悬臂式掘进机器人高阶滑模控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
悬臂式掘进机器人是一种用于巷道掘进的特种机器人。论文针对其工作环境恶劣、危险程度高等问题,根据巷道掘进质量的作业要求,研究了一种悬臂式掘进机器人控制系统,实现了掘进机在巷道或井下等危险、恶劣环境下的无人操作,自动完成其预定的掘进作业。
     论文以悬臂式掘进机为对象,根据人工操作下的巷道掘进关键技术——悬臂截割控制和行走控制,研究断面成形和轨迹跟踪的控制算法,并研究了控制器及系统实现。为研制生产效率高、掘进速度快、适应性强、调动灵活的智能化、无人化的悬臂式掘进机器人,奠定了理论基础,提供了实验平台。
     论文提出了悬臂式掘进机器人控制系统结构,分析了机器人的断面成形和轨迹跟踪两个关键技术问题。根据机器人的工作任务和作业工艺要求,结合现有高阶滑模变控制的研究现状,提出了新型的高阶滑模控制方法,实现了悬臂式掘进机器人的断面成形和轨迹跟踪。论文主要进行了如下研究工作:
     ①论文研究悬臂式掘进机器人控制系统的总体结构,分析了悬臂式掘进机器人的机械结构和工作原理。根据工作任务和工艺要求,对机器人的控制系统功能及工作流程进行了分析和设计,并将掘进机器人控制系统分解为截割臂控制系统和行走机构控制系统,建立了截割臂动力学模型和行走机构动力学模型,并提出了控制系统实现的理论问题。
     ②针对掘进机器人截割臂控制系统中存在的多变量、非线性等问题,对高阶滑模控制和一类基于有限状态机策略的二阶滑模控制的算法进行了分析。在已有的基于有限状态机策略的改进的次优二阶滑模变结构控制基础上,将其扩展到几类多输入多输出非线性控制系统,并证明了滑模量渐近稳定的充分条件。通过仿真对提出的控制算法进行了验证。
     ③针对掘进机器人行走控制系统中存在的高阶非线性、不确定等问题,将Anosov Unstable(AU)和改进的次优算法相结合,提出了一种基于有限状态机切换的高阶滑模控制方法,解决了一类相对阶为三的不确定非线性系统的有限时间镇定问题。通过对滑模量和滑模量一阶导数以及滑模量一阶导数和二阶导数两个相平面的分析,证明了算法的稳定性,给出了保证滑模量有限时间收敛的充分条件。提出的高阶滑模控制方法能够在滑模量二阶导数未知且无状态观测器的情况下,通过在多个有限状态机之间进行切换,使得滑模量、滑模量一阶导数和滑模量二阶导数在有限时间内收敛到零。通过仿真对提出的控制算法进行验证。
     ④设计并实现了悬臂式掘进机器人截割臂控制系统。根据工作任务和工艺要求,对机器人断面成形过程中,截割臂的工作行程进行了分析,设计了截割头运动轨迹。根据机器人运动特点,建立了机器人运动的空间几何关系,分析了机器人自动截割过程中多个坐标系的转换关系。根据悬臂式掘进机器人断面成形任务要求,构建了机器人截割臂控制的硬件系统。利用本文提出的基于有限状态机的多输入多输出二阶滑模控制方法设计并实现了机器人截割臂控制器。通过仿真和实验对机器人的截割控制进行了验证。
     ⑤设计并实现了悬臂式掘进机器人履带式行走机构控制系统。分析了履带式行走机构转向和跟踪过程,根据机器人实际的运行环境的限制,提出了机器人轨迹跟踪的控制策略。针对掘进机器人的履带式行走机构及其驱动机构的特点,提出了一种分层控制的系统结构,设计了控制系统实时路径规划策略,搭建了机器人履带行走机构控制的硬件系统。根据路径规划策略,设计并实现了主控制回路。采用本文提出的基于有限状态机切换的高阶滑模控制方法,设计并实现了机器人履带的位置控制器。通过仿真和实验对机器人的行走控制进行了验证。
     最后,论文对研究工作进行了总结,给出论文主要工作和创新点,对掘进机器人和高阶滑模控制进行了展望。
Boom-type roadheader robot was a kind of advanced robot used for laneway excavation. The dissertation aim at the poor working environment and high level of risk problems, according to the quality of excavation operation requirements, to study a kind of boom-type roadheader robot control system, implement the unmanned operation under harsh environment such us laneway, underground and so on, and complete its scheduled operations automatically.
     The dissertation took boom-type roadheader as the target, according to excavation under the manual operation key technologies-cutting control and walking control, studied the cross-section forming and trajectory tracking control algorithm, and achieved the controller and the implemention of system. It had laid a theoretical foundation and provided an experimental platform in order to develop and produce a high efficiency, rapid excavation, robustness, mobility and flexible intelligent, unmanned boom-type roadheader robot.
