偏振复用光通信系统信号处理技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着互联网业务的快速发展,尤其是基于互联网的视频应用和P2P交互式应用的爆炸式发展,骨干通信网络带宽需求迅猛增长,现有密集波分复用(DWDM)系统已经不能满足日益增长的带宽需求,提高系统传输能力势在必行。偏振复用(PDM)技术利用光的偏振维度,在同一波长信道中,通过光的两个相互正交偏振态同时传输两路独立数据信息达到加倍系统总容量和频谱利用率目的。除了低成本提高信道传输速率以外,PDM技术还可以和各种新型调制格式、相干检测技术相结合,进一步提高系统容量和频谱利用率,并利用现有数字信号处理(DSP)技术灵活地实现信号解复用和链路损伤补偿等关键功能。PDM已经成为光通信系统与网络的关键技术之一,本论文围绕PDM系统的全光和数字信号处理技术展开系列深入研究,旨在探索新型的、针对PDM系统的信号处理方法,为增强下一代光网络的可重构性和透明性,提高系统容量和频谱利用率等提供潜在的技术手段。
     本论文从理论分析和实验研究入手,主要内容包括以下几个方面:首先针对直接检测PDM系统提出了一种基于检测标记光光功率的全光偏振解复用方案,并通过实验验证该方案的有效性和可行性;其次,针对直接检测PDM系统探讨了相关全光信号处理技术,采用单一信号处理单元实现了PDM信号两正交偏振信道上信号的同时处理,包括:全光再生、波长转换、码型变换等;最后,重点研究和分析了相干检测PDM系统中接收端DSP处理单元中各个子功能模块的典型算法,并将相关算法应用到60-GHz毫米波光载无线(RoF)系统中以实现系统的优化设计和复杂度的降低。具体来讲,本论文创新性工作包括:
     (1)针对直接检测PDM系统,提出了一种基于检测标记光光功率的全光自动偏振解复用方案。搭建了实验平台,分别在2×10-Gb/s NRZ-OOK-PDM和RZ-OOK-PDM系统中验证该方案的可行性和有效性。同时研究了标记光与信号光之间的波长间隔,以及信号光光功率对解复用性能的影响。研究结果表明,当标记光与信号光之间的波长间隔太小时,由于光栅滤波器不能完全将标记光从信号光中分离出来将给信号光带来串扰。同时,在正常光功率范围内(例如不超过6-dBm),信号光光功率对信号的解复用几乎没有影响。
     (2)通过分析光纤中几种主要的非线性效应,提出了一种同时利用高非线性光纤中的XPM、FWM等非线性效应实现码型变换和波长组播的方案,并实验验证了该方案的可行性和有效性。在10-Gb/s系统中,采用单一信号和时钟泵浦,针对0.4-nm的密集型波分复用信道间隔同时实现了一个信道到十个信道的码型变换和波长组播,其中九个信道可测得无误码;针对0.8-nm的信道间隔系统则同时实现了一个信道到十二个信道的码型变换和组播,其中十一个信道可测得无误码。
     (3)针对直接检测PDM系统,提出了反向对传和偏振分集非线性环形镜两种基于光纤SPM效应的全光再生方案。研究结果表明:1)对于反向对传方案,抑制了XPM和FWM给再生器带来的性能影响;通过引入偏振滤波在很大程度上减轻了背向散射对再生器性能带来的额外损伤;经再生后,在BER=10-9处,两正交偏振态信道信号获得了约2-dB的功率代价改善。2)相对于反向对传方案,偏振分集非线性环形镜简化了再生器的结构,在再生器输出端仅使用一个偏移滤波器就实现了PDM信号中两正交偏振态信道信号的同时再生,且自动地保持再生后的两路信号具有完全相同波长和正交偏振态;在输入信号SNR为6.7-dB时,两正交偏振态信道信号经再生后的SNR改善量可达3.0-dB。
     (4)基于高非线性光纤中的XPM效应,针对直接检测PDM系统分别提出了采用单一处理模块实现PDM信号中两正交偏振态信道信号的波长转换和码型变换方案。实验验证了方案的可行性和有效性,并研究了波长间隔、FWM.SPM.背向散射等对波长转换或码型变换后信号性能的影响。研究结果表明:1)针对波长转换,波长转换的范围可以涵盖整个C-波段。2)针对码型变换,码型变换过程中的功率代价小于1-dB,证实了其在高速PDM系统应用的可行性。
     (5)研究和分析了相干检测PDM系统中接收端DSP处理单元中各个子功能模块的典型算法,并将相关算法应用于60-GHz毫米波RoF系统中。研究结果表明:1)利用D-D载波相位恢复算法在数字域实现了差分16-QAM RoF系统中光生RF信号载波与接收端本振载波源的同步,解决了RoF系统中因激光器固有线宽和相位噪声导致光生RF信号载波不稳而造成接收端载波同步困难的问题。在BER=10-3情况下,光生RF信号载波与接收端本振载波源的频率偏移量(△f·Ts)补偿范围可达:(-1.3x10-3,1.3×10-3);2)利用基于CMA算法的蝶形滤波结构实现了PDM60-GHz毫米波MIMORoF系统中光和无线双重链路交叉串扰的盲均衡,减少了系统开销、提高了系统信道利用率和降低了系统复杂度。
     随着高速光纤通信系统的快速发展,各种新型调制格式和传输方式将对信号处理技术提出更多挑战,也是我们持续努力的方向。
With the rapid development of internet-driven service, especially the explosive increases of the internet-based video and peer-to-peer interactive applications, the bandwidth requirement for the backbone communcaiton network has been increasing dramtically. Currently depoyed DWDM system is not able to meet this ever-growing bandwidth requirement, and signifcant improvent of the transmission capacity for current DWDM opitcal communication system is required imperatively. PDM technique which utilizes the polarization dimension of light, carries two independent data at the same wavelength with orthognal states of polarizaion. It can double the system capacity and spectral efficiency directly. Meanwhile, it can combine with the advanced modulation format and coherent detection techniques, which not only can increase the system capacity and spectral efficiency further, but also can achieve polarizaion demultiplexing and compensate for transmission impairments by employing the DPS techniques in digital domain neatly. PDM technique has been emerging as one of the key techniques for next optical communication networks. This work focuses our researches on the signal processing techniques for PDM system, both all-optical and digital signal processing techniques. The aims are to develop some novel signal processing techniques, and hence, to provide some potential and alternative approaches for next generation optical communication networks in terms of enhancement for system reconfigurability, transpareny, capacity and spectral efficiency.
