电沉积并硫化合成FeS_2薄膜制备工艺及光电性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
立方晶系的FeS_2(pyrite)是一种具有合适禁带宽度(Eg≈0.95eV)和较高光吸收系数(λ≤700mn时,α≥5×10~5cm~(-1))的半导体材料,其组元元素储量十分丰富、无毒,环境相容性好,而且在制备太阳电池时可以以薄膜形式使用,成本较低,与已有半导体材料相比,是一种较有研究价值的太阳能电池材料。
     本文采用恒流电沉积及氧化处理制备Fe_3O_4先驱体,再经热硫化退火使先驱膜转变为多晶FeS_2薄膜的方法,研究了硫化时间、压力、温度等硫化参数对薄膜组织结构和光电性能的影响。主要研究结果如下:
     采用Na_2S_2O_3和FeSO_4水溶液电沉积200℃热处理,可以制备多孔Fe_3O_4薄膜。
     在400℃硫化2h即有形成FeS_2的反应发生。硫化时间较短时,FeS_2薄膜基体保持先驱膜的多孔形态。随硫化时间延长,FeS_2晶体生长进一步完善,晶粒持续长大而晶格常数减小,先驱膜多孔遗传形态渐趋不明显,薄膜的光吸收系数、电阻率和载流子浓度升高。当硫化时间超过10h后,电学性能变化不明显。
     400℃硫化20h时,较低的硫化压力易导致硫化反应不充分,薄膜组织中Fe_3O_4和FeS_2共存,较高的硫化压力易导致基底膜层同时被硫化。当硫化压力高于20kPa时,Fe_3O_4先驱膜可充分转变成具有细小晶粒形态的FeS_2,薄膜形态也由多孔疏松演变为均匀平整。硫化压力的变化可以导致相变微观应力、点缺陷数量的变化,有可能造成薄膜几何连续性及缺陷能级分布的变化,结果导致了在40kPa硫压条件下FeS_2薄膜的光吸收系数出现极小值。
     能明显发生FeS_2合成反应的温度为300℃,温度超过400℃可使反应更为充分。然而,过高的硫化温度也会产生一些不利影响,如500℃易造成基底的硫化,600℃易造成晶粒的粗化。随硫化温度升高,薄膜的结晶性能得到改善,薄膜的先驱体形态逐步消失,并表现出明显的颗粒状形貌。晶粒尺寸随硫化温度的升高而增大。FeS_2晶格常数在500℃硫化时趋近标准值并且薄膜表现出最大的光吸收系数。薄膜的电阻率随硫化温度的升高而增大,而载流子浓度的变化却与此相反。
The iron pyrite (FeS_2) with cubic crystal structure has attracted considerable attention as a potential candidate for the absorber materials for photovoltaic applications or thin-film solar cells due to its high absorption coefficient (α≥5×10~5cm~(-1) as λ≤700nm) and suitable energy band gap (Eg≈0.95eV). Moreover, the constituent components of FeS_2 are abundant, cheap and non-toxic.In the investigation, the precursive Fe_3O_4 films were prepared by constant current electrodepositing and oxidation treating. The polycrystalline FeS_2 films were obtained by annealing the Fe_3O_4 in sulfurizing atmosphere. The effects of the sulfidation parameters, such as temperature, time and sulfur vapor pressure, on the microstructure and photoelectrical characteristics of FeS_2 thin films were investigated. Some research results were obtained as follows:The polyporous Fe_3O_4 films can be obtained by electrodepositing in the aqueous solution of Na_2S_2O_3 and FeSO_4 and annealing at 200 ℃.The reaction transformed from Fe_3O_4 to FeS_2 occurs under the condition of sulfurizing at 400 ℃ only for 2h. The FeS_2 thin films prepared by sulfurizing the precursive Fe_3O_4 films for a shorter period show a polyporous morphology similar to the aspect of precursive films. With prolonging the sulfidation time, the conversion reaction from Fe_3O_4 to FeS_2 tends to be further complete to results in the FeS_2 grain size propagates, lattice parameter decrease and polyporous morphology disappears. As a result, the optical absorption coefficient, electrical resistivity and charge carrier concentration increase. The electrical properties show an insignificant change when the sulfidation time is longer than 10h.There is an insufficient sulfurizing reaction of the precursive Fe_3O_4 to result in a mixed film structure of FeS_2 and Fe_3O_4 at lower sulfur vapor pressures. However, there is an inexpectant sulfurizing reaction in the substrate films beneath the Fe_3O_4 films at higher sulfur vapor pressures. The precursive Fe_3O_4 films are completely transformed into the polycrystalline FeS_2 films by sulfurization annealing at the sulfur vapor pressures higher than 20kPa. The morphology of the FeS_2 films can change from porous and loose structure into