     In this dissertation, boom-type roadheader robot control system architecture was proposed. Two key technical problems, including the cross-section forming and trajectory tracking, were analyzed. According to the robot tasks and operational process requirements, combined with the existing Higher Order Sliding Mode Control, some novel high-order sliding mode control methods were presented to achieve a cross-section forming and the robot trajectory tracking. The main study work can be generalized as follows:
     ①A general structure for robot control system was presented. The mechanical structure and working principle of boom-type roadheader robot were analyzed. According to tasks and process requirements, functions and work processes of the robot's control system were analyzed and designed. The robot control system was decomposed into cutting arm control system and walking control system. The dynamics models of cutting arm and walking mechanism were presented, and some theoretical problems needed to be solved for control system were proposed.
     ②Aim at the multiple variable, nonlinear problems and so on of the cutting arm control of boom-type roadheader robot system, higher-order sliding mode control and a class of second-order sliding mode control based on finite state machine strategy were analyzed. On the basic of an improved single-input single-output sub-optimal second-order sliding mode variable structure control based on finite state machine, several classes of second-order multi-variable sliding mode control for uncertain nonlinear systems were studied to extend it to several types of multi-input multi-output nonlinear control system effectively, and the sufficient condition for asymptotic stability of sliding mode variables were proved. Algorithms proposed were validated by simulation.
     ③Aim at the high order nonlinear, uncertainty problems and so on of the walking control system of boom-type roadheader robot, Anosov Unstable (AU) and improved sub-optimal algorithm were combinated to present high-level sliding-mode control method based on finite state machine which solved the finite-time stabilization problem of a class of uncertain nonlinear systems with relative dregree three. The phase plane of sliding mode variable and its derivative and the phase plane of its derivative and its second-order derivative was analyzed to prove the stability of the algorithm and present the sufficient condition for sliding mode variable to converge in finite time. Proposed high-order sliding mode control method can force the sliding mode variable, its derivative and its second-order derivative to zero in finite time with the knowledge of the sliding mode variable and its derivative. Algorithms proposed were validated by simulation.
     ④The cutting arm control system of boom-type roadheader robot was designed and implemented. According to tasks and process requirements, the cutting arm stroke was analyized during the cross-section forming process and the cutting header trajectory was designed. According to robot characteristics, geometric relationship of robot was established. The conversion between various coordinate systems was analyzed. According to robot’s task requirements, the hardware system of cutting arm control system was built. Cutting arm controllers were designed and achieved by the proposed multiple-input multiple-output second-order sliding mode control method based on finite state machine. The simulation and experiments were carried out to validate the control system.
     ⑤The track type walking control system of boom-type roadheader robot was designed and implemented. The steering and walking process of track type walking mechanism was analyzed. According to the actual robot operating environment constraints, the trajectory tracking control strategy was proposed. According to the characteristic of the track type walking mechanism, a layered control system architecture was proposed. The path planning strategy was designed. The hardware system of track type walking mechanism control system was built. The track postion controller was designed and achieved by the proposed high-level sliding-mode control method based on finite state machine for a class of uncertain nonlinear systems with relative dregree three.The simulation and experiments were carried out to validate the control system.
     Finally, the paper was summarized and the main research work and innovation point was presented. Boom-type roadheader robot and high-order sliding mode control were prospected.
引文
[1]王树国,付宜利.我国特种机器人发展战略思考[J]. 2002,自动化学报,2002,28(增刊):70-76
    [2]戴先中.21世纪非制造业自动化的发展与特种机器人研究思考[J].自动化学报, 2002,28(增刊):96-102.
    [3]丁学恭.机器人控制研究[M].浙江大学出版社,2006.
    [4]陈同宝,钱沛云,陶峥.我国悬臂式巷道掘进机技术的现状与发展[J].煤矿机电,2000,(5):58-62
    [5]赵汗青,赵卉放.悬臂式巷道掘进机智能控制展望[J].煤矿机电,2008,(3):60-62.
    [6] Devy M., Orteu J.J., Fuentes-Cantillana J.L., Catalina J.C., Rodriguez A., Dumahu D., de Janti P. Villeneuve. Mining robotics: Application of Computer Vision to the Automation of a Roadheader[J]. Robotics and Autonomous Systems(S0921-8890), 1993,11(2):65-74.
    [7] Orteu Jean-Jose, Catalina Juan-Carlos, Devy Michel. Perception for a Roadheader in Automatic Selective Cutting Operation[C]. Proceedings-IEEE International Conference on Robotics and Automation, Nice, Fr: IEEE, 1992, 1: 626-632.
    [8]宁仲良;陈加胜.悬臂式掘进机智能化发展方向初探[J].矿山机械,2006,34(6):34-35.
    [9]宁仲良,张士勇.悬臂式掘进机巷道自动成形控制初探[J].煤矿机电,2004,(1):10-11,15.
    [10]张士勇.悬臂式巷道断面成形控制研究[R].西安:西安科技大学,2004.
    [11] Parvaneh Saeedi, Peter D. Lawrence, Member, IEEE, David G. Lowe, Poul Jacobsen, Dejan Kusalovic, Kevin Ardron,and Paul H. Sorensen, Member, IEEE,An Autonomous Excavator With Vision-Based Track-Slippage Control[J].IEEE Transactions on Control Systems Technology,2005,13(1):67-84.
    [12] SONG De yu, WANG Han jun, BU Xiu jun.Study about anti-request design of transmission mechanism in job device of colliery sump cleaner[J]. Journal of Coal Science & Engineering.2001,(2):73-77.