     In this dissertation, signal processing tehniques for PMD system are extensively studied theoretically and experimentally, and the main contents include the following parts. Firstly, we propose a novel all-opitcal automatically polarization demultiplexing scheme for direct detetion PDM system which uses the tag light transmitted in a different but close wavelength to the data signal as the feedback control. The effectiveness of this scheme is demonstrated experimentally. Then, we extensively study some fiber-nolinearity-based all-optical signal processing techniques and propose a serial all-optical signal processing schemes for direct detection PDM system, including all-optcal regeneration, wavelength conversion and format conversion. We experimentally achieve these functions for two tributaries of a PDM signal simultanously. Finally, we concentrate our researches on DSP techniques and some typical algorithmes for coherent detection PDM system, and combine these techniques with60-GHz mm-wave RoF communication techniques. The main acheivement of this dissertation are listed as following:
     (1) We propose a novel all-opitcal atumatically polarization demultiplexing scheme for direct detetion PDM system which uses the tag light transmitted in a different but close wavelength to the data signal as the feedback control. The effectiveness of this scheme is demonstrated experimentally in2×10-Gb/s NRZ-OOK-PDM and RZ-OOK-PDM system. We also study the affect of wavelength gap between signal and tag light and signal power on the demultiplexing performance. Experimental resutls show that tag light will degrade the signal performance when the two wavelengthes are too close and the affect of sigal power is neglectable in the normal transmission power range (e.g. under6-dBm).
     (2) We demonstrate simultaneous10-Gb/s NRZ-to-RZ format conversion and wavelength multicasting from one to many data channels in a highly nonlinear fiber with only a single pump. Functionalities are achieved based on various nonlinear effects, such as FWM, XPM, and so on, between the pump channel and the NRZ data channel. Up to ten out of nine and twelve out of eleven converted data channels are error-free (10-9BER) as the wavelength spacing between the pump and the NRZ signal is set to0.4-nm and0.8-nm, respectively.
     (3) We propose and experimentally demosnstrate two SPM-based2R all-optical regeneration schemes for PDM signal, including bidirectional configuration and polarization nonlinear loop mirror configuration. By utilizing the bidirectional configuration, mitigation of inter-channel nonlinearities is achieved through a bidirectional configuration, and rejection of backward stimulated Brillouin scattering noise is obtained by signal re-polarizing before the offset filter and putting the center wavelength of filter at the short wavelength side of the signal. The power penalty improvement up to2.0dB for two PDM signals at10-9BER is achieved. Comparing to bidirectional configuration, polarization nonlinear loop mirror simplifies the regenerator configuration with only one offset optical filter at the output. Experimental results show that PDM signals with orthogonal polarization states are regenerated simultaneously and reassembled automatically. Up to3.0-dB eye-diagram-based signal-to-noise-ratio (SNR) improvement is achieved for both channels with the input SNR of6.7-dB.
     (4) We propose and experimentall demonstrate a wavelength conversion and format conversion for RZ-OOK signals in PDM systems based on XPM in highly nonlinear fiber using a polarization nonlinear loop mirror configuration. The affect of back scattering noise, FWM, and SPM on the performance of the wavelength or format convertor are invesitigated. For the wavelength convertor, eye-diagram-based SNR and BER results indicate that successful wavelength conversion can be achieved over the whole C-band. As for the format convertor, less thanl-dB power penalty is achieved, and its potential application in high-speed PDM system are proved.
     (5) DSP functionalities and corresponding algorithms for coherent detection PDM system reciever are extensively investigated. Then, we combine these algorithms in high-speed optical communcation with60-GHz mm-wave RoF system and two main results are obtained. For one thing, up to~±1.3×10-3frequency offset times symbol rate product (△f-Ts) is well compensated at the given bit-error-ratio (BER) value of~10-3in differentially coded square16-QAM60-GHz mm-wave RoF system by utilizing the D-D carrier phase recovery algorithm. For another, optical and wireless tranmission link crosstalks are mitigated simultaneously by applying the CMA-based butterfly filter structure equalizer in PDM60-GHz mm-wave RoF MIMO system.
     Signal processing techniques will face more and more challenges in continously developing high-speed optical communication system which exploites advanced modulation format and novel transimssion techniques. Our ongoing researches will focus on signal processing techniques in such systems.
引文
[1]K. C. Kao and G A. Hockman. Dielectric-fibre surface waveguides for optical frequencies.1966, Proc. IEE,133(7):1151-1158.
    [2]R. N. Hall, G E. Fenner, J. D. Kingsley, T. J. Soltys, and R. O. Carlson. Coherent light emission from GaAs junctions. Phys. Rev. Lett.,1962,9(9):366-369.
    [3]G P. Agrawal and N. K. Dutta. Semiconductor Lasers. Second Edition. Van Nostrand Reinholde, New York.1993.
    [4]R. J. Mears, L. Reekie, I. M. Jauncey, and D. N. Payne. Low-noise Erbium-doped fibre amplifier operating at 1.54 μm. Electron. Lett.,1987,23(19):1026-1028.
    [5]T. Saitoh and T. Mukai.1.5 μm GaInAsp traveling-wave semiconductor laser amplifier. IEEE J. Quantum. Electron.,1987,23(6):1010-1020.
    [6]J. E. Bowers and C. A. Burrus. High-speed zero-bias waveguide photodetectors. Electron. Lett.,1986,22(17):905-906.
    [7]K. S. Giboney, M. W. J. Rodwell, and J. E. Bowers. Traveling wave photodetectors. IEEE Photon. Technol. Lett.,1992,4(12):1363-1365.
    [8]K. S. Giboney, R. L. Nagarajan, T. E. Reynolds. Traveling wave photodetectors with 172 GHz bandwidth and 76 GHz bandwidth-efficiency product. IEEE Photon. Technol. Lett.,1995,7(4):412-414.
    [9]M. Suzuki, H. Sano, T. Kawano, T. Ido, T. Taniwatari, K. Uomi, and A. Takai. InGaAs/InGaAsP MQW electroabsorption modulator integrated with a DFB laser fabricated by band-gap energy control selective area MOCVD. IEEE J. Quantum. Electron.,1993,29(6):2088-2096.
    [10]K. M. Kissa, A. Y. Yi, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Macck, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi. A review of lithium niobate modulators for fiber-optic communications systems. IEEE J. Sel. Top. Quantum. Electron.,2000,6(1):69-82.
    [11]Y. Miyamoto, K. Yonenaga, and H. Toba.20 Gbit/s chirped return-to-zero transmitter with simplified configuration using electroabsorption modulator. Electron. Lett., 2000,36(22):1858-1860.
    [12]S. J. Yoo. Wavelength conversion technologies for WDM network applications. J. Lightw. Technol.,1996,14(6):955-966.
    [13]G P. Agrawal. Fiber-Optic Communication Systems. Third Edition. John Wiley and Sons, New York,2002.
    [14]T. Okoshi. Optical Fibers. Academic Press, San Diego, CA,1982.
    [15]A. W. Snyder and J. D. Love. Optical Waveguide Theory. Chapman and Hall, London.1983.
    [16]T. Izawa and S. Sudo. Optical Fibers:Materials and Fabrication. Kluwer Academic, Boston.1987.
    [17]E.G. Neumann. Single-Mode Fibers. Springer, New York,1988.
    [18]L. B. Jeunhomme. Single-Mode Fiber Optics. Marcel Dekker, New York,1990.