    smooth and compact structure with increasing the sulfur vapor pressure. The change of the sulfur vapor pressure can alter the microstrain level of phase transformation and the concentration of crystal point defects consequently to result in the possible variations in film geometrical integrality and defect energy state distributed in forbidden band. Therefore, the optical absorption properties of FeS2 films can change with the sulfur vapor pressure and there is the minimum value of absorption coefficient as sulfurization annealing at 40kPa.Obvious reaction transformed from Fe3C>4 to FeS2 can occur during sulfidation annealing at 300 °C. A higher temperature than 400°C makes a nearly complete transformation. However, higher sulfidation temperature has a disadvantage effect on film quality. For example, some unexpected reaction products can easily be formed in the substrate film at 500°C and the FeS2 grains heavily coarsened at 600 °C. With increasing the sulfidation temperature, the grain size of the FeS2 thin films increases and the presursive morphology disappears to display the granular-crystalline aspect because the crystallizing characterization is improved in higher sulfidation temperatures. The approximately normal lattice parameter and the maximal absorption coefficient are obtained in the FeS2 film from the sulfidation annealing at 500 °C. Moreover, the electrical resistivity decreases while the carrier concentration increases with increasing the sulfidation temperature.
引文
[1] 马丁·格林(著),李秀文,谢鸿礼,赵海滨(译).太阳电池工作原理、工艺和系统的应用.电子工业出版社,1987
    [2] 安其森,曹国琛,李国欣,刘宝元,张忠奎.太阳电池原理与工艺.上海科学技术出版社,1984
    [3] R. Schieck, A. Hartmann, S. Fiechter, R. Konenkamp, H. Wetzel. Electrical properities of natural and synthetic pyrite (FeS_2) crystals. Journal of Materials Research, 1990, 5(7): 1567-1572
    [4] A. Ennaoui, S. Fiechter, Ch. Pettenkofer, N. Alonso-Vante, K. Buker, M. Bronold, Ch. Hopfner, H. Tributsch. Iron disulfide for solar energy conversion. Solar Energy Materials and Solar Cells, 1993, 29(4): 289-370
    [5] I. J. Ferrer, C. Sanchez. Characterization of FeS_2 thin films prepared by thermal sulfidation of flash evaporated iron. Journal of Applied Physics, 1991, 70(5): 2641-2647
    [6] M. A. Khan. Energy bands in pyrite-type crystals. Journal of Physics C: Solid State Physics, 1976, 9(1): 81-93
    [7] M. S. Jagadeesh, M. S. Seehra. Electrical resistivity and band gap of marcasite (FeS_2). Physics Letter: A, 1980, 80(1): 59-61
    [8] S. Seehre, P. A. Montano, M. S. Seehre, S. Ksen. Preparation and characterization of thin films of FeS_2. Journal of Material Science, 1979, 14(11): 2761-2763
    [9] V. P. Gupta, K. Chandra, V. K. Srivastava. Investigations on pyrite (FeS_2) thin films. Journal of Materials Science Letters, 1986, 5(2): 165-167
    [10] I. J. Ferrer, K. M. Nevskaia. About the band gap nature of FeS_2 as determined from optical and photoelectruchemical measurements. Solid State Communications, 1990, 74(9): 913-916
    [11] I. J. Ferrer, C.Sanchez. Characterization of FeS_2 thin films prepared by thermal sulfidation of flash evaporated iron. Journal of Applied Physics, 1991, 70(5): 2641-2647
    [12] I. J. Ferrer, C. Sanchez, C. De las Heras. The effect of NiS_2 thin films electrical and optical properties. Journal of Physics Condensed Matter, 1995, 7(10): 2115 -2121
    [13] C. De las Heras, C. Sanchei. Characterization of iron pyrite thin films obtained by flash evaporation. Thin Solid Films, 1991, 199(2): 259-267
    [14] C. De las Heras, I. J. Ferrer, C. Sanchei. Temperature dependent of the optical absorption edge of pyrite FeS_2 thin films. Journal of Physics Condensed Matter, 1994, 6(46): 10177-10183