    [13]王建国.悬臂式掘进机行走系统的智能控制研究[R].西安:西安科技大学,2005.
    [14]李晓豁,吴志强.基于参数自适应模糊PID控制器的掘进机恒功率调速系统[J].制造业自动化,2009, 31(1):45-47.
    [15]魏建华,宋德玉,陈宁.掘进机上位机监控系统的研究及实现[J].煤炭学报,2004,29(40):481-486.
    [16] ZHAO Huadong, WU Qingming, YANG Wei, ZHANG Zhiqiang.Study on Self-Optimizing System of Key Parameters for Complex Machine Products.7th International Conference onComputer-Aided Industrial Design and Conceptual Design[C].2006,Hangzhou, China,17-19, NOV.
    [17]宋伟刚.机器人学——运动学、动力学与控制[M].科学出版社,2007.
    [18]蔡自兴.智能控制及移动机器人研究进展[J].中南大学学报(自然科学版),2005,36(5):721-726.
    [19]金欣,马旭东,戴先中.移动机器人网络化环境资源应用中的关键技术[J].机器人,30(1):70-78.
    [20]郭策,戴振东,孙久荣.生物机器人的研究现状及其未来发展[J].机器人,2005,27(2):187-192.
    [21]龚振邦.从国际大环境出发在我国机器人技术和产业发展战略上的若干思考[J].机器人, 1999, 21 (6) : 474-479.
    [22]郭洪红.工业机器人运用技术[M].科学出版社,2008.
    [23]罗熊,孙增圻.计算智能方法优化设计模糊控制系统:现状与展望[J].控制与决策,2007,22(9):961-971.
    [24]王立新.模糊系统与模糊控制教程[M].清华大学出版社,2003.
    [25]王耀南.机器人智能控制工程[M].科学出版社,2004,6.
    [26]徐丽娜.神经网络控制[M].电子工业出版社,2009,7.
    [27]焦巍,刘光斌.非线性模型预测控制的智能算法综述[J].系统仿真学报, 2008, 20(24):6581-6586.
    [28]王雪松,程玉虎,易建强.电-气位置伺服控制系统的研究进展[J].控制与决策, 2007,22(6):601-607..
    [29]胡跃明.非线性控制系统理论与应用[M].北京:国防工业出版社,2002.
    [30]俞立.鲁棒控制——线性矩阵不等式处理方法[M].北京:清华大学出版社,2002.
    [31]申铁龙.H∞控制理论及应用[M].北京:清华大学出版社,1996.
    [32]胡跃明.变结构控制理论与应用[M].北京:科学出版社,2003.
    [33]王增会,陈增强,孙青林,袁著祉.定量反馈理论发展综述[J].控制理论与应用, 2006,23(3):403-410.
    [34]许建新,侯忠生.学习控制的现状与展望[J].自动化学报,2005,31(6):943-955.
    [35] Yu X. H., Xu J. X. Advances in variable structure systems[M]. Singapore:World Scientific Publishing, 2000.
    [36]刘金琨.滑模变结构控制Matlab仿真[M].北京:清华大学出版社, 2005.
    [37]刘金琨,孙富春.滑模变结构控制理论及其算法研究与进展[J].控制理论与应用, 2007,24(3):407-418.
    [38] Su W. C., Drakunov S. V., Ozguner U., etc. Sliding mode with chattering reduction in sampled data systems [C]. Proc. of the 32nd IEEE Conf on Decision and Control. San Antonio, USA: IEEE Press, 1993, 12: 2452– 2457.
    [39] Yanada H, Ohnishi H. Frequency-shaped sliding mode control of an electrohydraulic servomotor [J]. J. of Systems and Control and Dynamics, 1999, 213(1): 441– 448.
    [40] Kachroo P., Tomizuka M. Chattering reduction and error convergence in the sliding-mode control of a class of nonlinear systems [J]. IEEE Trans on Automatic Control, 1996, 41(7): 1063–1068.
    [41] Krupp D., Shtessel Y. B. Chattering-free sliding mode control with unmodeled dynamics [C]. Proc. of American Control Conf. San Diego: IEEE Press, 1999, 6: 530– 534.
    [42] Xu J. X., Pan Y. J., Lee T.H. A gain scheduled sliding mode control scheme using filtering techniques with applications to multi-link robotic manipulators [J]. J. of Dynamic Systems, Measurement and Control, 2000, 122(4): 641– 649.
    [43] Jiang K., Zhang J. G., Chen Z. M. A new approach for the sliding mode control based on fuzzy reaching law [C]. Proc. of the 4th World Congress on Intelligent Control and Automation. Shanghai, China: Press of University of Science and Technology of China, 2002, 6: 656– 660.
    [44] Chung S. C. Y., Lin C. L. A transformed lure problem for sliding mode control and chattering reduction [J]. IEEE Trans on Automatic Control, 1999, 44(3): 563– 568.
    [45] Xu J. X., Lee T. H., Wang M., Yu X. H. Design of variable structure controllers with continuous switching control [J]. Int. J. Control, 1996, 65(3): 409– 431.