    [19]I. P. Kaminow and T. L. Koch, Ed. In Optical Fiber Telecommunications III. Academic Press, San Diego, CA.1997.
    [20]I. P. Kaminow and T. Li, Ed. Optical Fiber Telecommunications IV (A. Components and B Systems and impairments). Academic Press, San Diego, CA.2002.
    [21]T. Omiya, M. Yoshida, and M. Nakazawa.400 Gbit/s 256 QAM-OFDM transmission over 720 km with a 14 bit/s/Hz spectral efficiency by using high-resolution FDE. Opt. Express,2013,21(3):2632-2641.
    [22]J. Yu, Z. Dong, H. C. Chien, Z. Jia, X. Li, D. Huo, M. Gunkel, P. Wagner, H. Mayer, and A. Schippel. Transmission of 200G PDM-CSRZ-QPSK and PDM-16-QAM with a SE of 4b/s/Hz. J. Lightw. Technol.,2013,31(4):515-522.
    [23]P. S. Cho, C. S. Grigoryan, Y. A. Godin, A. Salamon, and Y. Achiam. Transmission of 25-Gb/s RZ-DQPSK signals with 25-GHz channel spacing over 1000km of SMF-28 Fiber. IEEE Photon. Technol. Lett.,2003,15(3):473-475.
    [24]G. Charlet, E. Corbel, J. Lazaro, A. Klekamp, W. Idler, R. Dischler, S. Bigo, P. Tran, T. Lopez, H. Mardoyan, A. Konczykowska, and J. P. Thierry. Comparison of system performance at 50,62.5 and 100 GHz channel spacing over transoceanic distances at 40 Gbit/s channel rate using RZ-DPSK. Electron. Lett.,2005,41(3):145-146.
    [25]A. Hirano, K. Yonenaga, Y. Miyamoto, H. Toba, H. Takenouchi, and H. Tsuda.640 Gbit/s (16 channel×42.7 Gbit/s) WDM L-band DSF transmission experiment using 25 nm bandwidth AWG dispersion slope compensator. Electron. Lett.,2000,36(19): 1638-1639.
    [26]H. Hatakeyama, K. Naniwae, K. Kudo, N. Suzuki, S. Sudo, S. Ae, Y. Muroya, K. Yashiki, K. Satoh, T. Morimoto, K. Mori, and T. Sasaki. Wavelength-selectable microarray light sources for S-, C-, and L-band WDM systems. IEEE Photon. Technol. Lett.,2003,15(7):903-905.
    [27]T. Matsuda, T. Kotanigawa, T. Kataoka, and A. Naka.54×42.7 Gbit/s L- and U-band WDM signal transmission experiments with in-line hybrid optical amplifiers. Electron. Lett.,2004,40(6):380-381.
    [28]H. J. Thiele, L. Molle, R. Freund, H. J. Tessmann, D. Breuer, W. Jacobi, and M. A. Arbore.40-Gb/s S-band WDM transmission over installed fiber links using Erbium-based fiber amplifiers. Proceeding of Optical Fiber Communication/National Fiber Optical Engineers Conference (OFC/NFOEC 2005), Anaheim, USA,2005, OTuH1.
    [29]Z. Dong, X. Li, J. G. Yu, and J. J. Yu. Generation and transmission of 8×112-Gb/s WDM PDM-16QAM on a 25-GHz grid with simplified heterodyne detection. Opt. Express,2013,21(2):1773-1778.
    [30]I. P. Kaminow, T. Li, and A. E. Willner, Ed. Optical Fiber Telecommunications V (A. Components and B Systems and impairments). Academic Press, San Diego, CA. 2008.
    [31]X. Zhuo, L. E. Nelson, P. Magill, R. Isaac, B. Zhu, D. W. Peckham, P. I. Borel, and K. Carlson. High spectral efficiency 400 Gb/s transmission using PDM time-domain hybrid 32-64 QAM and training-assisted carrier recovery. J. Lightw. Technol.,2013, 31(7):999-1005.
    [32]A. Sano, H. Masuda, T. Kobayashi, M. Fujiwara, K. Horikoshi, E. Yoshida, Y. Miyamoto, M. Matsui, M. Mizoguchi, H. Yamazaki, Y. Sakamaki, and H. Ishii. 69.1-Tb/s (432×171-Gb/s) C- and extended L-Band transmission over 240 Km using PDM-16-QAM modulation and digital coherent detection. Proceeding of Optical Fiber Communication/National Fiber Optical Engineers Conference (OFC/NFOEC 2010), Los Angeles, USA,2010, PDPB7.
    [33]X. S. Yao, L. S. Yan, B. Zhang, A. E. Willner and J. Jiang. All-optical scheme for automatic polarization division demultiplexing. Opt. Express,2007, 15(12):7407-7414.
    [34]C. Wree, N. Hecher, E. Gottwald, P. Krummrich, J. Leibrich, E. D. Schmidt, B. Lankl, and W. Rosenkranz. High spectral efficiency 1.6 b/s/Hz transmission over 200km SSMF using RZ-DQPSK and polarization multiplexing. IEEE Photon. Technol. Lett.,2003,15(9):1303-1305.
    [35]祝宁华,闫连山,刘建国.光纤光学前沿.科学出版社,2011.
    [36]S. G Evangelides Jr., L. F. Mollenauer, J. P. Gordon, and N. S. Bergano. Polarization multiplexing with solitons. J. Lightw. Technol.,1992,10(1):28-35.
    [37]Y. Han and G. Li. Coherent optical communication using polarization multiple-input-multiple-output. Opt. Express,2005,13(19):7527-7534.
    [38]D. van den Borne, S. L. Jansen and E. Gottwald.1.6- b/s/Hz spectrally efficient transmission over 1700km SSMF using 40x85.6-Gb/s POLMUX-RZ-DQPSK. J. Lightw. Technol.,2007,25(1):222-232.
    [39]S. Chandrasekhar, X. Liu, A. Konczykowska, F. Jorge, J. Y. Dupuy, and J. Godin. Direct detection of 107-Gb/s polarization multiplexed RZ-DQPSK without optical polarization demultiplexing. IEEE Photon. Technol. Lett.,2008,20(22):1878-1880.
    [40]Z. Wang, C. Xie, and X. Ren. PMD and PDL impairments in polarization division multiplexing signals with direct detection. Opt. Express,2009,17(10):7993-8044.
    [41]D. Sandel, F. Wust, V. Mirvoda, and R. Noe. Standard (NRZ 1×40 Gb/s,210km) and polarization multiplex (CS-RZ,2x40 Gb/s,212km) transmissions with PMD compensation. IEEE Photon. Technol. Lett.,2002,14(8):1181-1183.
    [42]W. Shieh, X. Yi, Y. Ma, and Y. Tang. Theoretical and experimental study on PMD-supported transmission using polarization diversity in coherent optical OFDM system. Opt. Express,2007,15(16):9936-9947.
