    [18] L Qinghua. Torque Control of IPMSM Drives using Direct Flux Control for Wide Speed Operation[J]. Electric Machines and Drives Conference,IEMDC'03, 2003:188-193.
    [19] B K Bose. A High-Performance Inverter-Fed Drive System of an Interior Permanent Magnet Synchronous Machine[J]. IEEE Trans Ind Application,1988,24(6):987-997.
    [20] J M Kim. Speed Control of Interior Permanent Magnet Synchronous Motor Drive for the Flux Weakening Operation[J]. IEEE Trans Ind applicat,1997,33(1):43-48.
    [21] M Depenbrock. Direkte Salbstregelung (DSR) für hochdynamische Drehfeldantriebe mit Stromeichter. Speisung,etz,Archiv,1985,(7):211-218.
    [22] Depenbrock M. Direct Self-Control(DSC)of Inverter-Fed Induction Machine[J]. IEEE Trans Power Electro,1988,3(4):420-429.
    [23] Depenbrock M. Direct self-control (DSC) of inverter-fed induction machine Power Electronics. IEEE Transactions on 1988,420-429.
    [24] U Baader,Depenbrock M.Direct self control (DSC) of inverter-fed induction machine:a basis for speed control without speed measurement[J]. IEEE Trans Ind Applica,1992, 28(3):581-588.
    [25] Fracchia M,Marchesoni M. Direct self control versus field orientation in high power induction motor drives. AFRICON '92 Proceedings:115-118.
    [26] Walczyna A M. Reduction of current and flux distortions of VSI-fed induction motors with direct self-control. Power Electronics and Applications,1993,Fifth European Conference vol.4:110-114.
    [27] Mir S A,Zinger D S,Elbuluk M E. Fuzzy implementation of direct self control ofinduction machines. Ind Application Society Annual Meeting,1993, vol.1:710-717.
    [28] Steimel A, Wiesemann J. Further development of direct self control for application in electric traction. ISIE '96 vol.1:180-185.
    [29] Bonanno F,Consoli A, Raciti A,et al. An innovative direct self-control scheme for induction motor drives Power Electronics. IEEE Transactions,1997:800-806.
    [30] Huang Nianci, Zhao Lihua, Cui Yingbo. A direct self-control system of induction motor with resonant DC link. POWERCON '98, vol.1:630-634.
    [31] Jiuchun Jiang,Xide Zhou,Weige Zhang. An improved DSC control of IM using band width prediction. 3th PIEMC 2000,vol.1:446-451.
    [32] Shi K L,Chan T F,Wong Y K,et al. Direct self control of induction motor based on neural network. Ind Application Conference,2000,vol.3:1380-1387.
    [33] Martin Janben, Andreas Steimel. Direct self control with minimum torque ripple and high dynamics for a double three-level GTO inverter drive[J]. IEEE Trans Ind Electro,2002, 49(5):1065-1071.
    [34] Steimel A. Direct self-control and synchronous pulse techniques for high-power traction inverters in comparison[J]. IEEE Trans Ind Electro,2004,51(4):810-820.
    [35] Giuseppe S,Buja Marian,P Kazmierkowski. Direct Torque Control of PWM Inverter-Fed AC Motors-A Survey[J]. IEEE Trans Ind Electronics,2004,51(4):744-757.
    [36] Song Jianguo,Chen Quanshi. Research of Electric Vehicle IM Controller Based On Space Vector Modulation Direct Torque Control. 8th ICEMS 2005:1617-1620.
    [37] Andezel M Trzynadlowski. Control of Induction Motors(异步电动机的控制)[M].北京:机械工业出版社,2003.
    [38]黄济荣.直接自控制-现代机车交流传动闭环控制策略.机车电传动,1994,5:1-8.
    [39]邵公寅.交流传动系统的直接自控制.机车电传动,1995,1:18-23.
    [40]程泓生.异步感应电动机直接力矩控制的理论基础.机车电传动,1996,4:18-22.
    [41]冯江华,程高华,黄松涛.异步电动机的直接转矩控制.电工技术学报,1999,14(3):29-33.
    [42]悉国华.基于DSC的电力牵引交流传动控制系统[J].机车电传动,2001,2:1-6.
    [43] Isal Takahashi,Toshihiko Noguchi. A quick-response and high-efficiency control strategy of an Induction Motor[J]. IEEE Trans Ind Application,1986,22(5):820-827.
    [44] Tiitinen P,Surandra M. The next generation motor control method-DTC direct torque control[C]. Power Electro Drives and Energy Systems for Industrial Growth,1996,1:37-43.