    [46] Xu J. X., Lee T. H., Pan Y. J. On the sliding mode control for DC servo mechanisms in the presence of unmodeled dynamics [J]. Mechatronics, 2003, 13(7): 755– 770.
    [47] Chen M. S., Hwang Y. R., Tomizuka M. A state-dependent boundary layer design for sliding mode control [J]. IEEE Trans on Automatic Control, 2002, 47(10): 1677– 1681.
    [48] Kim S. M., Han W. Y., Kim S. J. Design of a new adaptive sliding mode observer for sensorless induction motor drive [J]. Electric Power Systems Research, 2004, 70(1): 16– 22.
    [49] Yu X. H., Xu J. X. Variable structure systems: Towards the 21th Century [M]. Berlin Heidelberg: Spring-Verlag, 2002.
    [50] Zheng Y. H., Fattah H. A. A., Loparo K. A. Non-linear adaptive sliding mode observer-controller scheme for induction motors [J]. Int. J. of Adaptive Control and Signal Processing, 2000, 14(3): 245–273.
    [51] Lee S. S., Park J. K. Design of power system stabilizer using observer/sliding mode, observer/sliding mode-model following and sliding mode controllers for small-signal stability study [J]. Int J of Electrical Power & Energy Systems, 1998, 20(8): 543– 553.
    [52] Tan C. P., Edwards C. Sliding mode observers for robust detection and reconstruction of actuator and sensor faults [J]. Int. J. of Robust and Nonlinear Control, 2003, 13(5): 443– 463.
    [53] G. Bartolini, A. Ferrara, and E. Usai. Chattering avoidance by second order sliding mode control [J]. IEEE Transactions on Automatic Control: 1998, 43, 241–246.
    [54] G. Bartolini, A. Pisano, and P. Pisu. Simplified exponentially convergent rotor resistance estimation for induction motors [J]. IEEE Transactions on Automatic Control: 2003, 48(2), 325-330.
    [55] G. Bartolini, A. Ferrara, A. Levant, and E. Usai, On second order sliding mode controllers [J], In Variable Structure Systems, Sliding Mode and Nonlinear Control, K. D. Young and U. Ozguner, Eds. New York: Springer-Verlag, Lecture Notes in Control and Information Sciences, 1999, 247, 329–350.
    [56] G. Bartolini, A. Ferrara. Multi-input sliding mode control of a class of uncertain nonlinear systems[J]. IEEE Transactions on Automatic Control: 2000, 41(11), 1662-1666.
    [57] A. Levant. Higher-order sliding modes, differentiation and output feedback control [J]. International Journal of Control: 2003, 76(9/10), 924–941.
    [58] G. Bartolini, A. Pisano, E. Punta, and E. Usai. A survey of applications of second-order sliding mode control to mechanical systems [J]. Int. J. Control, 2003, 76(9/10), 875–892.
    [59] G. Bartolini, A. Pisano, and E. Usai. On the finite-time stabilization of uncertain nonlinear systems with relative degree three[J]. IEEE Transactions on Automatic Control: 2007, 52(11), 2134-2141.
    [60] G. Bartolini, A. Pisano, and E. Usai, An improved second-order sliding-mode scheme robust against the measurement noise[J]. IEEE Transactions on Automatic Control, Vol. 49, No. 10, Oct. 2004:1731-1736
    [61] Hamerlain M., Youssef T., Belhocine M. Switching on the derivative of control to reduce chatter [J]. IEE Proc: Control Theory and Applications, 2001, 148(1): 88– 96.
    [62]晁红敏,胡跃明.动态滑模控制及其在移动机器人输出跟踪中的应用[J].控制与决策, 2001, 16(5): 565– 568.
    [63] Lin F. J., Wai R. J. Sliding-mode-controlled slider-crank mechanism with fuzzy neural network [J]. IEEE Transactions on Industrial Electronics, 2001, 48(1): 60– 70.
    [64] Hedrick J. K., Yip P. P. Multiple sliding surface control: theory and application [J]. J. of Dynamic Systems, Measurement, and Control, 2000, 122(4): 586– 593.
    [65] Kawamura A., Itoh H., Sakamoto K. Chattering reduction of disturbance observer based sliding mode control [J]. IEEE Transactions on Industry Applications, 1994, 30(2): 456– 461.
    [66] Eun Y., Kim J. H., Kim K., etc. Discrete-time variable structure controller with a decoupled disturbance compensator and its application to a CNC servomechanism [J]. IEEE Transactions on Control Systems Technology, 1999, 7(4): 414– 422.
    [67] Ng K. C., Li Y., Murray-smtth D. J., Sharman K. C. Genetic algorithms applied to fuzzy sliding mode controller design [C]. Proc. of the First Int Conf on Genetic Algorithms in Engineering Systems: Innovations and Applications. Galesia, U K: Institution of Electrical Engineers, 1995, 9: 12– 14.
    [68] Lin F. J.,Chou W. D. An induction motor servo drive using sliding mode controller with genetic algorithm [J]. Electric Power Systems Research, 2003, 64(2): 93– 108.