    [43]P. J. Winzer and A. H. Gnauck.112-Gb/s polarization-multiplexed 16-QAM on a 25-GHz WDM grid. Proceeding of European Conference on Optical Communication (ECOC'2008), Brussels, Belgium,2008, Th.3.E.5.
    [44]A. Sano, H. Masuda, Y. Kisaka, S. Aisawa, E. Yoshida, Y. Miyamoto, M. Koga, K. Hagimoto, T. Yamada, T. Furuta, and Fukuyama.14-Tb/s (140×111-Gb/s PDM/WDM) CS-DQPSK transmission over 60km using 7-THz bandwidth exended L-band EDFA. Proceeding of European Conference on Optical Communication (ECOC'2006), Cannes, France,2006, postdeadline paper TH4.1.1.
    [45]A. H. Gnauck, G. Charlet, P. Tran, P. J. Winzer, C. R. Doerr, J. C. Centanni, E. C. Burrows, T. Kawanishi, T. Sakamoto, and K. Higuma.25.6-Tb/s C+L-Band transmission of polarization-multiplexed RZ-DQPSK signals. Proceeding of Optical Fiber Communication/National Fiber Optical Engineers Conference (OFC/NFOEC 2007), Anaheim, USA,2007, PDPB19.
    [46]X. Zhou, J. J. Yu, M. F. Huang, Y. Shao, T. Wang, P. Magill, M. Cvijetic, L. Nelson, M. Birk, G. D. Zhang, S. Y. Ten, H. B. Matthew, and S. K. Mishra.32Tb/s (320×114Gb/s) PDM-RZ-8QAM transmission over 580km of SMF-28 ultra-low-loss fiber. Proceeding of Optical Fiber Communication/National Fiber Optical Engineers Conference (OFC/NFOEC 2009), San Diego, USA,2009, PDPB4.
    [47]A. Sano, H. Masuda, T. Kobayashi, M. Fujiwara, K. Horikoshi, E. Yoshida, Y. Miyamoto, M. Matsui, M. Mizoguchi, H. Yamazaki, Y. Sakamaki, and H. Ishii. 69.1-Tb/s (432×171-Gb/s) C- and extended L-band transmission over 240km using PDM-16-QAM modulation and digital coherent detection. Proceeding of Optical Fiber Communication/National Fiber Optical Engineers Conference (OFC/NFOEC 2010), Los Angeles, USA,2010, PDPB7.
    [48]D. Y. Qian, M. F. Huang, E. Ip, Y. K. Huang, Y. Shao, J. Q. Hu, and T. Wang. 101.7-Tb/s (370-294-Gb/s) PDM-128QAM-OFDM transmission over 3×55-km SSMF using pilot-based phase noise mitigation. Proceeding of Optical Fiber Communication/National Fiber Optical Engineers Conference (OFC/NFOEC 2011), Los Angeles, USA,2011, PDPB5.
    [49]Y. Awaji, N. Wada, A. Kanno, T. Kawanishi, T. Hayashi, T. Taru, T. Kobayashi, M. Watanabe.109-Tb/s (7×97×172-Gb/s SDM/WDM/PDM/) QPSK transmission through 168.km homogeneous multi-core fiber. Proceeding of Optical Fiber Communication/National Fiber Optical Engineers Conference (OFC/NFOEC 2011), Los Angeles, USA,2011, PDPB6.
    [50]B. Zhu, T. F. Taunay, M. Fishteyn, X. Liu, S. Chandrasekhar, M. F. Yan, J. M. Fini, E. M. Monberg, and F. V. Dimarcello.112-Tb/s space-division multiplexed DWDM transmission with 14-b/s/Hz affregate spectral efficiency over a 76.8-km seven-core fiber. Opt. Express,2011,19(17):16665-16671.
    [51]X. Liu, S. Chandrasekhar, X. Chen, P. J. Winzer, Y. Pan, T. F. Taunay, B. Zhu, M. Fishteyn, M. F. Yan, J. M. Fini, E. M. Monberg, and F. V. Dimarcello.1.12-Tb/s 32-QAM-OFDM superchannel with 8.6-b/s/Hz intrachannel spectral efficiency and space-division multiplexed transmission with 60-b/s/Hz aggregate spectral efficiency. Opt. Express,2011,19(26):B958-B964.
    [52]J. Sakaguchi, B. J. Puttnam, W. Klaus, Y. Awaji, N. Wada, A. Kanno, T. Kawanishi, K. Imamura, H. Inaba, K. Mukasa, R. Sugizaki, T. Kobayashi, M. Watanabe.305 Tb/s space division multiplexed transmission using homogeneous 19-core fiber. J. Lightw. Technol.,2013,31(4):554-562.
    [53]C. R. S. Fludger, T. Duthel, D. van den Borne, C. Schulien, E. D. Schmidt, T. Wuth, J. Geyer, E. D. Man, G. D. Khoe, and H. de Waardt. Coherent equalization and POLMUX-RZ-DQPSK for robust 100-GE transmission. J. Lightw. Technol.,2008, 26(1):64-72.
    [54]D. S. Ly-Gagnon, S. Tsukamoto, K. Katoh, and K. Kikuchi. Coherent detection of optical quadrature phase-shift with carrier phase estimation. J. Lightw. Technol., 2006,24(1):12-21.
    [55]M. G. Taylor. Coherent detection method using DSP for demodulation of signal and subsequent equalization of progagation impairments. IEEE Photon. Technol. Lett., 2004,16(2):674-676.
    [56]G. Charlet, J. Renaudier, M. Salsi, H. Mardoyan, P. Tran, and S. Bigo. Efficient mitigation of fiber impairments in an ultra-long haul transmission of 40 Gbit/s polarization-multiplexed data, by digital processing in a coherent receiver. Proceeding of Optical Fiber Communication/National Fiber Optical Engineers Conference (OFC/NFOEC 2007), Anaheim, USA,2007, PDP17.
    [57]E. Ip, A. P. T. Lau, D. J. F. Barros, and J. M. Kahn. Coherent detection in optical fiber systems. Opt. Express.2008,16(2):753-791.
    [58]F. Heismann, P. B. Hansen, S. K. Korotky, G. Raybon, J. J. Veselka and M. S. Whalen. Automatic polarisation demultiplexer for polarisation-multiplexed transmission systems. Electron. Lett.1993,29(22):1965-1966.
    [59]N. E. Hecker, E. Gottwald, K. Kohen, A. Shopflin, P. M. Krummrich and C. Glingener. Automated polarization control demonstrated in a 1.28 Tbit/s (16×2×40 Gbit/s) polarization multiplexed DWDM field trial. Proceeding of European Conference on Optical Communication (ECOC'2001), Amsterdam, Netherlands, 2001,86-87.
    [60]T. Ito, E. L. T. de Gabory, S. Shioiri and K. Fukuchi. Comparison of 100 Gb/s transmission performances between RZ-DQPSK and polarization multiplexed NRZ/RZ-DPSK with automatic polarization de-multiplexer. Proceeding of Optical Fiber Communication/National Fiber Optical Engineers Conference (OFC/NFOEC 2008), San Diego, USA,2008, JThA46.
