磷酸钙盐/Al_2O_3及相关复合生物涂层材料的制备、表征与体外性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近十年来,惰性生物材料的表面生物学改性已成为生物材料的研究热点之一。由于磷酸钙盐类生物陶瓷(如羟基磷灰石HA、磷酸三钙TCP等)与人体硬组织的无机成分相近,具有天然优异的生物相容性,是最有前途的惰性生物材料的表面生物学改性涂层材料之一。但涂层成分的多样性(如HA高温下分解)或单一生物活性涂层与基底材料力学性能不匹配,常造成生物涂层活性降低、涂层容易剥落等问题。因此,采用温和的工艺条件,制备同时具有较优生物相容性和力学稳定性的新型生物涂层是一项有意义的工作。
     本文旨在采用新的复合制备技术,研制具有较优诱导性能、较强体外耐腐蚀能力与较高结合强度的磷酸钙盐/Al_2O_3及相关复合生物涂层材料。采用扫描电镜(SEM)、透射电镜(TEM)、原子力显微镜(AFM)、傅利叶变换红外光谱(FT-IR)、电子能谱(EDS)、X-射线衍射(XRD)和电感耦合等离子原子发射光谱(ICP/AES)对所制备复合体系的形貌结构、组成及其体外稳定性和诱导能力进行了详细的分析与研究,采用动电位强极化(Tafel极化)技术研究了所制备复合体系在模拟生理环境(林格氏溶液,Ringer′s solution)中的耐腐蚀性能,分析了处理条件对Ti基HA/Al_2O_3复合生物涂层材料结合强度的影响。主要研究工作及结论如下:
     (1)以磁控溅射物理气相沉积(MSPVD)Ti基Al膜为底材,采用阳极氧化-水热处理复合技术首次成功制备了磷酸钙盐/Al_2O_3复合生物涂层材料。
     结果表明:阳极氧化电压越高,阳极氧化Al_2O_3多孔膜的孔径越大,阳极氧化Al_2O_3膜中的Ca/P原子比越高。水热处理(212℃,8 h)后,Ti基含Ca、P元素的阳极氧化Al_2O_3膜转化为磷酸钙盐/Al_2O_3复合生物涂层材料;磷酸钙盐结晶于阳极氧化Al_2O_3膜的孔洞内并外延生长至阳极氧化Al_2O_3膜的表面,部分磷酸钙盐嵌入阳极氧化Al_2O_3的孔洞内使磷酸钙盐外层和阳极氧化Al_2O_3中间层之间形成“T”形结合界面结构。
     (2)采用阳极氧化-恒压电沉积两步电化学方法首次成功制备了铝基HA/Al_2O_3复合生物涂层材料。HA/Al_2O_3复合生物涂层材料在模拟体液(Simulated body fluid,SBF)中显示出良好的稳定性与较强的诱导沉积能力;HA外层的沉积电压越高,铝基HA/Al_2O_3复合体系在Ringer′s生理溶液中的耐腐蚀能力越强。
     (3)以MSPVD制备Ti基Al膜为底材,采用阳极氧化、恒流电沉积复合技术首次在Ti基上制备了一种新型的HA/Al_2O_3复合生物涂层材料,所制备的复合生物涂层材料的外层由微米板条状缺钙HA(Ca-deficient HA,CDHA)晶体构成。
     在碱性介质中水热处理后,微米板条状CDHA外层转化为由纳米针状晶体构
Surface biological modification of bioinert materials has received much attention during the past decade. Due to the composition similar to human bone and the corresponding superior biocompatibility, calcium phosphate, such as hydroxyapatite (HA) and tricalcium phosphate (TCP) and so on, is one of the most promising candidates for the surface biological modification of bioinert materials. However, the compositional diversity of coating caused by high process temperature and/or the mismatch of mechanical performances between coating and substrate often lead to the decrease of biocompatibility and the delamination of coating. Therefore, it is interesting to fabricate new biocatings associated with perfect biocompatibility and good mechanical stability under mild conditions.
     In this dissertation, to simultaneously achieve good inductive and anti-corrosion ability and to enhance the adhesion of coating, calcium phosphate/Al_2O_3 and some related composite biocoatings, in which porous anodic Al_2O_3 acts as intermediate layer, have been developed by combining multiple methods. SEM, TEM, AFM, FT-IR, EDS, XRD and ICP/AES were employed to investigate the morphologies, compositions and in vitro inductive ability of the prepared composite systems. The research on the in vitro anti-corrosion ability of the obtained composite systems in Ringer′s solution was performed by potentiodynamic polarization (Tafel polarization). And the effect of process parameters on the bonding strength of HA/Al_2O_3 composite biocoating on Ti substrate was also determined by tensile test. The main results and conclusions were as followings:
     (1) Calcium phosphate/Al_2O_3 composite biocating was successfully fabricated on Ti by a hybrid technique of magnetron sputtering physical vapor deposition (MSPVD), anodization and hydrothermal treatment.
     It was found that the pores of anodic Al_2O_3 became bigger and the atomic ratio of Ca/P contained in anodic Al_2O_3 increased as high anodization voltage was applied. After hydrothermal treatment at 212℃for 8 h, anodic Al_2O_3 containing Ca and P on Ti was transformed to calcium phosphate/Al_2O_3 composite biocating. The crystallization and epitaxial growth of calcium phosphate in the pores of anodic Al_2O_3 resulted in the formation of“T”shape interface between calcium phosphate outer layer and anodic Al_2O_3 intermediate layer.
引文
[1] 崔福斋, 冯庆玲. 生物材料学. 北京: 科学出版社, 1996, 1-2.
    [2] Langer R, Vacanti J P. Tissue engineering. Science, 1993, 260(3): 920-926.
    [3] Medtech Insight. Orthopaedic Biomaterials Market Review. www.azom.com, 2002-01-10.
    [4] 俞耀庭, 张兴栋. 生物医用材料. 天津: 天津大学出版社, 2000, 1-9.
    [5] 姚康德, 尹玉姬. 组织工程相关生物材料. 北京: 化学工业出版社, 2003, 1-18.
    [6] 李爱民, 孙康宁, 尹衍升, 等. 生物材料的发展、应用、评价与展望. 山东大学学报(工学版), 2002, 32(3): 287-293.
    [7] Peppas N A R. New challenges in biomaterials. Science, 1994, 263(6): 1715.
    [8] 王迎军, 刘康时. 生物医学材料的研究与发展. 中国陶瓷, 1998, 34(5): 26-29.
    [9] Black J. Biological performance of Materials. New York: Plenum Press, 1984, 1-67.
    [10] Dubok V. Bioceramics-yesterday, today, tomorrow. Powd. Metall. Met. Ceram., 2000, 39 (7): 381-394.