    [69]张昌凡,王耀南,何静,等.遗传算法和神经网络融合的滑模控制系统及其在印刷机中的应用[J].控制理论与应用, 2003, 20(2):217– 222.
    [70] A. Levant. Principles of 2-sliding mode design.automatica.43[J],2007: 576-586.
    [71] A. Levant. Sliding order and sliding accuracy in sliding mode control [J]. Int. J. Control: 1993, 58, 1247–1263.
    [72] G. Bartolini, A. Ferrara, E. Usai, and Vadim I. Utkin,On Multi-Input Chattering-Free Second-Order Sliding Mode Control[J]. IEEE Transactions On Automatic Control, 2000, 45(9):1711-1717.
    [73] A. Levant. Higher-order sliding modes, differentiation and output feedback control [J]. International Journal of Control: 2003, 76(9/10), 924–941.
    [74] G. Bartolini, A. Ferrara, A. Pisano, and E. Usai. On the convergence properties of a 2-sliding control algorithm for nonlinear uncertain systems [J]. International Journal of Control: 2001, 74, 718–731.
    [75] Giorgio Bartolini, Alessandro Pisano, and Elio Usai, On the finite-time stabilization of uncertain nonlinear systems with relative degree three [J].IEEE Transactions On Automatic Control, 2007.52(11):2134-3141.
    [76]梁勇,尚安利,邓方林.一类非线性系统的动态面二阶滑模控制[J].系统工程与电子技术, 2004,26(10):1468-1522
    [77] A. Damiano, Gianluca L. Gatto, I. Marongiu, A. Pisano. Second-order sliding-mode control of DC drives [J]. IEEE Transactions on Industrial Electronics,2004, 51(2):364-373.
    [78]孙宜标,杨雪,夏加宽.基于二阶滑模的永磁直线同步电机的鲁棒速度控制[J].电工技术学报, 2007, 10:35-41.
    [79] M. Canale, L. Fagiano, A. Ferrara, Claudio Vecchio. Vehicle yaw control via second-order sliding-mode technique [J]. IEEE Transactions on Industrial Electronics: 2008, 55 (11): 3908-3916.
    [80] A. Pisano, A. Davila, L. Fridman, E. Usai. Cascade control of PM DC drives via second-order sliding-mode technique [J]. IEEE Transactions on Industrial Electronics: 2008, 55(11): 3846-3854.
    [81] C. Tournes and Y. Shtessel. Automatic docking using second order sliding mode control [C]. Proc. of the 2007 American Control Conference. New York City, USA: July 11-13, 2007:3855-3860.
    [82] Perruquetti,Wilfrid, Barbot, Jean-Pierre. Sliding mode control in engineering. Baker & Taylor Books, 2002.
    [83] Elisabetta Punta. MIMO second order sliding mode control[C]. Proceedings of the 2006 International Workshop on Variable Structure Systems Alghero, Italy, June 5-7, 2006: 190-195.
    [84] Hwang C. L. Sliding mode control using time-varying switching gain and boundary layer for electrohydraulic position and differential pressure control [J]. IEE Proc: Control Theory and Applications, 1996, 143(4): 325– 332.
    [85] Wong L. J., Leung F. H. F, Tam P. K. S. A chattering elimination algorithm for sliding mode control of uncertain non-linear systems [J]. Mechatronics, 1998, 8(7): 765– 775.
    [86]林岩,毛剑琴,操云甫.鲁棒低增益变结构模型参考自适应控制[J].自动化学报, 2001, 27(5): 665–670.
    [87] Gaowb, Wang Y. F., Homaifa A. Discrete-time variable structure control systems [J]. IEEE Trans on Industrial Electronics, 1995,42(2): 117– 122.
    [88] Pan Y. D., Furata K. Discrete-time VSS Controller Design [J]. Int J of Robust and Nonlinear Control, 1997, 7(4): 373– 386.
    [89] Koshkouei A. J., Zinober A. S. I. Sliding mode control of discrete-time systems [J]. J of Dynamic Systems, Measurement, and Control, 2000, 122(4): 793– 802.
    [90] Kim J. H., Oh S. H., Cho D. I., Hedrick J. K. Robust discrete-time variable structure control methods [J]. J of Dynamic Systems, Measurement, and Control, 2000, 122(4): 766– 775.
    [91] Emelyanov S. V., Korovin S. K., Mamedov I. G. Variable structure control systems: discrete and digital [M]. Moscow, Russia: CRC. Pr. I. Llc., 1995.
    [92] Chen X. K. Adaptive sliding mode control for discrete-time multi-input multi-output systems [J]. Automatica, 2006, 42(3): 427– 435.
    [93] Sira R. H., Llanes S. O. Adaptive dynamical sliding mode control via back stepping [C]. Proc. of the 32nd IEEE Conf on Decision and Control. San Antonio, USA: IEEE Press, 1993, 12: 1422– 1427.
    [94] Yang D. Y., Yamane Y., Zhang X. J., Zhu R. Y. A new method for suppressing high-frequency chattering in sliding mode control system [C]. Proc. of the 36th SICE Annual Conf. Tokyo, Japan: IEEE Press, 1997, 7: 1285– 1288.
