Pt-TiO_2/Ti纳米复合电极的制备及其电化学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
TiO_2/Ti是一种高耐腐蚀性的电极材料,纳米Pt是一种具有高催化活性的催化剂,而Pt粒子的形状、大小以及分布往往决定催化活性的高低。因此,为了制备一种高催化活性的复合电极,本项工作开拓性地采用阳极氧化-阴极电沉积两步法并在电沉积过程中加入超声作用制备出一种特殊的Pt-TiO_2/Ti纳米复合结构电极,并对其电化学性能进行了研究。
     以氢氟酸为电解液,采用恒压阳极氧化方法在纯钛箔上获得TiO_2纳米管;随后以氯铂酸为电解液,采用恒流电沉积方法在TiO_2纳米管上沉积Pt。分别采用场发射扫描电镜(FESEM)和X射线衍射仪(XRD)系统地研究了阳极氧化工艺参数(如电压、阳极氧化时间)对TiO_2纳米管形貌和晶型的影响,以及电沉积工艺参数(如电解液浓度、电流密度、沉积时间)对纳米Pt沉积形貌和晶型的影响。结果表明,在电压为20V阳极氧化时间为25min时可以在钛箔上获得结构规整的TiO_2纳米管结构;当电解液浓度低或电流密度小沉积得到的多为颗粒状Pt,而当电流密度增大,或沉积时间延长可以得到花状或草丛中的层片Pt结构。另外,当电解液浓度为1.0g/L电流密度为5mA/cm2时引入超声作用,沉积1min可以得到上部为Pt纳米管下部为TiO_2纳米管的特殊复合结构。
     此外,还研究了Pt-TiO_2/Ti纳米复合电极在浓度为0.5mol/L的硫酸中的极化曲线和循环伏安曲线,以及该复合电极对甲醇的电催化氧化效果。结果显示,该复合电极的电化学性能和电催化氧化性能均比一般的铂电极和Pt/Ti电极好。在浓度为1.0g/L电解液中,电流密度为5mA/cm2,超声沉积10min制备的复合电极对甲醇氧化的电催化性能最好。
TiO_2/Ti is an electrode with high corrosion resistance. And nano Pt is a catalyst with high catalytic activity, whose size, shape and distribution infect its properties. Therefore, in order to prepare a composite electrode with high activity, the special nano Pt-TiO_2/Ti composite structure was prepared by anodic oxidation- electrodeposition with ultrasonics, and characterized properties in this work.
     Firstly, TiO_2 naotubes were gained on the substrate by constant voltage anodic oxidation with the hydrofluoric acid as electrolyte. Then nano-Pt coating was deposited on the TiO_2 naotubes by constant current electrodecomposition with the chloroplatinic acid as electrolyte .The morphology and the structure of TiO_2 naotubes and nano-Pt coating were observed and analysed respectively with the aid of FESEM and XRD. The effects of the anodization parameters on the morphology and crystal structure of TiO_2 nanotubes and the electrodeposition parameters on the morphology and crystal structure of nano Pt were respectively investigated. It was indicated that the tidiest TiO_2 nanotubes were obtained on the pure titanium at 20V voltage and 25 minutes oxidation time; when the electrolyte was low in concentration or the depositing current was small, the as-deposited Pt appeared mostly in particles, and tended to be changed in flower structures or plexi structures with the increasing of the current or the deposition time. Meanwhile, the composite electrode with the upper layer of Pt and the lower structure of TiO_2 nanotubes was prepared by depositing with ultrasonicassisted.
     Moreover, Pt-TiO_2/Ti composite structure was characterized respectively by CV and polarization curve in the 0.5mol/L sulfuric acid and 0.5mol/L methanol mixed with sulfuric acid. The results showed that the electrocatalytic activitics and the stability of the composite electrode for the methanol oxidation were better than those of Pt electrode and Pt/Ti electrode. And the electrode possessed the best properties prepared at the 5mA/cm2 current density in the 1.0g/L electrolyte for 1 minute.