    [11] Shirtliff V J, Hench L L. Bioactive materials for tissue engineering, regeneration and repair. J. Mater. Sci., 2003, 38(3): 4697-4707.
    [12] Ben-nissan B, Pezzotti G. Bioceramics: Processing Routes and Mechanical Evaluation. J. Ceram. Soc. Jpn., 2002, 110(7): 601-608.
    [13] 李世普, 陈晓明. 生物陶瓷. 武汉: 武汉工业大学出版社, 1989, 1-108.
    [14] 山口乔, 柳田博明, 牧岛亮男, 等, 窦筠译. 生物陶瓷. 北京: 化学工业出版社, 1992, 1-5.
    [15] Hanawa T. Evaluation techniques of metallic biomaterials in vitro. Sci. Technol. Adv. Mater., 2002, 3(2): 289-295.
    [16] Hanawa T. Corrosion measurements of biomedical metallic materials. Corros. Eng., 2000, 49(6): 687-699.
    [17] Yamamoto A, Honma R, Sumita M. Cytotoxicity evaluation of 43 metal salts using murine fibroblasts and osteoblastic cells. J. Biomed. Mater. Res., 1998, 39(3): 331-340.
    [18] Kim H M. Bioactive Ceramics: Challenges and Perspectives. J. Ceram. Soc. Jpn., 2001, 109(4): 49-57.
    [19] Verheyen C C, Klein C P, de Blieckhogervorst J M, et al. Evaluation of
    hydroxyapatite/poly(L-lactide)composites: physico-chemical properties. J. Mater. Sci. Mater. Med., 1993, 4(1): 58-65.
    [20] Burg K J, Porter S, Kellam J F. Biomaterial developments for bone tissue engineering. Biomaterials, 2000, 21(3): 2347-2359.
    [21] 储成林, 朱景川, 尹钟大, 等. 羟基磷灰石(HA)生物复合材料的研究进展. 材料导报, 1999, 13(2): 51-54.
    [22] Maria V R. Ceramics for medical applications. J. Chem. Soc. Dalton Trans., 2001, 2(1): 97-108.
    [23] Xie J, Riley C, Kumar M. FTIR/ATR study of protein adsorption and brushite transformation to hydroxyapatite. Biomaterials, 2002, 23(8): 3609-3616.
    [24] Hench L L. Bioceramics: from concept to clinic. J. Am. Ceram. Soc., 1991, 74(6): 1487-1510.
    [25] Charrierea E, Terrazzoni S, Pittet C, et al. Mechanical characterization of brushite and hydroxyapatite cements. Biomaterials, 2001, 22(21): 2937-2945.
    [26] Zhu P X, Masuda Y, Koumoto K. A noval approach to fabricate hydroxyapatite coating on titanium substrate in an aqueous solution. J. Ceram. Soc. Jpn, 2001, 109(8): 676-680.
    [27] Hata K, Ozawa N, Kokubo T, et al. Bonelike apatite formation on various kinds of ceramic and metals. J. Ceram. Soc. Jpn., 2001, 109(5): 461-465.
    [28] Tabellion Jan, Clasen Rolf. Manufacturing of advanced ceramic components via electrophoretic deposition. Key Engineering Materials, 2002, 206(3): 397-400.
    [29] Fu L, Khor K A, Lim J P. Effects of yttria stabilized zirconia on plasma sprayed hydroxyapatite/yttria stabilized zirconia composite coatings. J. Am. Ceram. Soc., 2002, 85(4): 800-806.
    [30] 白晓军, 朱和祥, 庄晓曼, 等. Ni/羟基磷灰石生物活性复合镀层的研究. 表面技术, 1996, 25(6): 5-6.
    [31] Gu Y W, Khor K Cheang A P. Activity of plasma sprayed yttria stabilized zirconia reinforced hydroxyapatite/Ti6Al4V composite coatings in simulated body fluid. Biomaterials, 2004, 25(6): 3177-3185.
    [32] Zhang J M, Tian Z W. Hydroxyapatite/metal composite coatings prepared by multi-step electrodeposition method. J. Mater. Sci. Lett., 1998, 17(13): 1077-1079.
    [33] Annett D R, Karl B, Rainer N, et al. Unreinforced and carbon fibre reinforced hydroxyapatite: resistance against microabrasion. J. Euro. Ceram. Soc., 2004, 24(6): 2131-2139
    [34] Wang R, Cui F Z, Lu H B, et al. Synthesis of nanophase hydroxyapatite/collagen composite. J. Mater. Sci. Lett., 1995, 14(6): 490-492.
    [35] Kumar R, Wang M. Functionally graded bioactive coatings of hydroxyapatite/titanium oxide composite system. Materials Letters, 2002, 55(3): 133-137.
    [36] 陈晓明, 李世普, 韩庆荣, 等. 在非水溶液体系中电泳沉积 Ti6Al4V/BG/HAP 梯度涂层. 硅酸盐学报, 2001, 29(6): 565-568.
    [37] 袭迎祥, 王迎军. 羟基磷灰石生物陶瓷涂层的制备方法. 材料开发与应用, 1999, 14(6): 41-44.
    [38] Yang C Y, Wang B C, Wu J D, et al. The influences of plasma spraying parameters on the characteristics of hydroxyapatite coating: a quantitative study. J. Mater. Sci., 1995, 15(6): 249-257.
    [39] Zheng X B, Huang M H, Ding C X. Bond strength of plasma-sprayed hydroxyapatite/Ti composite coatings. Biomaterials, 2000, 21(8): 841-849.
    [40] Chou B Y, Chang E, Yao S Y, et al. Phase transformation during plasma spraying of hydroxyapatite-10-wt%-zirconia composite coating. J. Am. Ceram. Soc., 2002, 85(3): 661-669.
    [41] Guillot N O, Gomez S R, Perriere J, et al. Growth of apatite films by laser ablation: reduction of the droplet areal density. J. Appl. Phys, 1996, 80(6): 1803-1808.
    [42] Antonov E N, Bagratashvili V N, Popov V K, et al. Atomic force microscopic study of the surface morphology of apatite films deposited by pulsed laser ablation. Biomaterials, 1997, 18(3): 1043-1049.
    [43] Ong J L, Lucas L C, Lacefield W R, et al. Structure, solubility and bond strength of thin calcium phosphate coatings produced by ion beam sputter deposition. Biomaterials, 1992, 13(2): 249-254.
    [44] Arita H, Castano V M. Synthesis and processing of hydroxyapatite ceramic tapes with controlled porosity. J. Mater. Sci.: Mater. Med., 1995, 6(1): 19-23.