    [15] C. De las Heras, I. J. Ferrer, C. Sanchez. Pyrite thin films: improvements in their optical and electrical properties by annealing at different temperatures in a sulfur atmosphere. Journal of Applied Physics, 1993, 74(7): 4551-4556
    [16] G. Chatzitheodorou, S. Fiechter, M. Kunst, J. Luck, H. Tributsch. Low temperature chemical preparation of semiconducting transition metal chalcogenide films for energy conversion and storage, lubricatin and surface protection. Materials Research Bulletin, 1988, 23(9): 1261-1271
    [17] C. Chatzitheodorou, S. Fiechter. Thin photoactive FeS_2 (pyrite) films. Materials Research Bulletin, 1986, 21(12): 1481-1487
    [18] D. M. Schleich, H. W. Chang. Iron pyrite and iron marcasite thin films prepared by low pressure chemical vapor deposition. Journal of Crystal Growth, 1991, 112(4): 737-744
    [19] A. Ennaoui, S. Fiechter, H. Tributsch, M. giersig, R. Vogel, H. Weller. Photoelctrochemical energy conversion obtained with ultrathin organo-metallic-chemical-vapor-deposition layer of FeS_2 (pyrite) on TiO_2. Journal of Electrochem Society, 1992, 139(9): 2514-2518
    [20] A. Ennaoui, S. Schroetter, S. Fiechter, H. Tributsch. Infrared spectroscopic and X-ray diffraction characterization of disulphide thin films prepared by metal-organic chemical vapour deposition. Journal of Materials Science Letters, 1992, 11(16): 1131-1133
    [21] C. Hopfner, K. Ellmer, A. Ennaoui, C. Pettenkofer, S. Fiechter, H. Tributsch. Stoichiometry-, phase-and orientation-controlled growth of polycrystalline pyrite (FeS_2) thin films(?)by MOCVD. Journal of Crystal Growth, 1995, 151(3-4): 325-334
    [22] B. Thomas, C. Hopfner. Growth of FeS_2 (pyrite) thin films on single crystalline substrates by low pressure metalorganic chemical vapour deposition. Journal of Crystal Growth, 1995, 146(1-4): 630-635
    [23] B. Thomas, K. Ellmer. Structural and photoelectrical properties of FeS_2 (pyrite) thin films grown by MOCVD. Journal of Crystal Growth, 1997, 170(1-4): 808-812
    [24] B. Thomas, T. Cibik, C. Hopfner, K. Diesner, G. Ehlers, S. Fiechter, K. Ellmer. Formation of secondary iron-sulphur phases during the growth of polycrystalline iron pyrite (FeS_2) thin films by MOCVD. Journal of Materials Science: Materials in electronics, 1998, 9(1): 61-64
    [25] T. Naoyuki, Y. Takuma, N. Takato. Crystal quality, electrical and optical properties of single crystal pyrite films prepared by chemical vapor deposition under atmospheric pressure. Solid State Sciences, 2004, 6(11): 1269-1272
    [26] M. Birkholz, D. Lichtenberger, Ch. Hopfner, S. Fiechter. Sputtering of thin pyrite films. Solar Energy Materials and Solar Cells, 1992, 27(3): 243-251
    [27] G. Willeke, R. Dasbach, B. Sailer, E. Bucher. Thin pyrite (FeS_2) films prepared by magnetron sputtering. Thin Solid Films, 1992, 213(2): 271-276
    [28] D. Lichtenberger, K. Ellmer, R. Schieck, S. Fiechter, H. Tributsch. Structural, optical and electrical properties of polycrystalline iron pyrite layers deposited by reactive d. c. magnetron sputtering. Thin Solid Films, 1994, 246(1-2): 6-12
    [29] A. K. Abass, Z. A. Ahmed, R. E. Tahir. Absorption edge measurements in chemically deposited pyrite FeS_2 thin layers. Journal of Applied Physics, 1987, 61(6): 2339-2341
    [30] A. K. Abass, A. K. Hasen, R. H. Misho. Investigation of optically allowed transitions of α-sulfur thin films. Journal of Applied Physics, 1985, 58(4): 1640-1642 .