引文
[1] 李玲,向航.功能材料与纳米技术[M].化学工业出版社材料科学与工程出版中心. 2002.7.
    [2] 张梅,陈焕春,杨绪杰等.纳米材料的研究现状及展望[J].导弹与航天运载技术. 2000, 245(3):11~16.
    [3] Zhu Y C, Huang M H, Ding C X, et al. Investigation on structural transform of nano-titania powders during plasma spraying pocess [J]. J.Inrog.Mater. 1998, 13(6):923~926.
    [4] 柳闽生,杨迈之,蔡生民,等.半导体纳米粒子的基本性质及光电特性[J].化学通报.1997, 1:20~24.
    [5] 岳 兰 平 , 何 怡 贞 . 纳 米 锗 颗 粒 镶 嵌 薄 膜 的 吸 收 光 谱 研 究 [J]. 光 学 学报.1997,17(12):1693~1696.
    [6] Takagahara T. Effects of dielectric confinement and electron-hole exchange interaction on excitonic states in semiconductor qutantum dots [J]. Phys.Rev.B. 1993, 47(22):4569~4584.
    [7] 王保玉,张景会,刘湛鋆.TiO_2纳米管的制备[J].精细化工,2003,20(6):333~336.
    [8] 邵颖. TiO_2 纳米管的模板法制备及光催化应用研究[D].南京:南京师范大学,2002.
    [9] 邵颖,薛宽宏,何春建,等.TiO_2纳米管的光催化降解SDBS实验[J].南京师大学报(自然科学版) 2002,25(1): 116.
    [10] 赖 跃 坤 , 孙 岚 等 . 氧 化 钛 纳 米 管 阵 列 制 备 及 形 成 机 理 [J]. 物 理 化 学 学 报 , 2004,20(9):1063~1066.
    [11] 王炜,陶杰,章伟伟,阳极氧化法制备TiO_2多孔膜[J].钛工业进展,2005,22(2):30~33.
    [12] 李芳柏,王良焱,李新军,等. 新型Ti/TiO_2电极的制备及其光电催化氧化活性[J] .中国有色金属学报,2001,11(6): 977~981.
    [13]王周成,黄龙门,唐毅,钛表面制备多孔氧化膜的研究[J].厦门大学学报(自然科学版),2006,45(5):677~682.
    [14] Seung-Han Oh,Rita R F,et al. Growth of nano-scale hydroxyapatite using chemically treated titanium oxide nanotubes [J].Biomaterials,2005,26(24):4938~4943.
    [15] Gong D W, Craig A. Grimes, Oomman K. Varghese. Titanium oxide nanotube arrays prepared by anodic oxidation [J].Materials Research Society, 2001, 16(12):3331~3334.
    [16] Oomman K V, Maggie Paulose,et al. Hydrogen sensing using titania nanotubes [J].Sensors and Actuators,2003,93(B):338~344.
    [17]Gopal K. Mor, Maria A. Carvalho, Ooman K. Varghese, et al. A room-temperature TiO_2-nanotube hydrogen sensor able to self-clean photoactively from environmental contamination[J]. Materials Research Society, 2004, 19(2):628~630.
    [18]Gopal K. Mor, Karthik Shankar, Maggie Paulose, Enhanced photocleavage of waterusing titania nanotube arrays [J].Nano Letters, 2005, 5(1):191~195.
    [19]Gopal K. Mor, Karthik Shankar, Maggie Paulose,et al.Use of highly-ordered TiO_2 nanotube arrays in dye-sensitized solar cells[J]. Nano Letters, 2006, 6(2):215~218.
    [20] Zhao J L, Wang X H. Fabrication of titanium oxide nanotube arrays by anodic oxidation [J]. Solid State Communications, 2005, 134(10):705~710.