    [45] Chris French,Paul Acarnley. Direct Torque Control of Permanent Magnet Drives[J]. IEEE Trans Ind Application,1996,32(5):1080-1088.
    [46] L Zhong,M F Rahman,W Y Hu,et al.Analysis of Direct Torque Control in Permanent Magnet Synchronous Motor Drives[J].IEEE Trans Power Electronics,1997,12(3):528-536.
    [47] M F Rahman,L Zhong,W Y Hu,et al. A Direct Torque Controller for Permanent Magnet Synchronous Motor Drives[C]. IEEE Electric Machines and Drives Conference,1997: TD1-2.1-TD1-2.3.
    [48] M F Rahman,L Zhong,W Y Hu,et al. An Investigation of Direct and Indirect Torque Controllers for PM Synchronous Motor Dirves[C]. IEEE Power Electronics and Drive Systems Proceedings,1997:519-523.
    [49] Hu Yuwen,Tian Cun,Gu yikang,et al. In-depth research on direct torque control of permanent magnet synchronous motor[C]. 28th Annual Conference of the IEEE Industrial Electronics Society,Sevilla,Spain,2002:1060-1065.
    [50] M Zordan,P Vas,M Rashed. Field-Weakening in Vector Controlled and DTC PMSM Dirves,a Comparative Analysis[J]. IEE Power Electronics and Variable Speed Drives,2000,475: 493-499.
    [51]史涔微,邱建琪,金孟加,等.永磁同步电动机直接转矩控制方法的比较研究[J].中国电机工程学报,2005,25(16):141-146.
    [52]窦汝振,温旭辉.永磁同步电动机直接转矩控制的弱磁运行分析[J].中国电机工程学报,2005,25(12):117-121.
    [53]刘军,刘丁,吴浦升,等.基于模糊控制调节电压向量作用时间策略的永磁同步电机直接转矩控制仿真研究[J].中国电机工程学报,2004,24(10):148-152.
    [54] Jawad Faiz,S Hossein Mohseni-Zonoozi. A Novel Technique for Estimation and Control of Stator Flux of a Salient-Pole PMSM in DTC Method Based on MTPF[J]. IEEE Trans Ind Electro,2003,50(2):262-271.
    [55] M F Rahman,L Zhong,K W Lim. A Direct Torque-Controlled Interior Permanent Magnet Synchronous Motor Dirve Incorporating Field Weakening[J]. IEEE Trans Ind applicat,1998,34(6):1246-1253.
    [56] L Zhong,M F Rahman,W Y Hu,K W Lim. A Direct Torque Controller for Permanent Magnet Synchronous Motor Drives[J]. IEEE Trans Energy Conversion,1999,14(3):637-642.
    [57] M F Rahman,L Zhong,K W Lim. A Direct Torque Controlled Permanent Magnet Synchronous Motor Dirve without a Speed Sensor[C].IEEE Electric Machines and Drives International Conference IEMD '99,1999:123-125.
    [58] L Tang,L Zhong,M F Rahman,et al. A Novel Direct Torque Control for Interior Permanent Magnet Synchronous Machine Dirve System with Low Ripple in Torque and Flux-A Speed Sensorless Approach[C]. IEEE Ind Application Conference,2002,1:104-111.
    [59] Jin Mengjia,Shi Cenwei,Qiu Jianqi,et al. Stator Flux Estimation for Direct Torque Controlled Surface Mounted Permanent Magnet Synchronous Motor Drives over Wide Speed Region. ICEMS,2005:350-354.
    [60] Dan Sun,Jian Guo Zhu,Yi Kang He. Continuous direct torque control of permanent magnet synchronous motor based on SVM. ICEMS 2003,2:596-599.
    [61] Swierczynski D,Kazmierkowski M P. Direct torque control of permanent magnet synchronous motor (PMSM) using space vector modulation (DTC-SVM)-simulation and experimental results. IECON,2002,(1):751-755.
    [62] Tripathi A,Khambadkone A M,Panda S K. Torque ripple analysis and dynamic performance of a space vector modulation based control method for AC-drives. IEEE Trans Power Electronics,2005:485-492.
    [63] Zhuang Xu,Rahman M F. Sensorless sliding mode control of an interior permanent magnet synchronous motor based on extended Kalman filter Power Electronics and Drive Systems. PEDS,2003,1:722-727.
    [64] Zhuang Xu,Rahman M F. Sensorless sliding mode control of an interior permanent magnet synchronous motor based on extended Kalman filter. PEDS,2003,1:722-727.