    [95] Konno Y., Hashmoto H. Design of sliding mode dynamics in frequency domain [C]. IEEE Workshop on Variable Structure and Lyapunov Control of Uncertain Dynamical Systems. Sheffield, U.K: IEEE Press, 1992, 2: 120– 125.
    [96] Edwards C. A practical method for the design of sliding mode controllers using linear matrix inequalities[J]. Automatica, 2004, 40(10): 1761– 1769.
    [97] Slotine J. J., Sastry S. S. Tracking control of nonlinear systems using sliding surfaces with application to robot manipulator [J]. Int. J. Control, 1983, 38(2): 465– 492.
    [98] Erbatur K., Kawamura A. Chattering elimination via fuzzy boundary layer tuning [C]. Proc. of the 28th Annual Conf of the Industrial Electronics Society. Sevilla, Spain: IEEE Press, 2002, 11: 2131– 2136.
    [99] Vicente P. V., Gerd H. Chattering-free sliding mode control for a class of nonlinear mechanical systems [J]. Int. J. of Robust and Nonlinear Control, 2001, 11(12): 1161– 1178.
    [100] Seshagiri S., Khalil H. K. On introducing integral action in sliding mode control [C]. Proc. of the 41st IEEE Conf on Decision and Control. Las Vegas: IEEE Press, 2002, 12: 1473– 1478.
    [101] Sarpturk S. Z., Istefanopulos Y., Kaynak O. On the stability of discrete-time sliding mode control system [J]. IEEE Trans on Automatic Control, 1987, 32(10): 930– 932.
    [102] Boliavr M. R., Zinober A. S. I., Sira R. H. Dynamic adaptive sliding mode output tracking control of a class of nonlinera systems [J]. Int. J. of Robust and Nonlinear Control, 1997, 7(4): 387–405.
    [103] Lin F. J., Chiu S. L., Shyu K. K. Novel sliding mode controller for synchronous motor drive [J]. IEEE Trans on Aerospace and Electronic Systems, 1998, 34(2): 532– 542.
    [104] Chou C. H., Cheng C. C. Decentralized mode following variable structure control for perturbed large scale systems with time-delay interconnections [C]. Proc. of American Control Conf. Chicago: IEEE Press, 2000, 6: 641– 645.
    [105] Xia Y. Q., Jia Y. M. Robust sliding-mode control for uncertain time delay systems: a LMI approach [J]. IEEE Trans on Automatic Control, 2003, 48(6): 1086– 1091.
    [106] Shtessel Y. B., Zinober A. S. I., Shkolnikov I. A. Sliding mode control for nonlinear systems with output delay via method of stable center [J]. J. of Dynamic Systems, Measurement, and Control, 2003, 125: 158– 165.
    [107]胡跃明,周其节.带有滞后影响的控制系统的变结构控制[J].自动化学报, 1991, 17(5): 587– 591.
    [108] Wheeler G., Su C. H., Stepanenko Y. A sliding mode controller with improved adaptation laws for the upper bounds on the norm of uncertainties [J]. Automatica, 1998, 34(12): 1657– 1661.
    [109] Bekiroglu N., Bozma H. I., Istefanopulos Y. Model reference adaptive approach to sliding mode control [C]. Proc. of American Control Conf. Washington: IEEE Press, 1995, 6: 1028– 1032.
    [110] Song J. B., Ishida Y. A robust sliding mode control for pneumatic servo systems [J]. Int. J. of Engineering Science,1997, 35(8): 711– 723.
    [111] Kwan C. M. Sliding mode control of linear systems with mismatched uncertainties [J]. Automatica, 1995, 31(2): 303– 307.
    [112] Choi H. H. A new method for variable structure control system design: A linear matrix inequality approach [J]. Automatica, 1997,33(11): 2089– 2092.
    [113] Choi H. H. An explicit formula of linear sliding surface for a class of uncertain dynamic systems with mismatched uncertainties [J]. Automatica, 1998, 34(8): 1015– 1020.
    [114] Choi H. H. On the existence of linear sliding surface for a class of uncertain dynamic systems with mismatched uncertainties [J]. Automatica, 1999, 35: 1707– 1715.
    [115] Li J. Backstepping variable structure control of nonlinear systems with unmatched uncertainties [C]. Proc. of the 14th IFAC World Congress. Beijing: Elsevier Science Press, 1999, 7: 67– 71.
    [116] Koshkouei A. J., Zinober A. S. I. Adaptive backstepping control of nonlinear systems with unmatched uncertainty [C]. Proc. of the 39th IEEE Conf on Decision and Control. Sydney, Australia: IEEE Press, 2000, 12 : 4765– 4770.
    [117] Gouaisbaut F., Perruqetti W., Richard J. P. A sliding mode control for linear systems with input and state delays [C]. Proc. of the 38th IEEE Conf on Decision and Control. Phoenix, USA, 1999, 12: 4234– 4239.
    [118]郑锋,程勉,高为炳,一类时滞系统的变结构控制[J].自动化学报, 1995, 21(2):221– 225.
    [119]高存臣,袁付顺,肖会敏.时滞变结构控制系统[M].北京:科学出版社, 2004.
    [120] Utkin V. I. Sliding modes in control optimization [M]. Berlin: Spring-Verlag, 1992.