    [45] Li Y B. Morphology and composition of nanograde calcium phosphate needle-like crystals formed by simple hydrothermal treatment. J. Mater. Sci.: Mater. Med., 1994, 5(3): 326-331.
    [46] Kokubo T, Miyaji F, Kim H M. Spontaneous formation of bonelike apatite layer on chemically treated titanium metals. J. Am. Ceram. Soc., 1996, 4(3): 1127-1129.
    [47] Costantini A, Luciani G, Branda F, et al. Hydroxyapatite coating of titanium by biomimetic method. J. Mater. Sci.: Mater. Med., 1998, 17(5): 381-383.
    [48] Lin F H, Hsu Y S, Lin S H, et al. The effect of Ca/P concentration and temperature of simulated body fluid on the growth of hydroxyapatite coating on alkali-treated 316L stainless steel. Biomaterials, 2002, 23(19): 4029-4038.
    [49] Lenka J, Frank A M, Ales H, et al. Biomimetic apatite formation on chemically treated titanium. Biomaterials, 2004, 25(3): 1187-1194.
    [50] Tsuru K, Kubo M, Hayakama S, et al. Kinetics of apatite deposition of silica gel dependent on the inorganic ion composition of simulated body fluids. J. Ceram. Soc. Jpn, 2001, 109(5): 412-418.
    [51] Uchida M, Kim H M, Kokubo T, et al. Structural dependence of apatite formation on zirconia gels in a simulated body fluid. J. Ceram. Soc. Jpn, 2002, 110(8): 710-715.
    [52] Metikos H M, Tkalcec E, Kwokal A, et al. An in vitro study of T and Ti-alloys coated with sol-gel derived hydroxyapatite coatings. Surf. Coat. Technol., 2003, 165(1): 40-50.
    [53] Cheng K, Han G R, Weng W J, et al. Sol-gel derived fluoridated hydroxyapatite films. Mater. Res. Bull., 2003, 38(1): 89-97.
    [54] Kim H W, Koh Y H, Li L H, et al. Hydroxyapatite coating on titanium substrate with titania buffer layer processed by sol-gel method. Biomaterials, 2004, 25(3): 2533-2538.
    [55] Ben-Nissan B, Milev A, Vago R. Morphology of sol-gel derived nano-coated coralline hydroxyapatite. Biomaterials, 2004, 25(8): 4971-4975.
    [56] 张建民, 冯祖德, 林昌健, 等. 电化学方法制备磷酸钙生物陶瓷镀层. 中国陶瓷, 1998, 34(5): 38-40.
    [57] Han Y, Xu K W. Morphology and composition of hydroxyapatite coatings prepared by hydrothermal treatment on electrodeposited brushite coatings. J. Mater. Sci: Mater. Med., 1999, 10(2): 243-248.
    [58] Han Y, Fu T, Xu K W. Characterization and stability of hydroxyapatite coatings prepared by an electrodeposition and alkaline-treatment process. J. Biomed. Mater. Res., 2001, 54(1): 96-101.
    [59] Manso M, Jimenez C, Morant C, et al. Electrodeposition of hydroxyapatite coatings in basic conditions. Biomaterials, 2000, 21(6): 1755-1761.
    [60] 黄立业, 憨勇, 徐可为. 电沉积-水热合成法制备羟基磷灰石生物涂层的工艺研究. 硅酸盐学报, 1998, 26(1): 87-91.
    [61] Kumar M, Dasarathy H, Riley C. Electrodeposition of brushite coatings and their transformation to hydroxyapatite in aqueous solutions. J. Biomed. Mater. Res., 1999, 45(4): 302-310.
    [62] 张建民, 冯祖德, 林昌健, 等. 电化学法制备活性陶瓷材料研究. 高等学校化学学报, 1997, 18(6): 961-962.
    [63] 胡皓冰, 林昌健, 陈菲, 等. 电沉积制备羟基磷灰石涂层及机理研究. 电化学, 2002, 8(3): 288-294.
    [64] Yen S K, Lin C M. Cathodic reactions of electrolytic hydroxyapatite coating on pure titanium. Mater. Chem. and Phy., 2003, 77(1): 70-76.
    [65] Shirkhanzadeh M. Bioactive calcium phosphate coatings prepared by electrodeposition. J. Mater. Sci. Lett., 1991, 10(6): 1415-1417.
    [66] Posner A S. The mineral of bone. Clin. Orthop. Relat. Res., 1985, 200(1): 87-89.
    [67] Shirkhanzadeh M. Calcium phosphate coatings prepared by electrocrystallization from aqueous electrolytes. J. Mater. Sci.: Mater. in Med., 1995, 6(1): 90-93.
    [68] Roy D M, Eysel W, Dinger D. Hydrothermal synthesis of various carbonate containing calcium hydroxyapatite. Mater. Res. Bull., 1974, 9(1): 35-40.
    [69] Aoki H, Kato K, Shiba M. Synthesis of hydroxyapatite under hydrothermal conditions. J. Dent. Appara. Mater., 1972, 13(27): 170-176.
    [70] Chen J S, Jaung H Y, Hon M H, et al. Calcium phosphate coating on titanium substrate by a modified electrocrystallization process. J. Mater. Sci.: Mater. in Med., 1998, 9(3): 297-300.
    [71] Vijayaraghavan T V, Bensalem A. Electrodeposition of apaptite coating on pure titanium and titanium alloy. J. Mater. Sci. Lett., 1994, 13(6): 1782-1785.
    [72] Dasarathy H, Riley C, Coble H D. Analysis of apatite deposits on substrate. J. Biomed. Mater. Res., 1993, 27(5): 477-482.
    [73] Zhang J M, Shi Q Z, Yang C C, et al. Influence of current density on the composition and structure of calcium phosphate coatings. Chem. Res., 2002, 13(2): 5-7.
    [74] Kumar R R, Wang M. Biomimetic deposition of hydroxyapatite on brushite single crystals grown by the gel technique. Materials Letters, 2001, 49(1): 15-19.
    [75] 刘榕芳, 肖秀峰, 林岚云, 等. 电沉积 HA/TiO2 复合涂层的结合强度与热稳定性研究. 无机化学学报, 2004, 20(2): 225-230.
    [76] Ducheyne P, Van Raemdonck W, Heughbaert J C, et al. Structural analysis of hydroxyapatite coatings on titanium. Biomaterials, 1986, 7(1): 97-103.
    [77] Wei M, Ruys A J, Swain M V, et al. Interfacial bond strength ofelectrophoretically deposited hydroxyapatite coatings on metals. J. Mater. Sci.: Mater. Med., 1999, 10(3): 401-409.