    [65] Yoshida K,Dai Z. Sensorless DTC propulsion of a 1/2-scale controlled-PM LSM vehicle with minimum energy-loss attractive-levitation. PCC-Osaka,2002,1:54-59.
    [66] Yoshida K,Dai Z,Sato M. Sensorless DTC propulsion control of PM LSM vehicle. PIEMC 2000,1:191-196.
    [67] Minghua Fu,Longya Xu. A sensorless direct torque control technique for permanent magnet synchronous motors. IAS,1999,1:159-164.
    [68] Parsa L,Toliyat H A. Sensorless direct torque control of five-phase interior permanent magnet motor drives. 39th IAS,2004,2:992-999.
    [69] Dan Sun,Yikang He,Zhu J G. Sensorless direct torque control for permanent magnet synchronous motor based on fuzzy logic. 4th IPEMC,2004,3:1286-1291.
    [70] Jun Hu,Bin Wu. New Integration algorithms for Estimating Motor Flux over a Wide Speed Range. IEEE Trans on Power Electronics,1998,13(5):969-977.
    [71] Mizutani,R Takeshita, T Matsui. Current model-based sensorless drives of salient-pole PMSM at low speed and standstill[J]. IEEE Trans on Ind Application,1998,34(4):841-846.
    [72] Limei W,R D Lorenz. Rotor position estimation for permanent magnet synchronous motor using saliency-tracking self-sening method[C]. ISA meeting proceeding,2000(1):445-450.
    [73] Stefan Ostlund,Michael Brokemper. Sensorless rotor-position detection from zero to rated speed for an integrated PM synchronous motor dirves[J]. IEEE Trans on Ind Application,1996,32(5):1158-1164.
    [74] Peter B Schmidt, Michal L Gasperi. Initial rotor angle detection of a non-salient pole permanent magnet synchronous machine[J]. IEEE Trans on Ind Application Society Annual Meeting,1997:459-462.
    [75] Shin Nakashima,Yuya Inagaki, Ichiro Miki. Sensorless initial rotor position estimation of surface PMSM[J]. IEEE Trans on Ind Application,2000,36(6):1598-1603.
    [76] Marco Tursini, Roberto Petrella, Francesco Parasiliti. Initial rotor position estimation for PM motors[J]. IEEE Trans on Ind Application,2003,39(6):1630-1640.
    [77] Hu Yuwen,Tian Cun,Gu yikang,et al. In-depth research on direct torque control of permanent magnet synchronous motor[C].28th Annual Conference of the IEEE Industrial Electronics Society,Sevilla,Spain,2002:1060-1065.
    [78] Linni Jian,Liming Shi. Stability Analysis for Direct Torque Control of Permanent Magnet Synchronous Motors. 8th ICEMS 2005 1672-1675.
    [79]朱卫东,杨向宇.永磁同步电机直接转矩控制零向量插入新方法.机电工程技术,2005,34(11):27-31.
    [80]贾洪平,贺益康.永磁同步电机直接转矩控制中零向量的作用研究.电气传动,2006,36(4):13-17.
    [81]成行洁.含零向量作用的永磁同步电机直接转矩控制研究.南通大学学报(自然科学版),2006,5(2):63-67.
    [82] Chun Tian,Hongping Li,Yuwen Hu. A Novel Scheme of Direct Torque Control in thePermanent Magnet Synchronous Motor Dirve[C]. Power Electronics in Transportation,2002:47-52.
    [83] Yang Junyou,He Guofeng,Cui Jiefan. Sliding Mode Variable-structure Direct Thrust Control of PMLSM Using SVM. ICEMS,2005:1655-1658.
    [84]贾洪平,孙丹,贺益康.基于滑模变结构的永磁同步电机直接转矩控制.中国电机工程学报,2006,26(20):134-138.
    [85]孙丹.基于电压向量分析的模糊PMSM DTC研究.电力电子技术,2006,40(4):22-24.
    [86]李勇,罗隆福,杨晨,等.基于模糊控制的永磁同步电动机直接转矩控制.微电机,2006,39(3):37-40.
    [87]肖红军,李先祥,肖晓.基于神经网络的三电平永磁同步电动机控制系统.电机技术,2006,2:20-22.
    [88] Bimal K Bose. Modern Power Electronics and AC Drives(现代电力电子学与交流传动)[M].北京:机械工业出版社,2005.
    [89]齐蓉,林辉,陈明.无刷直流电机换向转矩脉动分析与抑制[J].电机与控制学报,2006,10(3):287-290.
    [90]张相军,陈伯时.无刷直流电机控制系统中PWM调制方式对换相转矩的影响[J].电机与控制学报,2003,7(2):87-91.