    [121] Chang Y. F., Chen B. S. A robust performance variable structure PI/P control design for high precise positioning control systems [J]. Int. J. of Machine Tools and Manufacture, 1995, 35(12): 1649– 1667.
    [122] Lu X. Y., Spurgeon S. K. Control of nonlinear non-minimum phase systems using dynamic sliding mode [J]. Int. J. of System Science, 1999, 30(2): 183– 198.
    [123] Wang J., Zheng Y., Lu X. P. Robust output tracking of constrained nonlinear systems [C]. Proc of 14th IFAC World Congress, Beijing, China: Pergamon Press, 1999, 7: 37– 40.
    [124] Bartolini G., Ferrara A., Glacomini L. Modular backstepping design of an estimation-based sliding mode controller for uncertain nonlinear plants [C]. Proc. of 1998 American Control Conf. Philadelphia: IEEE Press, 1998, 6: 574– 578.
    [125] Man Z. H., Paplinski A. P., Wu H. R. A robust MIMO terminal sliding mode control scheme for rigid robot manipulators [J]. IEEE Trans on Automatic Control, 1994, 39(12): 2464– 2469.
    [126] Yu X. H., Man Z. H. Model reference adaptive control systems with terminal sliding modes[J]. Int. J. Control, 1996, 64(6): 1165– 1176.
    [127] Man Z. H., Yu X. H. Terminal sliding mode control of MIMO linear systems [C]. Proc. of the 35th IEEE Conf on Decision and Control. Kobe, Japan: IEEE Press, 1996, 12: 4619– 4624.
    [128] Wu Y., Yu X. H., Man Z. H. Terminal sliding mode control design for uncertain dynamic systems [J]. Systems & Control Letters, 1998, 34(5): 281– 288.
    [129] Feng Y., Yu X. H., Man Z. H. Non-singular terminal sliding mode control of rigid manipulators [J]. Automatica, 2002, 38(2): 2159–2167.
    [130] Tao C. W., Taur J. S., Chan M. L. Adaptive fuzzy terminal sliding mode controller for linear systems with mismatched time-varying uncertainties [J]. IEEE Transactions on Systems, 2003, Part B: 1– 8.
    [131] Park K. B., Teruo T. Terminal sliding mode control of second-order nonlinear uncertain systems [J]. Int. J. of Robust and Nonlinear Control, 1999, 9(11): 769– 780.
    [132]庄开宇,张克勤,苏宏业,褚健.高阶非线性系统的Terminal滑模控制[J].浙江大学学报, 2002, 36(5): 482– 485.
    [133] Zhuang Kaiyu, Zhang Keqin, Su Hongye, Chu Jian. Terminal sliding mode control for high-order nonlinear dynamic systems [J]. J of Zhejiang University, 2002, 36(5): 482– 485.
    [134] Lu Y. S., Chen J. S. Design of a global sliding-mode controller for a motor drive with bounded control [J]. Int. J. Control, 1995, 62(5): 1001– 1019.
    [135] Choi H. S., Park Y. H., Cho Y. S., Lee M. H. Global sliding mode control [J]. IEEE Control Systems Magazine, 2001, 21(3): 27– 35.
    [136]肖雁鸿,葛召炎,周靖林等.全滑模变结构控制系统[J].电机与控制学报, 2002, 6(3): 233– 236.
    [137]米阳,李文林,井元伟等.线性多变量离散系统全程滑模变结构控制[J].控制与决策, 2003, 18(4): 460– 464.
    [138] Morioka H., Wada K., Sabanovic A., Jeaernik K. Neural network based chattering free sliding mode control [C]. Proc of the 34th SICE Annual Conf. Tokyo, Japan: IEEE Press, 1995, 7: 1303–1308.
    [139] Ertugrul M., Kaynak O. Neuro sliding mode control of robotic manipulators [J]. Mechatronics, 2000, 10(1-2): 239– 263.
    [140] Huang S. J., Huang K. S., Chiou K. C. Development and application of a novel radial basis function sliding mode controller [J]. Mechatronics, 2003, 13(4): 313– 329.
    [141] Da F. P. Decentralized sliding mode adaptive controller design based on fuzzy neural networks for interconnected uncertain nonlinear systems [J]. IEEE Transactions on Neural Networks, 2000, 11(6): 1471–1480.
    [142] Lin S. C., Chen Y. Y. RBF network based sliding mode control [C]. IEEE Int. Conf. on Systems, Man, and Cybernetics. San Antonio, USA : IEEE Press, 1994, 10: 1957– 1961.
    [143] Munoz D., D. Sbarbaro D. An adaptive sliding-mode controller for discrete nonlinear systems [J]. IEEE Transactions on Industrial Electronics, 2000, 47(3): 574– 581.
    [144] Man Z. H., Yu X. H., Eshraghian K., Palaniswami M. A robust adaptive sliding mode tracking control using an RBF neural network for robotic manipulators [C] // IEEE Int. Conf. on Neural Networks. Perth, Australia: IEEE Press, 1995, 11: 2403– 2408.