    [31] G. Smestad, A. A. Silva, H. Tributsch, S. Fiechter, M. Kunst, N. Meziani, M. Birkholz. Formation of semiconducting iron pyrite by spray pyrolysis. Solar Energy Materials, 1989, 18(5): 299-313
    [32] R. H. Misho, W. A. Murad. Band gap measurements in thin films of hematite Fe_2O_3, pyrite FeS_2 and troilite FeS prepared by chemical spray pyrolysis. Solar Energy Materials and Solar Cells, 1992, 27(4): 335-345
    [33] A. Yamamoto, M. Nakamura, A. Seki, E. L. Li, A. Hashimoto, S. Nakamura. Pyrite (FeS_2) thin films prepared by spray method using FeSO_4 and (NH_4)_2S_x. Solar Energy Materials and Solar Cells, 2003, 75(3-4): 451-456
    [34] A. Ennaovi, H. Tributsch. Iron sulphide solar cells. Solar Cells, 1984, 13(2): 197-200
    [35] A. Ennaoui, S. Fiechter, H. Goslowsky, H. Tributsch. Photoactive synthetic polycrystalline pyrite(FeS_2). Journal of the Electrochemical Society, 1985, 132(7): 1579-1582
    [36] A. Ermaoui, G. Schlichthorl, S. Fiechter, H. Tributsch. Vapor phase epitaxial growth of FeS_2 pyrite and evaluation of the carrier collection in liquid-junction solar cell. Solar Energy Materials and Solar Cells, 1992, 25(1-2): 169-178
    [37] K. Buker, N. Alonso-Vante, H. Tributsch. Photovoltaic output limitation of n-FeS_2 (pyrite) schottky barriers: a temperature-dependent characterization. Journal of Applied Physics, 1992, 72(12): 5721-5728
    [38] M. Birkholz, S. Fiechter, A. Hartmann, H. Tributsch. Sulfur deficiency in iron pyrite (FeS_(2-x)) and its consequences for band-structure models. The American Physical Society, 1991, 43(14): 11926-11936
    [39] H. Dahman, M. Hkalifa, M. Brunel, B. Rezig. Iron pyrite films prepared by sulfur vapor transport. Thin Solid Films, 1996, 280(1-2): 56-60
    [40] N. Alonso-Vante, G. Chatzitheodorou, S. Feichter, N. Mgoduka, I. Poulios, H. Tributsch. Interfacial behavior of hydrogen-treated sulphur deficient pyrite (FeS_(2-x)). Solar Energy Materials, 1988, 18(1): 9-21
    [41] M. Bronold, S. Kubala, C. Pettenkofer, W. Jaegermann. Thin pyrite (FeS_2) films by molecular beam deposition. Thin Solid Films, 1997, 304(1-2): 178-182
    [42] S. Bausch, B. Sailer, H. Keppner, G. Willeke, E. Bucher. Preparation of pyrite thin films by plasma-assisted sulfurization of thin iron films. Applied Physics Letters, 1990, 57(1): 25-27
    [43] I. J. Ferrer, C. De las Heras, N. Menendez, J. Tomero, C. Sanchez. Appication of mosshauer spectroscopy to stydy the formation of iron pyrite thin films. Joural of Materials Science, 1993, 28(1): 389-393
    [44] C. De las Heras, D. Salto, I. J. Ferrer, C. Sancheaz. In situ electrical resistivity measurement during the sulphuration of pyrite and Fe thin films. Journal of Physics Condensed Matter, 1994, 6(4): 899-906