    [78] Zhitomirsky I. Electrophoretic hydroxyapatite coatings and fibers. Materials Letters, 2000, 42(6): 262-271.
    [79] Stoch A, Brozek A, Kmita G, et al. Electrophoretic coating of hydroxyapatite on titanium implants. J. Mol. Struct., 2001, 596(3): 191-200.
    [80] Ma J, Wang C, Peng K W. Electrophoretic deposition of porous hydroxyapatite scaffold. Biomaterials, 2003, 24(9): 3505-3510.
    [81] Sridhar T M, Mudali U K, Subbaiyan M. Preparation and characterisation of electrophoretically deposited hydroxyapatite coatings on type 316L stainless steel. Corros. Sci., 2003, 45(3): 237-252.
    [82] Mondragon C P, Vargas G G. Electrophoretic deposition of hydroxyapatite submicron particles at high voltages. Materials Letters, 2004, 58(3): 1336-1339.
    [83] Agata D S, Calixto D A, Malta P, et al. Hydroxyapatite deposition by electrophoresis on titanium sheets with different surface finishing. J. Biomed. Mater. Res., 2002, 60(1): 1-7.
    [84] 张建民, 杨长春, 石秋芝, 等. 电泳沉积功能陶瓷涂层技术. 中国陶瓷, 2000, 36(6): 36-40.
    [85] 黄臻, 江东亮, 谭寿洪. 羟基磷灰石水悬浮液电动特性研究. 材料导报, 2000, 14(1): 60-61.
    [86] Yamashita K, Nagai M, Umegaki T. Fabrication of green films of single- and multi- component ceramic composites by electrophoretic deposition technique. J. Mater. Sci., 1997, 32(12): 6661-6664.
    [87] Zhitomirsky I, Gal-Or L. Electrophoretic deposition of hydroxyapatite. J. Mater. Sci.: Mater. Med., 1997, 8(3): 213-219.
    [88] 白晓军, 金展鹏, 黎樵燊, 等. 金属生物活性复合材料研究. 功能材料, 1999, 30(3): 335-336.
    [89] 刘海蓉, 陈宗璋, 白晓军. 不锈钢基 Ni-HAP 生物材料的复合电镀研究. 无机材料学报, 1998, 13(6): 913-917.
    [90] 白晓军, 刘海蓉, 陈宗璋. 电镀条件对不锈钢基 Ni-HAp 复合生物材料中HAp 含量的影响. 材料保护, 1999, 32(9): 5-7.
    [91] Liping He, Hairong Liu, Dachuan Chen, et al. Fabrication of HAp/Ni biomedical coatings using an electrocodeposition technique. Surf. Coat. Technol., 2002, 160(2): 109-113.
    [92] Dasarathy H, Riley C, Cobel H D, et al. Hydroxyapatite/metal compositecoatings formed by electrocodeposition. J. Biomed. Mater. Res., 1996, 31(1): 81-89.
    [93] Ishizawa H, Ogino M. Formation and characterization of anodic titanium oxide films containing Ca and P. J. Biomed. Mater. Res., 1995, 29(1): 65-72.
    [94] Ishizawa H, Ogino M. Characterization of thin hydroxyapatite layers formed on anodic titanium oxide films containing Ca and P by hydrothermal treatment. J. Biomed. Mater. Res., 1995, 29(6): 1071-1079.
    [95] 王家伟, 程祥荣, 王贻宁. 纯钛阳极氧化及表面薄层羟基磷灰石形成技术的研究- Ⅱ . 电解质及电压对氧化膜性能的影响. 中国口腔种植学杂志, 2001, 6(3): 101-103.
    [96] Fu T, Huang P, Han Y, et al. Preparation of microarc oxidation layer containing hydroxyapatite crystals on Ti6Al4V by hydrothermal synthesis. J. Mater. Sci. Lett., 2002, 21(3): 257-258.
    [97] 憨勇, 徐可为. 微弧氧化生成含钙磷氧化钛生物涂层的结构. 无机材料学报, 2001, 16(5): 951-956.
    [98] Zhu X L, Kim K H, Jeong Y S. Anodic oxide films containing Ca and P of titanium biomaterial. Biomaterials, 2001, 22(8): 2199-2206.
    [99] Song W H, Jun Y K, Han Y, et al. Biomimetic apatite coatings on micro-arc oxidized titania. Biomaterials, 2004, 25(10): 3341-3349.
    [100] Zhitomirsky I, Gal-Or L. Electrochemical coatings. New York: Marcel Dekker Press, 1999, 83-145.
    [101] Nie X, Leyland A, Mattews A. Deposition of layered bioceramic hydroxyapatite/TiO2 coatings on titanium alloys using a hybrid technique of micro-arc oxidation and electrophoresis. Surf. Coat. Technol., 2000, 125(3): 407-414.
    [102] Stoch A, Brozek A, Blazewicz S, et al. FTIR study of electrochemically deposited hydroxyapatite coatings on carbon materials. J. Mol. Struct., 2003, 651(3): 389-396.
    [103] Klein C, Wolke J, Blieck H J, et al. Calcium phosphate plasma-sprayed coatings and their stability: an in vivo study. J. Biomed. Mater. Res., 1994, 28(8): 909-917.
    [104] Simmons C A, Valiquette N, Pilliar R M. Osseointegration of sintered porous-surfaced and plasma spray-coated implants: an animal model study of early post implantation healing response and mechanical stability. J. Biomed. Mater. Res., 1999, 47(2): 127-138.
    [105] Queiroz A C, Santos J D, Monteiro F.J, et al. Dissolution studies of hydroxyapatite and glass-reinforced hydroxyapatite ceramics. Materials Characterization, 2003, 50(3): 197-202.
    [106] Brown S R, Turner I G, Reiter H. Residual stress measurement in thermal sprayed hydroxyapatite coating. J. Mater. Sci., 1994, 5(9): 756-759.
    [107] Gu Y W, Khor K A, Cheang P. In vitro studies of plasma sprayed hydroxyapatite/Ti6Al4V composite coatings. Biomaterials, 2003, 24(9): 1603-1611.
    [108] Ng B S, Annergren I, Andrew M S, et al. Characterisation of a duplex TiO2/CaP coating on Ti6Al4V for hard tissue replacement. Biomaterials, 2005, 26(8): 1087-1095.
    [109] Sousa S R, Barbosa M A. Effect of hydroxyapatite thickness on metal ion release from Ti6Al4V substrates. Biomaterials, 1996, 17(6): 397-404.
    [110] Thompson G E, Furneaux R C, Wood G C. Neucleation and Growth on Porous Anodic Films on Aluminum. Nature, 1978, 272(5652): 433-435.