    [91] Yen-Shin Lai,Fu-San shyu,Yung-Hsin Chang. Novel Loss Reduction Pulsewidth Modulation Technique for Brushless dc Motor Drives Fed by MOSFET Inverter[J]. IEEE Trans on Power Electronics,2004,19(6):1646-1652.
    [92]李钟明,刘卫国.稀土永磁电机[M].北京:国防工业出版社,2001.
    [93] Kim GwangHeon,Kang SeogJoo,Won JongSoo. Analysis of the commutation torque ripple effect for BLDCM fed by HCRPWMVSI[C]. Boston,MA,USA:Applied Power Electronics Conference and Exposition,1992,Seventh Annual,23-27.
    [94]许镇琳,吴忠,王秀芝,等.无刷直流伺服电机换相最优控制[J].自动化学报,1996,22(4):428-434.
    [95]许镇琳,江伟,王秀芝,等.无刷直流伺服电机换相转矩脉动的分析与消除[J].电气传动,1994,16(5):36-41.
    [96] Won Changhee,Song JoongHo,Choy Ick. Commutation Torque ripple reduction in brushless DC motor drives using a single DC current sensor[C]. Cairns,Queensland, Australia:Power Electronics Specialists Conference,IEEE 33rd Annual,2002.
    [97]林平,韦鲲,张仲超.新型无刷直流电机换相转矩脉动的抑制控制方法[J].中国电机工程学报,2006,26(3):153-158.
    [98]揭贵生,马伟明.考虑换相时无刷直流电机脉宽调制方法研究[J].电工技术学报,2005,20(9):66-71.
    [99]吕志勇,江建中.永磁无刷直流电机无位置传感器综述[J].中小型电机,2000,27(4):33-36.
    [100]韦鲲,任军军,张仲超.三次谐波检测无刷直流电机转子位置的研究[J].中国电机工程学报,2004,24(5):163-167.
    [101]刘思华,张树春.用扩展卡尔曼滤波器估计无刷直流电机转子位置和转速[J].微电机,2006,39(6):8-11.
    [102]沈建新,吕晓春.无传感器无刷直流电机三段式起动技术的深入分析[J].微特电机,1998,5.
    [103] Shenand J X,Tseng K J. Analysis and compensation of rotor position detection error in sensorless PM brushless DC motor dirves[J]. IEEE Trans on Energy Conversion,2003,18(1).
    [104]刘明基,王强.电动势换向无刷直流电机的预定位起动法[J].微特电机,1999,(2).
    [105]邹继斌,张豫.无位置传感器无刷直流电机驱动电路的研究[J].微电机,1999(2).
    [106]夏长亮,郭培健,史婷娜,等.基于模糊遗传算法的无刷直流电机自适应控制[J].中国电机工程学报,2005,25(11):129-133.
    [107]李先祥,徐小增,肖红军.基于小波神经网络控制的无刷直流电机调速系统[J].中国电机工程学报2005,25(9):126-129.
    [108] Kuang Yaocheng, YingYu Tzou. Fuzzy optimization techniques applied to the design of a digital BLDC servo dirve[c]. Australia IEEE Power Electronics Specialists Conference,2002.
    [109] Chen Zhiqian,Mutuwo Tomita,Shinji Doki,et al. New adaptive sliding observer for position and velocigy-sensorless control of brushless DC motor[J]. IEEE Trans on Ind Electronics,2000,47(3):582-591.
    [110] Wilis N J. Artificial neural networks in process estimation and control[J]. Autom-atica,1992,28(5):1181-1187.
    [111] Chun Lianglin. GA-based multiobjective PID control for a linear burshless DC motor[J]. IEEE Trans on Mechatronics,2003,8(1):56-65.
    [112] S J Kang,Seung-Ki Sul. Direct Torque Control of Brushless DC Motor with Nonideal Trapezoidal Back EMF[J]. IEEE Trans on Power. Electronics,1995,10(6):796-802.
    [113] Yong Liu,Z Q Zhu,David Howe. Direct Torque Control of Brushless DC Drives With Reduced Torque Ripple[J]. IEEE Trans on Ind Application,2005,41(2):599-608.
    [114] B Sneyers. Field Weakening in Buried Permanent Magnet AC Motor Drives[J]. IEEE Trans Ind applicat,1985,Ia-21(2):398-407.
    [115] J C Teixeira. Structure Comparison of Buried Permanent Magnet Synchronous Motors for Flux Weakening Operation[J]. Electrical Machines and Drives Sixth International Conference,1993:365-370.
    [116] Zhu Z Q. Maximising the Flux-Weakening Capability of Permanent Magnet Brushless AC Machines and Drives[J]. Power Electronics and Motion Control Conference,the Third International,2000:552-557.