    [61]S. Bhandare, D. Sandel, B. Milivojevic, A. Hidayat, A. A. Fauzi, H. Zhang, S. K. Ibrahim, F. Wust and R. Noe.5.94-Tb/s 1.49-b/s/Hz (40×2×2×40 Gb/s) RZ-DQPSK polarization-division multiplexing C-band transmission over 324 km. IEEE Photon. Technol. Lett.,2005,17(4):914-916.
    [62]B. Koch, V. Mirvoda, H. GrieBer, H. Wernz, D. Sandel and R. Noe. Endless optical polarization control at 56 krad/s, over 50 Gigaradian, and demultiplex of 112-Gb/s PDM-RZ-DQPSK signals at 3.5 krad/s. IEEE J. Sel. Top. Quantum Electron.,2010, 16(5):1158-1163.
    [63]B. Koch, V. Mirvoda, H. GrieBer, H. Wernz, D. Sandel and R. Noe.40-krad/s polarization tracking in 200-Gb/s PDM-RZ-DQPSK transmission over 430 km. IEEE Photon. Technol. Lett.,2010,22(9):613-615.
    [64]H. Wernz, S. Bayer, B. E. Olsson, M. Camera, H. Griesser and C. Furst.112 Gb/s PolMux RZ-DQPSK with fast polarization tracking based on interference control. Proceeding of Optical Fiber Communication/National Fiber Optical Engineers Conference (OFC/NFOEC 2009), San Diego, USA,2009, OToN4.
    [65]Z. Wang and C. Xie. Automatic optical polarization demultiplexing for polarization division multiplexed signals. Opt. Express,2009,17(5):3183-3189.
    [66]K. Igarashi, et al., Optical signal processing by phase modulation and subsequent filtering aiming at applications to ultrafast optical communication systems. IEEE J. Sel. Top. Quantum Electron.,2008,14(3):551-565.
    [67]A. E. Willner, et al., Optically efficient nonlinear signal processing. IEEE J. Sel. Top. Quantum Electron.,2011,17:320-332.
    [68]L.-S. Yan, A. E. Willner, X. Wu, A.-L. Yi, A. Bogoni, Z.-Y. Chen, and H.-Y. Jiang. All-optical signal processing for ultra-high speed optical systems and networks. J. Lightw. Technol.,2012,30(24):3760-3770.
    [69]Y. Liu, E.Tangdiongga, Z. Li, H. de Waardt, A. M. J. Koonen, G D. Khoe, X. Shu, I. Bennion, and H. J. S. Dorren. Error-free 320-Gb/s all-optical wavelength conversion using a single semiconductor optical amplifier. J. Lightw. Technol.,2007,25(1): 103-108.
    [70]E. Tangdiongga, Y. Liu, H. de Waardt, G D. Khoe, and H. J. S. Dorren. All-optical demultiplexing of 640 to 40 Gbits/s using filtered chirp of a semiconductor optical amplifier. Opt. Lett.,2007,32(7):835-837.
    [71]T. Hirooka, M. Okazaki, T. Hirano, P. Guan, M.Nakazawa, and S. Nakamura. All-optical demultiplexing of 640-Gb/s OTDM-DPSK signal using a semiconductor SMZ switch. IEEE Photon. Technol. Lett.,2009,21(20):1574-1576.
    [72]S. Zhang, D. Lenstra, Y. Liu, Z. Li, G D. Khoe, and H. J. S. Dorren. Multistate optical flip-flop memory based on ring lasers coupled through the same gain medium. Opt. Comm.,2007,270(1):pp.85-95.
    [73]I. Kang, M. Rasras, L. Buhl, M. Dinu, S. Cabot, M. Cappuzzo, L. T. Gomez, Y. F. Chen, S. S. Patel, N. Dutta, A. Piccirilli, J. Jaques, and C. R. Giles. All-optical XOR and XNOR operations at86.4 Gb/s using a pair of semiconductor optical amplifier Mach-Zehnder interferometers. Opt. Express,2009,17(21):19062-19066.
    [74]A. Rostami, H. Nejad, R. M. Qartavol, and H. R. Saghai. Tb/s optical logic gates based on quantum-dot semiconductor optical amplifiers. IEEE J. Quantum. Electron., 2010,46(3):354-361.
    [75]X. Wu, A. Bogoni, S. R. Nuccio, O. F. Yilmaz, M. Scaffardi, and A. E. Willner. High-speed optical WDM-to-TDM conversion using fiber nonlinearities. IEEE J. Sel. Top. Quantum Electron.,2010,16(5):1441-1447.
    [76]X. Wu, A. Bogoni, O. F. Yilmaz, S. Nuccio, J. Wang, and A. E. Willner. Eightfold 40-320 Gbit/s phase-coherent multiplexing and 320-40 Gbit/s demultiplexing using highly nonlinear fibers. Opt. Lett.,2010,35(11):1896-1898.
    [77]H. C. H. Mulvad, L. K. Oxenlwe, M. Galili, A. T. Clausen, L. Gruner-Nielsen, and P. Jeppesen.1.28 Tbit/s single-polarization serial OOK optical data generation and demultiplexing. Electron. Lett.,2009,45(5):280-281.
    [78]J. Li, B. E. Olsson, M. Karlsson, and P. A. Andrekkson. OTDM add-drop multiplexer based on XPM-induced wavelength shifting in highly nonlinear fiber. J. Lightw. Technol.,2005,23(9):2654-2661.
    [79]E. J. M. Verdurmen, Y. Zhao, E. Tangdiongga, J. P. Turkiewicz, G. D.Khoe, and H. de Waardt. Error-free all-optical add-drop multiplexing using HNLF in a NOLM at 160 Gbit/s. Electron. Lett.,2005,41(6):349-350.
    [80]X. Wu, S. Nuccio, O. F. Yilmaz, J. Wang, A. Bogoni, and A. E. Willner. Controllable optical demultiplexing using continuously tunable optical parametric delay at 160-Gbit/s with <0.1 ps resolution. Opt. Lett.,2009,34(24):3926-3928.
    [81]M. Galili, L. K. Oxenlowe, H. C. H. Mulvad, A. T. Clausen, and P. Jeppesen. Optical wavelength conversion by cross-phase modulation of data signals up to 640 Gb/s. IEEE J. Sel. Top. Quantum Electron.,2008,14(3):573-579.
    [82]H. Hu, E. Palushani, M. Glili, H. C. H. Mulvad, A. Clausen, L. K. Oxenlowe, and P. Jeppesen.640 Gbit/s and 1.28 Tbit/s polarisation insensitive all optical wavelength conversion. Opt. Express,2010,18(10):9961-9966.
    [83]J. Yu, M. F. Huang, and G. K. Chang. Polarization insensitive wavelength conversion for 4×112Gbit/s polarization multiplexing RZ-QPSK signals. Opt. Express,2008, 16(26):21161-21169.