    [111] Yakovleva N M, Yakovleva A N, Chupakhina E A. Structural analysis of alumina films produced by two-step electrochemical oxidation. Thin Solid Films, 2000, 366(1): 37-42.
    [112] Zhou J B, Wu J S, Yang Y X. Research on the thermal expansion behaviors of anodic films on aluminium. Thin Solid Films, 1999, 346(2): 280-283.
    [113] Chechenin N G, Bottiger J, Krog J P. Nanoindentation of amorphous aluminum oxide films III: the influence of the substrate on the elastic properties. Thin Solid Films, 1997, 304(1): 70-77.
    [114] 辜萍, 缪泓, 柳兆涛, 等. 鼓膜法测定纳米多孔氧化铝薄膜的弹性模量. 实验力学, 2004, 19(1): 34-38.
    [115] Kuznetsova A, Burleigh T D, Zhukov V, et al. Electrochemical evaluation of a new corrosion passivation layer-artificially produced Al2O3 films on aluminum. Langmuir, 1998, 14(3): 2502-2507.
    [116] 高云震, 任继嘉, 宁福元, 编译. 铝合金表面处理. 北京: 冶金工业出版社, 1991, 1-15.
    [117] 浦素云. 金属植入材料及其腐蚀. 北京: 北京航空航天大学出版社, 1990, 29-195.
    [118] Morita M, Sasada T, Hayashi H, et al. The corrosion fatigue properties of surgical implants in a living body. J. Biomed. Mater. Res., 1988, 22(6): 529-540.
    [119] Mu Y, Kobayashi T, Sumita M, et al. Metal ion release from titanium with active oxygen species generated by rat macrophages in vitro. J. Biomed. Mater. Res., 2000, 49(3): 238-243.
    [120] Hiromoto S, Noda K, Hanawa. Development of electrolytic cell with cell-culture for metallic biomaterials. Corros. Sci., 2002, 44(10): 955-965.
    [121] Black J. Biological Performances of Materials. New York: Plenum Press, 1984, 1-165.
    [122] Cooke F W. Ceramics in orthopedic surgery. Clin. Orthop. Rel. Res., 1992, 276(2): 135-146
    [123] Hench L L. Bioceramics. J. Amer. Ceram. Soc., 1998, 81(7): 1705-1727.
    [124] Yan W Q, Nakamura T, Kawanabe K, et al. Apatite layer-coated titanium for use as bone bonding implants. Biomaterials, 1997, 18(17): 1185-1190.
    [125] Verne E, Bona E, Angelini E, et al. Correlation between microstructure and properties of biocomposite coatings. J. Euro. Ceram. Soc., 2002, 22(13): 2315-2323.
    [126] Fini M, Cigada A, Rondelli G, et al. In vitro and in vivo behavior of Ca- and P-enriched anodized titanium. Biomaterials, 1999, 20(17): 1587-1594.
    [127] Itoh N, Kato K, Tsuji T, et al. Preparation of a tubular anodic aluminum oxide membrane. J. Membra. Sci., 1996, 117(2): 189-196.
    [128] Das B. Investigation of nanoporous thin-film alumina templates. J. Electrochem. Soc., 2004, 151(6): 46-50.
    [129] Oh H J, J Y S, Suh S J, et al. Electrochemical characteristics of alumina dielectric layers. J. Phys. Chem. Solids, 2003, 64(3): 2219–2225.
    [130] Stankevic V, Simkevicius V. Application of aluminum films as temperature sensors for the compensation of output thermal shift of silicon piezoresistive pressure sensors. Sens. Actua. A, 1998, 71(2): 161-166.
    [131] Chu S Z, Wada K, Inoue S. An integrated array of TiO2-SiO2-TeO2 nanotubes on glass: fabrication and structural characteristics. Adv. Mater., 2002, 14(23): 1752-1756.
    [132] 徐源, Thompson G E, Wood G C. 多孔型铝阳极氧化膜孔洞形成过程的研究. 中国腐蚀与防护学报, 1989, 9(1): 1-6.
    [133] Furneaux R C, Rugby W R, Davidson A P. The formation of controlled-porosity membranes from anodically oxidized aluminum. Nature, 1989, 337(2): 147-149.
    [134] Sittig C, Textor M, Spencer N D. Surface characterization of implant materials
    [119] Mu Y, Kobayashi T, Sumita M, et al. Metal ion release from titanium with active oxygen species generated by rat macrophages in vitro. J. Biomed. Mater. Res., 2000, 49(3): 238-243.
    [120] Hiromoto S, Noda K, Hanawa. Development of electrolytic cell with cell-culture for metallic biomaterials. Corros. Sci., 2002, 44(10): 955-965.
    [121] Black J. Biological Performances of Materials. New York: Plenum Press, 1984, 1-165.
    [122] Cooke F W. Ceramics in orthopedic surgery. Clin. Orthop. Rel. Res., 1992, 276(2): 135-146
    [123] Hench L L. Bioceramics. J. Amer. Ceram. Soc., 1998, 81(7): 1705-1727.
    [124] Yan W Q, Nakamura T, Kawanabe K, et al. Apatite layer-coated titanium for use as bone bonding implants. Biomaterials, 1997, 18(17): 1185-1190.
    [125] Verne E, Bona E, Angelini E, et al. Correlation between microstructure and properties of biocomposite coatings. J. Euro. Ceram. Soc., 2002, 22(13): 2315-2323.
    [126] Fini M, Cigada A, Rondelli G, et al. In vitro and in vivo behavior of Ca- and P-enriched anodized titanium. Biomaterials, 1999, 20(17): 1587-1594.
    [127] Itoh N, Kato K, Tsuji T, et al. Preparation of a tubular anodic aluminum oxide membrane. J. Membra. Sci., 1996, 117(2): 189-196.
    [128] Das B. Investigation of nanoporous thin-film alumina templates. J. Electrochem. Soc., 2004, 151(6): 46-50.
    [129] Oh H J, J Y S, Suh S J, et al. Electrochemical characteristics of alumina dielectric layers. J. Phys. Chem. Solids, 2003, 64(3): 2219–2225.
    [130] Stankevic V, Simkevicius V. Application of aluminum films as temperature sensors for the compensation of output thermal shift of silicon piezoresistive pressure sensors. Sens. Actua. A, 1998, 71(2): 161-166.
    [131] Chu S Z, Wada K, Inoue S. An integrated array of TiO2-SiO2-TeO2 nanotubes on glass: fabrication and structural characteristics. Adv. Mater., 2002, 14(23): 1752-1756.
    [132] 徐源, Thompson G E, Wood G C. 多孔型铝阳极氧化膜孔洞形成过程的研究. 中国腐蚀与防护学报, 1989, 9(1): 1-6.