    [117] W L Soong. Practical Field Weakening Performance of the Five Classes of Brushless Synchronous AC Motor Drive[J]. The European Power Electronics Association,1993:303-310.
    [118]尹华杰,林金铭,金振容.复合转子永磁同步电机永磁段计算长度的研究[J].华南理工大学学报,1996,24(1):97-102.
    [119]严岚,贺益康.复合转子永磁无刷直流电动机弱磁特性研究[J].电工技术学报,2004,19(3):59-64.
    [120]严岚,贺益康.一种复合转子永磁无刷直流电机恒功率弱磁的研究方法[J].中国电机工程学报,2003,23(11):155-159.
    [121]严岚,贺益康.弱磁用复合式转子永磁无刷直流电机设计[J].中小型电机,2002,29(2):5-8.
    [122] Yacine Amara,J Lucidarme,M Gabsi. A New Topology of Hybrid Synchronous Machine[J]. IEEE Trans on Ind application,2001,37(5):1273-1281.
    [123]杨儒珊,康惠骏,冯勇.混合励磁永磁同步电机的结构原理与控制方案[J].中小型电机,2005,32(5):6-9.
    [124]金万兵,张东,安忠良,等.混合励磁永磁同步发电机的分析与研究设计[J].沈阳工业大学学报,2004,26(1):26-29.
    [125]夏良,阚树林,王越.混合励磁永磁电机的可靠性建模与分析[J].现代机械,2005,6:18-20.
    [126]张宏杰,唐任远,励庆孚.混合励磁永磁同步发电机的原理与设计[J].电工电能新技术,2002,21(1):29-32.
    [127]徐衍亮,唐任远.混合励磁同步电机的结构、原理及参数计算[J].微特电机,2000,1:16-19.
    [128]孙丹,贺益康.基于恒定开关频率空间向量调制的永磁同步电机直接转矩控制[J].中国电机工程学报,2005,25(12):112-116.
    [129]贾洪平,贺益康.一种合适DTC应用的非线性正交回馈补偿磁链观测器[J].中国电机工程学报,2006,26(1):101-105.
    [130]冯江华,许峻峰.永磁同步电机直接转矩控制系统转矩调节新方法[J].中国电机工程学报,2006,26(13):151-157.
    [131]冯江华,许峻峰.基于定子磁链自适应观测的永磁同步电机直接转矩控制系统[J].中国电机工程学报,2006,26(12):121-127.
    [132] Depenbrock M,Staudt. Hyper Space Vectors:A New Four-Quantity Extension of Space-Vector Theory[J]. European Trans on Electric Power Engineering,1998,8(4):241-248.
    [133]李岚.异步电动机直接转矩控制[M].机械工业出版社,2000.
    [134] S D Sudhoff. A Flux Weakening Strategy for Current Regulated Surface Mounted Permanent Magnet Machine Drives[J]. IEEE Trans Energy Conversion,1995,10(3):431-437.
    [135] S Morimoto. Variable Speed Drive System of Interior PM Synchronous Motors for Constant Power Operation[C]. Power Conversion Conference,Yokohama,1993:402-407.
    [136] W L Soong. Field-Weakening Performance of Brushless Synchronous AC Motor Dirves[J]. IEE Pro-Electr Power application,1994,141(6):331-340.
    [137] S R Macminn. Control Techniques for Improved High Speed Performance of Interior PM Synchronous Motor Drives[J]. IEEE Trans on Ind application,1991,27(5):997-1004.
    [138] C Madelis. A High-Performance Vector Controlled Interior PM Synchronous Motor Drive with Extended Speed Range Capability[C]. The 27th Annual Conference of the IEEE Industrial Electronics Society,2001:1475-1482.
    [139] M F Rahman. A Direct Torque-Controlled Interior Permanent Magnet Synchronous Motor Dirve Incorporating Field Weakening[J]. IEEE Trans on Ind Application,1998,34(6):1246-1253.
    [140] W L Soong,T J E Miller. Theoretical Limitations to the Field-Weakening Performance of the Five Classes of Brushless Synchronous AC Motor Drive[J]. Electrical Machines and Drives,1993:127-132.
    [141] A K Adnanes. Torque Analysis of Permanent Magnet Synchronous Motors[C]. PESC'91Record,22nd Annual IEEE,1991:695-701.
    [142] R E Betz,R Lagerquist,M Jovanovic,et al. Control of Synchronous Reluctance Machines[J]. IEEE Trans on Ind Application,1993,29(6):1110-1112.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700