    [84]M. Hirano, T. Nakanishi, T. Okuno, and M. Onishi. Silica-based highly nonlinear fibers and their application. IEEE J. Sel. Top. Quantum Electron.,2009,15(1): 103-113.
    [85]J. H. Lee, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto, and K. Kikuchi. Bismuth-oxide-based nonlinear fiber with a high SBS threshold and its application to four-wave-mixing wavelength conversion using a pure continuous-wave pump. J. Lightw. Technol.,2006,24(1):22-28.
    [86]M. P. Fok and C. Shu. Recent advances in optical processing techniques using highly nonlinear bismuth oxide fiber. IEEE J. Sel. Top. Quantum Electron.,2008,14(3): 587-598.
    [87]M. D. Pelusi, V. G Taeed, L. Fu, E. Magi, M. R. E. Lamont, S. Madden, D. Y. Choi, D. A. P. Bulla, B. L. Davies, and B. J. Eggleton. Applications of highly-nonlinear Chalcogenide glass devices tailored for high-speed all-optical signal processing. IEEE J. Sel. Top. Quantum Electron.,2008,14(3):529-539.
    [88]K. K. Chow and C. Lin. Photonic crystal fibers for nonlinear signal processing. Proceeding of Optical Fiber Communication/National Fiber Optical Engineers Conference (OFC/NFOEC 2008), San Diego, USA,2008, OWP8.
    [89]C. Langrock, S. Kumar, J. E. McGeehan, A. E. Willner, and M. M. Fejer. All-optical signal processing using χ(2) nonlinearities in guided-wave devices. J. Lightw. Technol.,2006,24(7):2579-2592.
    [90]M. H. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman.1.5-μm-band wavelength conversion based on cascaded second-order nonlinear in LiNbO3 waveguides. IEEE Photon. Technol. Lett.,1999,11(6):653-655.
    [91]H. Furukawa A. Nirmalathas, N. Wada, S. Shinada, H. Tsuboya, and T. Miyazaki. Tunable all-optical wavelength conversion of 160-Gb/s RZ optical signals by cascaded SFG-DFG generation in PPLN waveguide. IEEE Photon. Technol. Lett., 2007,19(6):384-386.
    [92]B. Huettl, et al.320 Gbit/s DQPSK all-optical wavelength conversion using periodically poled LiNbO3. Proceeding of Conference on Laser and Electro-Optics (CLEO'2007), Baltimore, MD, USA,2007, Paper CThF1.
    [93]J. Wang, J. Sun, Q. Sun, D. Wang, M. Zhou, X. Zhang, D. Huang, and M. M. Fejer. All-optical format conversion using a periodically poled lithium niobate waveguide and a reflective semiconductor optical amplifier. Appl. Phys. Lett.,2007,91(5): 051107-051107-3.
    [94]A. Bogoni, X. Wu, I. Fazal, and A. E. Willner.160 Gb/s time domain channel extraction/insertion and all optical logic operations exploiting a single PPLN waveguide. J. Lightw. Technol.,2009,27(19):4221-4227.
    [95]A. Bogoni, X. Wu, Z. Bakhtiari, S. Nuccio, and A. E. Willner.640 Gb/s photonic logic gates. Opt. Lett.,2010,35(23):3955-3957.
    [96]Y. Wang, C. Yu, L. Yan, A. E. Willner, R. Roussev, C. Langrock, M. M. Fejer, J. E. Sharping, and A. L. Gaeta.44-ns continuously tunable dispersionless optical delay element using a PPLN waveguide with two-pump configuration, DCF, and a dispersion compensator. IEEE Photon. Technol. Lett, vol.,2007,19(11):861-863.
    [97]S. L. Jansen, D. van de Brne, P. M. Krummrich, S. Spalter, G. D. Khoe, and H. de Waardt. Long-haul DWDM transmission systems employing optical phase conjugation. IEEE J. Sel. Top. Quantum Electron.,2006,12(4):505-520.
    [98]R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta. Signal regeneration using low-power four-wave mixing on silicon chip. Nat. Photon., 2008,2:35-38.
    [99]L. K. Oxenl(?)we, H. Ji, M. Galili, M. Pu, H. Hu, H. C. H. Mulvad, K.Yvind, J. M. Hvam, A. T. Clausen, and P. Jeppesen. Silicon photonics for signal processing of Tbit/s serial data signals. IEEE J. Sel. Top. Quantum Electron.,2012,18(2): 996-1005.
    [100]J. E. Bowers, D. Liang, A. W. Fang, H. Park, R. Jones, and M. J. Paniccia. Hybrid silicon lasers:the final frontier to integrated computing. Opt. Photon. News,2010, 21(5):28-33.
    [101]C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold. All-optical high-speed signal processing with silicon-organic hybrid slot waveguides. Nat. Photon.,2009,3:pp.216-219.
    [102]K. Dolgaleva, W. C. Ng, Q. Li, and J. S. Aitchison. Compact highly-nonlinear AlGaAs waveguides for efficient wavelength conversion. Opt. Express,2011,19(13): 12440-12455.
    [103]J. Lu, L. Chen, Z. Dong, Z. Cao and S. Wen. Polarization insensitive wavelength conversion based on orthogonal pump four-wave mixing for polarization multiplexing signal in high-nonlinear fiber. IEEE J. Lightw. Technol.,2009,27(24): 5767-5774.
    [104]X. Li, J. Yu, Z. Dong and N. Chi. Wavelength conversion of 544-Gbit/s dualcarrier PDM-16QAM signal based on the copolarized dual-pump scheme. Opt. Express, 2012,20(19):21324-21330.
    [105]M. F. Huang, J. Yu, Y. K. Huang, E. Ip and G. K. Chang. Wavelength converter for polarization-multiplexed 100-G transmission with multilevel modulation using a bismuth oxide-based nonlinear fiber. IEEE Photon.Technol. Lett.,2010,22(24): 1832-1834.
    [106]P. Martelli, P. Boffi, M. Ferrario, L. Marazzi, P. Parolari, R. Siano, V. Pusino, P. Minzioni, I. Cristiani, C. Langrock, M. M. Fejer, M. Martinelli and V. Degiorgio. All-optical wavelength conversion of a 100-Gb/s polarization-multiplexed signal. Opt. Express,2009,17(20):17758-17763.
    [107]W. Astar, C. C. Wei, Y. J. Chen, J. Chen, and G. M. Carter. Polarization-insensitive, 40 Gb/s wavelength and RZ-OOK-to-RZ-BPSK modulation format conversion by XPM in a highly nonlinear PCF. Opt. Express,2008,16(16):12039-12049.
    [108]K. Mishina and A. Maruta. NRZ-OOK-to-RZ-BPSK modulation-format conversion using SOA-MZI wavelength converter. J. Lightw. Technol.,2006,24(10): 3751-3753.
    [109]W. Wu, Y. Yu, S. Hu, B. Zou and X. Zhang. All-optical format conversion for polarization and wavelength division multiplexed system. IEEE Photon. Technol. Lett,2012,24(18):1606-1609.