    [45] G. Pimenta, W. Kautek. Thermodynamic aspects of pyrite film formation by sulphur coversion of iron. Thin Solid Films, 1992, 219(1-2): 37-45
    [46] C. De las Heras, V. J. L. Martin, I. J. Ferrer, C. Sanchez. Structural and microstructural features of pyrite FeS_(2-x) thin films obtained by thermal sulfuration of iron. Journal of Materials Research, 1996, 11(1): 211-220
    [47] 孟亮,涂江平,刘茂森.不同温度热硫化纯Fe膜制备FeS_2薄膜的研究.材料工程,1998.8:7-10
    [48] L. Meng, J. P. Tu, M. S. Liu. Formation of pyrite thin films by sulfidation annealing of iron films. Materials Letters, 1999, 38(2): 103-107
    [49] L. Meng, Y. H. Liu, W. Huang. Synthesis of pyrite thin films obtained by thermal-sulfurating iron films at different sulfur atmosphere pressure. Materials Science and Engineering B, 2002, 90(1-2): 84-89
    [50] Y. H. Liu, L. Meng, L. Zhang. Optical and electrical properties of FeS_2 thin films with different thickness prepared by sulfurizing evaporated iron. Thin Solid Films, 2005, 479(1-2): 83-88
    [51] 张秀娟,孟亮,刘艳辉.FeS_2薄膜厚度对晶体生长及光吸收特性的作用.半导体学报,2004,25(6):657-661
    [52] J. R. Ares, M. Leon, N. M. Arozamena, J. Sanchez-Paramo, P. Celis, I. J. Ferrer, C. Sanchez. Evaluation of the seebeck coefficient during the formation and crystallization of pyrite thin films. Journal of Physics Condensed Matter, 1998, 10(19): 4281-4289
    [53] G. Smestad, A. Ennaoui, S. Fiechter, H. Tributsch, W. K. Hofmann, M. Birkholz, W. Kautek. Photoactive thin film semiconducting iron pyrite prepared by sulfurization of iron oxides. Solar Energy Materials, 1990, 20(3): 149-165
    [54] B. Ouertani, J. Ouerfelli, M. Saadoun, B. Bessais, M. Hajji, M. Kanzari, H. Ezzaouia, N. Hamdadou, J. C. Bernede. Transformation of amorphous iron oxide films pre-deposited by spray pyrolysis into FeS_2-pyrite films. Materials Letters, 2005, 59(6): 734-739
    [55] 杜金会,于振瑞,王如,张加友,王旭艳,李正群.CoSnS_2薄膜的制备及性能研究.功能材料与器件学报,2003,9(3):247-252
    [56] A. S. Arico, V. Antonucci, P. L. Antonucci, D. L. cocke, N. Giordano. A voltammetric study of the electrodeposition chemistry in the Fe-S system. Electrochimica Acta, 1991, 36(3-4): 581-590
    [57] 董有忠,郑毓峰,张校刚,段鹤,孙言飞,陈艳化.电沉积FeS_2(pyrite)薄膜的制备与性能研究.功能材料,2005,36(2):221-223,227
    [58] G. Pimenta, V. Schroder, W. Kautek. Thin pyrite films prepared by sulphurization of electrodeposited iron films. Berichte der Bunsen-gesellschaft: Physical Chemistry, 1991, 95(11): 1470-1475
    [59] G. Pimenta, W. Kautek. Pyrite films formation by H_2S reactive annealing of iron. Thin Solid Films, 1994, 238(2): 213-217
    [60] S. Nakamura, A. Yamamoto. Electrodeposition of pyrite (FeS_2) thin films for photovoltaic cells. Solar Energy Materials and Soar Cells, 2001, 65(1): 79-85
    [61] 李恩玲,施卫,杨党强,马德明,闫素珍.光电薄膜材料FeS_2(黄铁矿)的研制.西安理工大学学报,2002,18(1):48-50