    [133] Furneaux R C, Rugby W R, Davidson A P. The formation of controlled-porosity membranes from anodically oxidized aluminum. Nature, 1989, 337(2): 147-149.
    [134] Sittig C, Textor M, Spencer N D. Surface characterization of implant materialsanodically oxidized aluminium and their application to Li rechargeable batteries. Electrochimica Acta, 2001, 46(18): 2825-2834.
    [149] Shawaqfeh, A T, Baltus R E. Fabrication and characterization of single layer and multi-layer anodic alumina membranes. J. Membra. Sci., 1999, 157(2): 147-158.
    [150] Sui Y C, Saniger J M. Characterization of anodic porous alumina by AFM. Materials Letters, 2001, 48(3): 127-136.
    [151] Dmitri A, Rama R, Gabriel P, et al. Dynamics and temperature dependence of etching processes of porous and barrier aluminum oxide layers. Electrochimica Acta, 2004, 49(15): 2487-2494.
    [152] Shirkhanzadeh M. Direct formation of nanophase hydroxyapatite on cathodically polarized electrodes. J. Mater. Sci.: Mater. Med., 1998, 9(1): 67-72.
    [153] Kuo M C, Yen S K. The process of electrochemical deposited hydroxyapatite coatings on biomedical titanium at room temperature. Mater. Sci. Eng. C, 2002, 20(2): 153-160.
    [154] 胡仁, 时海燕, 林昌健, 等. 电沉积羟基磷灰石过程晶体生长行为. 物理化学学报, 2005, 21(2): 197-201.
    [155] Patermarakis G, Moussoutzanis K. Mathematical models for the anodization conditions and structural features of porous anodic Al2O3 films on aluminum. J. Electrochem. Soc., 1995, 142(3): 737-743.
    [156] Filho O D, Latorre G P, Hench L L. Effect of crystallization on apatite-layer formation of bioactive glass 45S5 . J. Biomed. Mater. Res., 1996, 30(6): 509-514.
    [157] Russel S W, Luptak K A, Suchicital C T A, et al. Chemical and structural evolution of sol-gel-derived hydroxyapatite thin films under rapid thermal processing. J. Am. Ceram. Soc., 1996, 79(4): 837-842.
    [158] Shi D L, Jiang G W. Synthesis of hydroxyapatite films on porous Al2O3 substrate for hard tissue prosthetics. Mater. Sci. Eng. C, 1998, 6(3): 175-182.
    [159] Panda R N, Hsieh M F, Chung R J. FTIR, XRD, SEM and solid state NMR investigations of carbonate-containing hydroxyapatite nano-particles synthesized by hydroxide-gel technique. J. Phys. Chem. Solids, 2003, 64(5): 193-199.
    [160] Monma H. Electrochemical deposition of calcium-deficient apatite on stainless-steel substrate. J. Ceram. Soc. Jpn, 1993, 101(8): 718-720.
    [161] Vallet-Regi M, Rodriguez-Lorenzo L M, Salinas A J. Synthesis and characterization of calcium deficient apatite. Solid State Ionic, 1997, 101(3): 1279-1285.
    [162] Rey C, Renugopalakrishnan V, Collins B, et al. Fourier transform infrared spectroscopic study of the carbonate ions in bone mineral during aging. Calcif. Tissue Int., 1991, 49(6): 251-258.
    [163] Handschin R G, Stern W B. X-ray diffraction studies on the lattice perfection of human bone apatite (crista iliaca). Bone, 1995, 16(4): 355-363.
    [164] Chu S Z, Wada K, Inoue S, et al. Fabrication of TiO2-Ru(O2)/Al2O3 composite nanostructures on glass by Al anodization and electrodeposition. J. Electrochem. Soc., 2004, 151(1): 38-44.
    [165] Yang M R, Wu S K. The improvement of high-temperature oxidation of Ti-50Al by anodic coating in phosphoric acid. Acta Mater., 2002, 50(8): 691-701.
    [166] Koutsopoulos S. Kinetic study on the crystal growth of hydroxyapatite. Langmuir, 2001, 17(12): 8092-8097.
    [167] Kim H M, Himeno T, Kokubo T, et al. Process and kinetics of bonlike apatite formation on sintered hydroxyapatite in a simulated body fluid. Biomaterials, 2005, 26(8): 4366-4373.
    [168] Liu C S, Huang Y, Shen W, et al. Kinetics of hydroxyapatite precipitation at pH 10 to 11. Biomaterials, 2001, 22(4): 301-306.
    [169] Rieve R W, Greene N D. Corrosion behavior of surgical implant materials: I. Effect of sterilization. Corros. Sci., 1969, 9(9): 755-762.
    [170] 曹楚南. 腐蚀电化学原理. 北京: 化学工业出版社, 2004, 95-116.
    [171] Chen C C, Huang T H, Kao C T, et al. Electrochemical study of the in vitro degradation of plasma-sprayed hydroxyapatite/bioactive glass composite coatings after heat treatment. Electrochimica Acta, 2004, 50(6): 1023-1029.
    [172] Cabrini M, Cigada A, Rondelli G, et al. Effect of different surface finishing and of hydroxyapatite coatings on passive and corrosion current of Ti6Al4V alloy in simulated physiological solution. Biomaterials, 1997, 18(9): 783-787.
    [173] Redepenning J, Mcissac J P. Electrocrystallization of brushite coatings on prosthetic alloys. Chem. Mater., 1990, 2(8): 625-627.
    [174] Ban S, Maruno S. Effect of temperature on electrochemical deposition of calcium phosphate coatings in a simulated body fluid. Biomaterials, 1995, 16(10): 977-987.
    [175] Marino C E, Oliveira E M, Rochafilho R C, et al. On the stability ofthin-anodic-oxide films of titanium in acid phosphoric media. Corros. Sci., 2001, 43(8): 1465-1476.
    [176] Habazaki H, Uozumi M, Konno H, et al. Crystallization of anodic titania on titanium and its alloys. Corros. Sci., 2003, 45(9): 2063-2073.
    [177] Grubbs C A. Anodizing of aluminum. Metal Finishing: guidebook and directory issue, 1999, 97(1): 480-496.
    [178] Muller F, Muller A D, Kroll M, et al. Highly resolved electric force microscopy of metal-filled anodic alumina. Appl. Surf. Sci., 2001, 171(2): 125-129.
    [179] Im W S, Cho Y S, Choi G S, et al. Stepped carbon nanotubes synthesized in anodic aluminum oxide templates. Diam. Relat. Mater., 2004, 13(3): 1214-1217.