    [110]T. Richter, R. Elschner, A. Gandhe, K. Petermann and C. Schubert. Parametric amplification and wavelength conversion of single- and dual-polarizaiton DQPSK. signals. IEEE J. Sel. Top. Quantum Electron.,2012,18(2):988-995.
    [111]Y. Xie, S. Gao and S. He. All-optical wavelength conversion and multicasting for polarization-multiplexed signal using angled pumps in a silicon waveguide. Opt. Lett.,2012,37(11):1898-1900.
    [112]F. Yilmaz, S. R. Nuccio, X. Wang, J. Wang, I. Faza, J. Y. Yang, X. Wu and A. E. Willner. Experimental demonstration of 8-fold multicasting of a 100 Gb/s polarization-multiplexed OOK signal using highly nonlinear fiber. Proceeding of Optical Fiber Communication/National Fiber Optical Engineers Conference (OFC/NFOEC 2010), Los Angles, USA,2010, OWP8.
    [113]Y. K. Huang, D. Qian, R. E. Saperstein, P. N. Ji, N. Cvijetic, L. Xu and T. Wang. Dual-polarization 2x2 IFFT/FFT optical signal processing for 100-Gb/s QPSK-PDM all-optical OFDM. Proceeding of Optical Fiber Communication/National Fiber Optical Engineers Conference (OFC/NFOEC 2009), San Diego, USA,2009, OTuM4.
    [114]S. J. Savory, G. Gavioli, R. I. Killey, and P. Bayvel. Transmission of 42.8Gbit/s polarization multiplexed NRZ-QPSK over 6400km of standard fiber with no optical dispersion compensation. Proceeding of Optical Fiber Communication/National Fiber Optical Engineers Conference (OFC/NFOEC 2007), Anaheim, USA,2007, OTuAl.
    [115]A. Leven, N. Kaneda, and Y. K. Chen. A real-time CMA-based 10 Gb/s polarization demultiplexing coherent receiver implemented in an FPGA. Proceeding of Optical Fiber Communication/National Fiber Optical Engineers Conference (OFC/NFOEC 2008), San Diego, USA,2008, OTuAl.
    [116]X. Zhou, J. Yu, and P. D. Magill. Cascaded two-modulus algorithm for blind polarization de-multiplexing of 114-Gb/s PDM-8-QAM optical signals. Proceeding of Optical Fiber Communication/National Fiber Optical Engineers Conference (OFC/NFOEC 2009), San Diego, USA,2009,OWG3.
    [117]B. Szafraniec, B. Nebendahl, and Todd Marshall. Polarization demultiplexing in stokes space. Opt. Express,2010,18(17):17928-17939.
    [118]X. Xie, F. Yaman, X. Zhou, and G. Li. Polarization demultiplexing by independent component analysis. IEEE Photon. Technol. Lett.,2010,22(11):805-807.
    [119]P. Johannisson, H. Wymeersch, M. Sjodin, A. S. Tan, E. Agrell, P. A. Andrekson, and M. Karlsson. Convergence comparison of the CMA and ICA for blind polarization demultiplexing. J. Opt. Commun. Netw.,2011,3(6):493-501.
    [120]Y. Han, and G. Li. Coherent optical communication using polarization multiple-input-multiple-output. Opt. Express,2005,13(19):7527-7534.
    [121]E. Ip, and J. M. Kahn. Digital equalization of chromatic dispersion and polarization mode dispersion. J. Lightw. Technol.,2007,25(8):2033-2043.
    [122]H. Bulow, F. Buchali, and A. Klekamp. Electronic dispersion compensation. J. Lightw. Technol.,2008,26(1):158-167.
    [123]K. Ishihara, T. Kobayashi, R. Kudo, Y. Takatori, A. Sano, E. Yamada, H.Masuda, and Y.Miyamoto. Coherent optical transmission with frequency-domain equalizers. Proceeding of European Conference on Optical Communication (ECOC'2008), Brussels Belgium,2008, Paper We.2.E.3.
    [124]M. Kuschnerov, F. Hauske, K. Piyawanno, B. Spinnler, M. Alfiad, A. Napoli, and B. Lankl. DSP for coherent single-carrier receivers. J. Lightw. Technol.,2009,27(16): 3614-3622.
    [125]T. Xu, G. Jacobsen, S. Popov, J. Li, E. Vanin, K.Wang, A. T. Friberg, and Y. Zhang. Chromatic dispersion compensation in coherent transmission system using digital filters. Opt. Express,2010,18(15):16243-16257.
    [126]D. Wang, C. Lu, A. P. T. Lau, and S. He. Adaptive chromatic dispersion compensation for coherent communication systems using delay-tap sampling technique. IEEE Photon. Technol. Lett.,2011,23(14):1016-1018.
    [127]E. Ip. Nonlinear compensation using backpropagation for polarization-multiplexed transmission. J. Lightw. Technol.,2010,28(6):939-951.
    [128]L. Zhu, and G. Li, Folded digital backward propagation for dispersion-managed fiber-optic transmission. Opt. Express,2011,19(7):5953-5959.
    [129]E. F. Mateo, X. Zhou, and G Li, Improved digital backward propagation for the compensation of inter-channel nonlinear effects in polarization-multiplexed WDM systems. Opt. Express,2011,19(2):570-583.
    [130]E. Ip and J. M. Kahn. Feedforward carrier recovery for coherent optical communications. J. Lightw. Technol.,2007,25(9):2675-2692.
    [131]I. Fatadin and S. J. Savory. Compensation of frequency sffset for 16-QAM optical coherent systems using QPSK partitioning. IEEE Photon. Technol. Lett.,2011, 23(17):1246-1248.
    [132]I. Fatadin, D. Ives, and S. J. Savory. Compensation of frequency offset for differentially encoded 16- and 64-QAM in the presence of laser phase noise. IEEE Photon. Technol. Lett.,2010,22(3):176-178.
    [133]X. Li, Y Cao, S. Yu, W. Gu, and Y. Ji. A simplified feedforward carrier recovery algorithm for coherent optical QAM system. J. Lightw. Technol.,2011,29(5): 801-807.
    [134]S. Zhang, P. Y. Kam, C. Yu, and J. Chen. Decision-aided carrier phase estimation for coherent optical communications. J. Lightw. Technol.,2010,28(11):1597-1607.
    [135]X. Zhou. An improved feed-forward carrier recovery algorithm for coherent receivers with M-QAM modulation format. IEEE Photon. Technol. Lett.,2010,22(14): 1051-1053.
    [136]R. J. Essiambre, G Kramer, P. J. Winzer, G. J. Foschini, and B. Goebel. Capacity limits of optical fiber networks, J. Lightw. Technol.,2010,28(4):662-701.
    [137]G P.Agrawal.非线性光纤光学原理及应用.贾东方,余震虹等.电子工业出版社,2002.
    [138]Z. Wang, C. Xie, and X. Ren. PMD and PDL impairements in polarization division multiplexing signals with direct detection. Opt. Express,2009,17(10),7993-8004.