    [145] Carrasco J. M., Quero J. M., Ridao F. P., Perales M. A., Franquelo. Sliding mode control of a DC/DC PWM converter with PFC implemented by neural networks [J]. IEEE Transactions on Circuits and Systems-I: Fundamental Theory and Applications, 1997, 44(8): 743– 749.
    [146]柴毅,凌睿.自主移动掘进机器人控制系统研究[C].第25届中国控制会议论文集(下册).中国黑龙江哈尔滨:中国自动化学会控制理论专业委员会, 2006:1651-1654.
    [147] Jorge Angeles著,宋伟刚译.机器人机械系统原理理论、方法和算法[M].北京:机械工业出版社, 2004.
    [148]贾振元,王晓煜,王福吉.超磁致伸缩执行器自适应离散滑模控制[J],系统仿真学报,2007,19(24):5768-5777.
    [149]郝月龙,张井岗,陈志梅.一类非线性系统的自适应模糊滑模控制[J],系统仿真学报,19(14):3230-3233.
    [150] Chen G., Wang S. Robust adaptive fuzzy control for uncertain nonlinear systems [J]. Lecture Notes in Artificial Intelligence (S0302-9743), 2005, 3613: 841-850.
    [151] Topalov, Andon Venelinov. Sliding mode neuro-adaptive control of electric drives [J], IEEE Transactions on Industrial Electronics (S0278-0046), 2007,54(1): 671-679.
    [152] Wai Rong-Jong, Chang Li-Jung. Adaptive stabilizing and tracking control for a nonlinear inverted-pendulum system via sliding-mode technique [J]. IEEE Transactions on Industrial Electronics (S0278-0046), 2006,53(2):674-692.
    [153] Kim M.-S., Oh S.-K., Shin J.-H., Lee J.-J. Robust model reference adaptive control of Underactuated Robot Manipulators[C]. IEEE International Symposium on Industrial Electronics, pusan: Institute of Electrical and Electronics Engineers Inc, 2001:1579-1584.
    [154] Ahmadi, M., Polotski, V., Hurteau, R. Path tracking control of tracked vehicles [C], Proc. of the IEEE Int. Conf. on Robotics & Automation, San Francisco CA,vol.3, 2000: 2938-2943
    [155] Le, Anh Tuan, Rye, David C., Durrant-Whyte, Hugh F. Estimation of track-soil interactions for autonomous tracked vehicles [C]. Proceedings - IEEE International Conference on Robotics and Automation, vol.2, p 1388-1393, 1997
    [156] Shiller, Zvi, Serate, William, Hua, Minh. Trajectory planning of tracked vehicles [C]. Proceedings - IEEE International Conference on Robotics and Automation, 1993,3: 796-801.
    [157] Kanayama, Yutaka, Kimura, Yoshihiko, Miyazaki, Fumio, Noguchi, Tetsuo. A stable tracking control method for an autonomous mobile robot [C]. Proc. 90 IEEE Int Conf. Rob Autom, 1990:384-389.
    [158]吴卫国,陈辉堂,王月娟.移动机器人的全局轨迹跟踪控制[J].自动化学报,2001,27(3):326-331.
    [159] G. Bartolini, S. Pillosu, A. Pisano, and E. Usai, Time-optimal stabilizationfor a third-order integrator: A robust state-feedback implementation[C]. in Dynamics, Bifurcations and Control, F. Colonius and L. Gruene, Eds. New York : Springer-Verlag, 2002, vol. 273, pp.131–144, Lecture Notes in Control and Information Sciences.
    [160] A. Levant,“Universal SISO sliding-mode controllers with finite-timeconvergence,”IEEE Trans. Autom. Control, vol. 46, no. 9:1447–1451, 2001.
    [161]李岩,杨向东,陈恳.履带式移动机器人动力学模型及其反馈控制[J].清华大学学报(自然科学版).2006,46(8):1377-1380.
    [162]孙逢春,陈树勇,郭汾.基于转矩控制策略的电传动履带车辆驱动特性研究[J].兵工学报.2007,28(2):129-133.
    [163]邹渊,孙逢春,张承宁.电传动履带车辆双侧驱动转速调节控制策略[J].北京理工大学学报.2007,27(4):303-307.
    [164]翟丽,孙逢春,谷中丽.电子差速履带车辆转向转矩神经网络PID控制[J].农业机械学报.2009,40(2):1-5,31.
    [165]陈峰,桂卫华,王随平,韩晓英.一种新的履带机器车轨迹跟踪控制[J].计算机工程与应用.2005,(29):187-189.
    [166] Ahmadi, M., Polotski, V., Hurteau, R. Path tracking control of tracked vehicles [C]. Proc. of the IEEE Int. Conf. on Robotics & Automation, San Francisco CA,vol.3, 2000: 2938-2943
    [167] Le, Anh Tuan, Rye, David C., Durrant-Whyte, Hugh F. Estimation of track-soil interactions for autonomous tracked vehicles [C]. Proceedings - IEEE International Conference on Robotics and Automation, vol.2, p 1388-1393, 1997.
    [168] Shiller, Zvi, Serate, William, Hua, Minh. Trajectory planning of tracked vehicles [C]. Proceedings - IEEE International Conference on Robotics and Automation, 1993,3:796-801.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700