    [180] 付涛, 李浩, 徐可为. 羟基磷灰石梯度涂层的制备及其结构特征. 硅酸盐学报, 1999, 27(5): 622-625.
    [181] Winand L, Dallemagne M J. Hydrogen bonding in the calcium phosphates. Nature, 1962, 193(6): 369-370.
    [182] Li Y, Klein G, de Wijn J, et al. Shape change and phase transition of needle-like non-stochiometric apatite crystals. J. Mater. Sci.: Mater. Med., 1994, 5(3): 263-268.
    [183] Wilson R M, Elliott J C, Dowker S E P. Formate incorporation in the structure of Ca-deficient apatite: Rietveld structure refinement. J. Solid State Chemistry, 2003, 174(2): 132-140.
    [184] Liou S C, Chen S Y, Lee H Y, et al. Structural characterization of nano-sized calcium deficient apatite powders. Biomaterials, 2004, 25(2): 189-196.
    [185] Joris S J, Amberg C H. The nature of deficiency in nonstoichio-metric hydroxyapatite: II. Spectroscopic studies of calcium and strontium hydroxyapatite. J. Phys. Chem., 1971, 75(9):3172-3178.
    [186] Wilson R M, Elliott J C, Dowker S E P. Rietveld refinements and spectroscopic studies of the structure of Ca-deficient apatite Biomaterials, 2005, 26(3): 1317-1327.
    [187] Switzer J A. Electrochemical synthesis of ceramic films and powders. Am. Ceram. Soc. Bull., 1987, 66(10): 1521-1524.
    [188] Zhitomirsky I. Electrolytic deposition of oxide films in presence of hydrogen peroxide. J. Euro. Ceram. Soc., 1999, 19(6): 2581-2587.
    [189] Wenk H R, Heidelbach F. Crystal alignment of carbonated apatite in bone and calcified tendon: results from quantitative texture analysis. Bone, 1999, 24(4):361-369.
    [190] Wang B C, Chang E, Tu D, et al. Characteristics and osteoconduction of three different plasma-sprayed hydroxyapatite-coated titanium implants. Surf. Coat. Technol., 1993, 58(2): 107-117.
    [191] Whitehead R Y, Lacefield W R, Lucas L C. Structure and integrity of a plasma sprayed hydroxyapatite coating on titanium. J. Biomed. Mater. Res., 1993, 27(6): 1501-1507.
    [192] Kweh S W K, Khor K A, Cheang P. An in vitro investigation of plasma sprayed hydroxyapatite (HA)coatings produced with flame-spheroidized feedstock. Biomaterials, 2002, 23(3):775-785.
    [193] Creus J, Idrissi H, Mazille H, et al. Corrosion behavior of Al/Ti coating elaborated by cathodic arc PVD process onto mild steel substrate. Thin Solid Films, 1999, 346(2): 150-154.
    [194] Tucker C. Plasma and detonation gun deposition techniques and coating properties. Park Ridge: Noyes Publications, 1982, 454-489.
    [195] Chen Lin, Chen C P, Ju KS. Biocorrosion behavior of hydroxyapatite/bioactive glass plasma sprayed on Ti6Al4V. Mater.Chem.Phys., 1995, 41(3): 282-289.
    [196] Kannan S, Balamurugan A, Rajeswari S. Hydroxyapatite coatings on sulfuric acid treated type 316L SS and its electrochemical behaviour in Ringer’s solution. Materials Letters, 2003, 57(3): 2382-2389.
    [197] Fathi M , Salehi M, Saatchi A, et al. In vitro corrosion behavior of bioceramic, metallic, and bioceramic-metallic coated stainless steel dental implants. Dental Materials, 2003, 19(2): 188-198.
    [198] Huang L Y, Xu K W, Lu J. A study of the process and kinetics of electrochemical deposition and the hydrothermal synthesis of hydroxyapatite coatings. J. Mater. Sci.: Mater. Med., 2000, 11(6): 667-673.
    [199] 刘榕芳, 肖秀峰, 倪军, 等. 羟基磷灰石粉末的水热合成及动力学研究. 无机化学学报, 2003, 19(10): 1079-1083.
    [200] Keller F, Hunter M S, Robinson D L. Structural features of anodic oxide films on aluminum. J. Electrochem. Soc., 1953, 100(5): 411-419.
    [201] Grubbs C A. Anodizing of aluminum. Orlando: Houghton Metal Finishing, 1996, 480-496.
    [202] Heber K V. Studies on porous Al2O3 growth - Ⅰ. physical model. Electrochimica Acta, 1978, 23(2): 127-133.
    [203] K. V. Heber. Studies on porous Al2O3 growth- Ⅱ. ionic conduction.Electrochimica Acta, 1978, 23(2): 135-139.
    [204] Patermarakis G, Moussoutzanis K. Electrochemical kinetic study on the growth of porous anodic oxide films on aluminum. Electrochimica Acta, 1995, 40(6): 699-708.
    [205] Martin C R. Nanomaterials: A membrane-based synthetic approach. Science, 1994, 266(8): 1961-1966.
    [206] Almawlawi D, Liu Z, Moskovits M. Nanowires formed in anodic oxide nanotemplates. J. Mater. Res., 1994, 94(1): 1014-1018.
    [207] Dmitri R, Terry B, Martin M, et al. Electrochemical fabrication of CdS nanowire arrays in porous anodic aluminum oxide templates. J. Phys. Chem., 1996, 100(1): 14037-14047.
    [208] Saito M, Kirhara M, Taniguchi T. Micropolarizer nade of the anodized alumina film. Appl. Phys. Lett., 1989, 55(7): 607-609.
    [209] Tsai S H, Chiang F K, Tsai T G, et al. Synthesis and characterization of the aligned hydrogenated amorphous carbon nanotubes by electron cyclotron resonance excitation. Thin Solid Films, 2000, 366(1): 11-15.
    [210] Mizushima T, Matsumoto K, Sugoh J, et al. Tubular membrane-like catalyst for reactor with dielectric-barrier-discharge plasma and its performance in ammonia synthesis. Appl. Catal. A: General, 2004, 265(1): 53-59.
    [211] Jia R P, Shen Y, Luo H Q, et al. Enhanced photoluminescence properties of morin and trypsin absorbed on porous alumina films with ordered pores array. Solid State Communications, 2004, 130(6): 367-372.
    [212] Wang S, Luo H Q, Wang Y Z, et al. The effect of nanometer size of porous anodic aluminum oxide on adsorption and fluorescence of tetrahydroxyflavanol. Spectrochimica Acta Part A, 2003, 59(2): 1139-1144.
    [213] Dalculsi G, Legeros R Z, Nery E, et al. Transformation of biphasic calcium phosphate ceramics in vivo: ultrastructural and physicochemical characterization. J. Biomed. Mater. Res., 1989, 23(9): 883-894.