    [62] A. Gomes, M. I. da SilvaPereira, M. H. Mendonca, F. M. costa. Effect of the substrate on the eletrodeposition of iron sulphides. Solid State Sciences, 2002, 4(8): 1083-1088
    [63] A. Gomes, J. R. Ares, I. J. Ferrer, M. I. da silva Pereira, C. Sanchez. Formation of n-type pyrite films from electrodeposited iron sulphides: effect of annealing temperature. Material Research Bulletin, 2003, 38(7): 1123-1133
    [64] A. Gomes, M. I. da SilvaPereira, M. H. Mendonca, F. M. costa. Electrodeposition of Mackinawite films on Ti: effects of the S_2O_32-~2-/Fe~(2+) mole ratio in the solution. Electrochimica Acta, 2004, 49(13): 2155-2165
    [65] Y. Z. Dong, Y. F. Zheng, H. Duan, Y. F. Sun, Y. H. Chen. Formation of pyrite (FeS_2) thin nano-films by thermal-sulfurating electrodeposition films at different temperature. Materials Letters, 2005, 59(19-20): 2398-2402
    [66] S. Fiechter, J. Mai, A. Ennaoui, W. Szacki. Chemical vapour transport of pyrite (FeS_2) with Halogen(Cl, Br, I). Journal of Crystal Growth, 1986, 78(3): 438-444
    [67] 徐文雷,孟亮,刘茂森.硫化温度对FeS_2薄膜的晶体结构和光电性能的影响.材料科学与工程,1999,17(4):45-49
    [68] 孟亮,黄伟,刘艳辉.Fe膜硫化合成FeS_2薄膜的光电性能.太阳能学报,2002,23(3): 308-312
    [69] D. Y. Wan, B. Y. Wang, Y. T. Wang. Effect of sulfur pressure on pyrite FeS_2 films prepared by sulfurizing thermally iron films. Journal of Crystal growth, 2003, 257(3-4): 286-272
    [70] I. J. Ferrer, F. Caballero, C. De las Heras, C. Sanchez. Preparation of n-type doped FeS_2 thin films. Solid State Communications, 1994, 89(4): 349-352
    [71] B. Thomas, K. Ellmer, W. Bohne, J. Rohrieh, M. Kunst, H. Tributseh. Photoeffects in cobalt doped pyrite (FeS_2) films. Solid State Communications, 1999, 111(5): 235-240
    [72] K. Buker, S. Fiechter, V. Eyert, H. Tributsch. Photoeleetrochemistry of highly Zn-doped pyrite as compared with isostructural FeS_2. Journal of Electrochemical Society, 1999, 146(1): 261-265
    [73] A. Pascual, P. Diaz-Chao, I. J. Ferrer, C. Sanchez, J. R. Ares. On the growth and doping of Fe/Ti chaleogenide thin films. Solar Energy Materials and Solar Cells, 2005, 87(1-4): 575-582
    [74] 陈章其,林云,倪明生.FeS2/Ti02复合膜的制备极光伏特性的研究.太阳能学报,1999,20(2):171-177
    [75] A.Ennaoui, S.Fiechter, W.Jaegermann, H.Tribtsch. Phohtoelectrochemistry of highly quantum efficient single-crystalline n-FeS2 (pyrite). Journal of the Electrochemical Society, 1986, 133(1): 97-106
    [76] 刘艳辉,侯玲,孟亮.FeS2与In2S3复合薄膜组织结构在硫化过程中的变化.太阳能学报,已录用
    [77] J. R. Ares, I. J. Ferrer, C. R. Sanchez. Majority carriers in pyrite thin films: an analysis based on Seebeck and Hall coefficient measurements. Thin Solid Films, 2003, 431-432: 511-513
    [78] 肖循,唐超群.TiO_2薄膜的溶胶—凝胶法制备及其光学特性.功能材料,2003,34(4):442-444
    [79] 胡华林,戴松元,王孔嘉.溶胶-凝胶法制备的纳米TiO_2结构相变及晶体生长动力学.物理学报,2003,52(9):2135-2139

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700