    [139]H. C. Ji, J. H. Lee, H. Kim. Effect of PDL-induced coherent crosstalk on polarization division multiplexed direct-detection systems. Opt. Express,2009,17(3):1169-1177.
    [140]M. Shtaif. Performance degradation in coherent polarization multiplexed systems as a result of polarization dependent loss. Opt. Express,2008,16(18):13918-13932.
    [141]A.-L. Yi, L.-S. Yan, B. Luo, W. Pan, J.Ye and X. Steve Yao. A novel scheme for all optical automatic polarization division demultiplexing. Proceeding of Asia Communication and Photonics Conference (ACP'2009), Shanghai, China,2009, TuAAl.
    [142]J. Ye, L.-S. Yan, A.-L. Yi, W. Pan, B. Luo, Z. Guo, and X. Steve Yao. An all-optical polarization monitoring scheme for polarization division multiplexed transmission. Chinese Opt. Lett.,2010,8(10):979-982.
    [143]L.-S. Yan, A.-L. Yi, W. Pan, B. Luo and J. Ye. Simultaneous NRZ-to-RZ format conversion and one-to-six error-free channel multicasting using a single pump in a highly nonlinear fiber. Opt. Express,2012,18(20):pp.21404-21409.
    [144]M. Matsumoto. All-optical signal regeneration using fiber nonlinearity. Eur. Phys. J. Special. Top.,2009,173:297-312.
    [145]P. V. Mamyshev. All-optical data regeneration based on self-phase modulation effect. Proceeding of European Conf. Opt. Comm. (ECOC'1998),1998, Madrid, Spain, 475-476.
    [146]L. Provost, C. Finot, P. Petropoulos, K. Mukasa, and D. J. Richardson. Design scaling rules for 2R-optical self-phase modulation-based regenerators. Opt. Express,2007, 15(8):5100-5113.
    [147]A.-L. Yi, L.-S. Yan, B. Luo, W. Pan, J. Ye and J. Leuthod. Self-phase-modulation based all-optical regeneration of PDM signals using a single section of highly-nonlinear fiber. Opt. Express,2010,18(7):7150-7155.
    [148]M. O. Deventer and A. J. Boot. Polarization properties of Stimulated Brillouin Scattering in single-mode fibers. J. Lightw. Technol.,1994,12(4):585-590.
    [149]J. H. Lee, Z. Yusoff, W. Belardi, M. Ibsen, T. M. Monro, and D. J. Richardson. A Tunable WDM wavelength converter based on cross-phase modulation effects in normal dispersion holey fiber. IEEE Photon. Technol. Lett.,2003,15(3):437-439.
    [150]M. Seimetz. High-order modulator for opitcal fiber transmission. Spring-Verlag Berlin Heidelberg,2009.
    [151]I. Fatadin, S. J. Savory and D. Ives. Compensation of quadrature imbalance in an optical QPSK coherent receiver. IEEE Photon. Technol. Lett.,2008, 20(20):1733-1735.
    [152]S. Haykin. Adaptive filter theory. Englewood Cliffs, NJ:Prentice-Hall,1986.
    [153]H. Meyr, M. Moeneclaey, S. A. Fechtel. Digital communication receivers: synchronization, channel estimation, and signal processing. John Wiley&Sons,1998.
    [154]M. Oerder and H. Meyr. Digital filter and square timing recovery. IEEE Trans. Comm.,1988,36(5):605-612.
    [155]I. Fijalkow, A. Touzni, and J. R. Treichler. Fractionally spaced equalization using CMA:robustness to channel noise and lack of disparity. IEEE Trans. On Comm., 1997,45(1):56-66.
    [156]S. J. Savory. Digital filter for coherent optical receivers. Opt. Express,2008,16(2): 804-817.
    [157]A. Leven, N. Kaneda, U. V. Koc and Y. K. Chen. Frequency estimation in intradyne reception. IEEE Photon. Technol. Lett.,2007,19(6):366-368.
    [158]L. Li, Z. Tao, S. Oda, T. Hoshida, and J. C. Rasmussen. Wide-range, accurate and simple digital frequency offset compensator for optical cohernet receivers. Proceeding of Optical Fiber Communication/National Fiber Optical Engineers Conference (OFC/NFOEC 2008), San Diego, USA,2008, OWT4.
    [159]A. J. Vrterbi and A. M. Viterib. Nonlinear estimation of PSK-modulated carrier phase with application to burst digital transmission. IEEE Trans. Inform. Theory,1983, IT-29(4):543-551.
    [160]I. Fatadin and S. J. Savory. Compensation of frequency offset for 16-QAM optical coherent systems using QPSK partitioning. IEEE Photon. Technol. Lett.,2011,23(7): 1246-1248.
    [161]J. Guillory, E. Tanguy, A. Pizzinat, B. Charbonnier, S. Meyer, C. Algnani, and H. W. Li. A 60 GHz wireless home area network with radio over fiber repeaters. J. Lightw. Technol.,2011,29(16):2482-2488.
    [162]C. Liu, H. C. Chein, Z. Gao, W. Jian, C. Estevez, J. Yu, and G. K. Chang. Optimization of vector signal delivery over double-sideband carrier-suppressed optical millimeter-waves through DC coupling. IEEE Photon. Technol. Lett.,2011, 23(12):789-791.
    [163]J. X. Ma, Y. Zhan, M. Zhou, H. Liang, Y. F. Shao, and C. X. Yu. Full-duplex radio over fiber with a centralized optical source for a 60 GHz millimeter-wave system with a 10-Gb/s 16-QAM downstream signal based on frequency quadrupling. J. Opt. Commun. Netw.,2012,4(7):557-564.
    [164]J. K. Hwang, Y. L. Chiu, and C. S. Liao. Angle differential-QAM scheme for resolving phase ambiguity in continuous transmission system. Int. J. Commun. Syst., 2008,21(6):631-641.
    [165]G. Picchi and G. Prati. Blind carrier recovery using a "Stop-and-go" decision-directed algorithm. IEEE Trans. Comm.,1987,35(9):877-887.
    [166]D. Gesbert, M. Shafi, S. D. Shan, P. J. Smith, A. Naguib. From theory to practice:an overview of MIMO space-time coded wireless systems. J. Sel. Area in Comm.,2003, 21(3):281-302.
    [167]L. Zheng. Diversity and multiplexing:a fundamental tradoff in multiple-anteena channels. IEEE Trans. Inform. Theory,2003,49(5):1073-1096.
    [168]S. H. Fan, H. C. Chien, A. Chowdhury, C. Liu, W. Jian, Y. T. Hsueh and G. K Chang. A novel radio-over-fiber system using the xy-MIMO wireless technique for enhanced radio spectral efficiency. Proceeding of European Conference and Exhibition on Optical Communicaiton (ECOC'2010), Torino, Italy,2010, Th.9.B.1.
    [169]I. Barhumi, G Leus and M. Moonen. Optimal training design for MIMO OFDM systems in mobile wireless channels. IEEE Trans. Signal processing,1999, 51(6):1615-1624.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700