    [214] 佘沛亮. 钯铁、钯铂合金电沉积及沉积层的结构与性能的研究: [厦门大学博士学位论文]. 厦门: 厦门大学, 1999, 50-51.
    [215] Mao C B, Li H D, Cui F Z, et al. Oriented growth of phosphates on polycrystalline titanium in a process mimicking biominerization. J. Crystal Growth, 1999, 206(3): 308-321.
    [216] Lenka J, Frank A M, Ales H, et al. Hydroxyapatite formation on alkali-treated titanium with different content of Na+ in the surface layer. Biomaterials, 2002,23(1): 3095-3101.
    [217] Wieser E, Tsyganov I, Matz W, et al. Modification of titanium by ion implantation of calcium and/or phosphorus. Surf. Coat. Technol., 1999, 111(1): 103-109.
    [218] Hatawa, T, Kamiura Y, Yamamoto S, et al. Early bone formation around calcium-ion implanted titanium inserted into rat tibia. J. Biomed. Mater. Res., 1997, 36(1): 131-136.
    [219] Pham M T, Watz W, Reuther H, et al. Ion beam sensitizing of titanium surfaces to hydroxyapatite formation. Surf. Coat. Technol., 2000, 128(3): 313-319.
    [220] Krupa D, Baszkiewicz J, Kozubowski J A, et al. Effect of calcium-ion implantation on the corrosion resistance and biocompatibility of titanium. Biomaterials, 2001, 22(2): 2139-2151.
    [221] Ohtsuki C, Kokubo T, Yamamuro T. Mechanism of apatite formation on CaO -SiO2-P2 O5 glasses in a simulated body fluid. J. Non-Cryst. Solids, 1992, 143(1): 84-92.
    [222] Hata K, Ozawa N, Kokubo T. Mechanism of apatite formation on single crystal silicon in an aqueous solution at room temperature. J. Ceram. Soc. Jpn., 2002, 110(11): 990-994.
    [223] Hwang K, Lim Y. Chemcial and structural changes of hydroxyapatite films by using a sol-gel method. Surf. Coat. Technol., 1999, 115(2): 172-175.
    [224] Chung R, Hsieh M, Panda R, et al. Hydroxyapatite layers deposited from aqueous solutions on hydrophilic silicon substrate. Surf. Coat. Technol., 2003, 165(2): 194-200.
    [225] Chen S, Zhu Z, Zhu J, et al. Hydroxyapatite coating on porous silicon substrate obtained by precipitation process. Appl. Surf. Sci., 2004, 230(5): 418-424.
    [226] Pramatarova L, Pecheva E, Dimova M D, et al. Porous silicon as a substrate for hydroxyapatite growth. Vacuum, 2004, 76(2), 135-138.
    [227] Liu X Y, Fu R K Y, Poon R W Y, et al. Biomimetic growth of apatite on hydrogen-implanted silicon. Biomaterials, 2004, 25(6): 5575-5581.
    [228] Surganov V, Mozalev A. Planar aluminum interconnection formed by electrochemical anodizing technique. Microelectr. Eng., 1997, 37(3): 329-334.
    [239] Liang C, Luo T, Feng M, et al. Characterization of anodic aluminum oxide film and its application to amorphous silicon thin film transistors. Mater. Chem. Phys., 1996, 43(2): 166-172.
    [230] Rahab H, Keffous A, Menari H, et al. Surface barrier detectors using aluminumon n- and p-type silicon for a-spectroscopy. Nucl. Instru. Meth. Phys. Res. A, 2001, 459(3): 200-205.
    [231] 胡仁. 羟基磷灰石涂层的电化学可控制备及形成机理研究: [厦门大学硕士学位论文]. 厦门: 厦门大学, 2005, 27-62.
    [232] Gledhill H C, Turner I G, Doyle C. In vitro dissolution behaviour of two morphologically different thermally sprayed hydroxyapatite coatings. Biomaterials, 2001, 22(7): 695-700.
    [233] Ding S J. Properties and immersion behavior of magnetron-sputtered multi-layered hydroxyapatite/titanium composite coatings. Biomaterials, 2003, 24(3): 4233-4238.
    [234] Chai C S, Gross K A, Ben N B. Critical ageing of hydroxyapatite sol–gel solutions. Biomaterials, 1998, 19(24): 2291-2296.
    [235] Hwang K, Song J, Kang B, et al. Sol-gel derived hydroxyapatite films on alumina substrates. Surf. Coat. Technol., 2000, 123(3): 252-255.
    [236] 程逵. 溶胶-凝胶法制备含氟羟基磷灰石薄膜及其在模拟体液中的性能表征: [浙江大学博士学位论文]. 杭州: 浙江大学, 2002, 9-68.
    [237] Lin X Y, Li X D, Fan H S, et al. In situ synthesis of bone-like apatite/collagen nano-composite at low temperature. Materials Letters, 2004, 58(6): 3569-3572.
    [238] Xu G F, Aksay I A, Groves J T. Continuous crystalline carbonate apatite thin films-a biomimetic approach. J. Am. Ceram. Soc., 2001, 123(10): 2196-2203.
    [239] Landi E, Celotti G, Logroscino G, et al. Carbonated hydroxyapatite as bone substitute. J. Euro. Ceram. Soc., 2003, 23(10): 2931-2937.
    [240] Yeni Y N, Brown C U, Norman T L. Influence of bone composition and apparent density on fracture toughness of the human femur and tibia. Bone, 1998, 22(1): 79-84.
    [241] 王勇, 高家诚, 张亚平, 等. 钛合金表面仿生矿化的热力学分析. 稀有金属材料与工程, 2004, 33(4): 397-399.
    [242] Koutsopoulos S, Dalas E. Hydroxyapatite crystallization in the presence of serine, tyrosine and hydroxyproline amino acids with polar side groups. J. Crystal Growth, 2000, 216(6): 443-449.
    [243] Koutsopoulos S, Dalas E. The effect of acidic amino acids on hydroxyapatite crystallization. J. Crystal Growth, 2000, 217(6): 410-415.
    [244] Mark T F, Ira C I, Christine R H, et al. Measurements of the solubilities and dissolution rates of several hydroxyapatites. Biomaterials, 2002, 23(8):751-755.
    [245] Dalas E, Chrissanthopoulos A. The overgrowth of hydroxyapatite on new functionalized polymers. J. Crystal Growth, 2003, 255(2): 163-169.
    [246] 贺伦英, 张钦发, 谭美军. 无机与分析化学. 长沙: 国防科技大学出版社, 2002, 131-132.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700