    [21] Gong D W, Grimes CraigA, Varghese OommanK. Titanium oxide nanotube arrays prepared by anodic oxidation [J].J. Mater. Res., 2001, 169(12):3331~3334.
    [22] Mor G K, Varghese O K. Fabrication of tapered, conical-shaped titania nanotubes [J].J.Mater.Res.,2003, 18(11):2588~2593.
    [23] 曾华梁, 杨家昌. 电解和化学转化膜[M]. 轻工业出版社. 1987.4.
    [24] 代明江, 陈鹤鸣. 铝阳极氧化机理研究[J].广东有色金属学报,1996, 6 (1): 51~55.
    [25] 欧阳新平. 铝阳极氧化机理研究的进展[J].材料保护, 1998, 31 (7): 23.
    [26] 董艳锋, 李清山. 多孔铝纳米阵列模板的形成及其机理分析[J]. 曲阜师范大学学报, 2002, 28 (3): 54~56.
    [27] 代明江,陈鹤鸣. 铝阳极氧化机理研究[J].广东有色金属学报,1996, 6 (1): 51~55.
    [28] Takahochi H. Electrochemical behavior and structure of anodic oxide films formed on aluminum in a neutral borate solution [J].Electrochem.Acta., 1978, 23 (2): 279.
    [29] 徐源, Thompson G E, Wood G C. 多孔型铝阳极氧化膜孔洞形成过程的研究[J].中国腐蚀与防护学报, 1989, 9 (1): 1~10.
    [30] Preston C K, Moskowits M.Optical characterization of anodic aluminum oxide films containing electrochemically deposited metal [J]. Phys. Chem., 1993, 97(32):8495~8503.
    [32] Reetz M T, Helbig W. Size-selective synthesis of nanostructured transition metal clusters[J]. Am. Chem. Soc., 1994, 116(16):7401~7402.
    [33] Delplancke J L, Dille J, Reisse J , et al . Magnetic nanopowders: Ultrasound-assisted electrochemical preparation and properties [J].Chem. Mater. , 2000, 12(4):946~955.
    [34] Penner RM, Martin C R. Controlling the morphology of electronically conductive polymers [J].Journal of the Electrochemical Society, 1986, 133(10):2206.
    [35] Penner R M, Martin C R. Electrochemical evaluation of charge-transport rates in electronically conductive polymers [J]. Phys. Chem., 1989, 93:2878~2881.
    [36] Lee S B, Martin C R. PH-switchable, ionpermselective gold nanotubule membrane based on chemisorbed cysteine [J]. Anal. Chem., 2001,73 (4):768~775.
    [37] Martin C R, Nishizawa M, Jirage KB, et al. Controlling ion-transport selectivity in gold nanotubule membranes[J]. Adv. Mater.2001,13(18):1351~1362.
    [38] Martin C R. Nanomaterials: a membrane-based synthetic approach [J].Science, 1994, 266: 1961~1966.
    [39] Nishizawa M, Menon V P , Martin C R. Metal nanotubule membranes with electrochemically switchable ion-transport selectivity[J].Science , 1995 , 268:700~702.
    [40] Khan H R , Petrikowsk K. Synthesis and properties of the arrays of magnetic nanowires of Co and CoFe[J].Materials Science and Engineering C ,2002,19(2):345~348.
    [41] Molares M E T , Brotz J , Buschmann V. Etched heavy ion tracks in polycarbonate as template for copper nanowires [J]. Nuclear Instruments and Methods in Physics Research B, 2001, 185(1-4):192~197.
    [42] Valizadeh S, George J M, Leisner P. Electrochemical synthesis of Ag/Co multilayered nanowires in porous polycarbonate membranes[J].Thin Solid Films , 2002 ,402(2):262~271.
    [43] Klein J D, Herrick D R, Palmer D, et al .Electrochemical fabrication of cadmium chalcogenide microdiode arrays[J].Chem. Mater. , 1993, 5:902~904.
    [44] Bantu A K M, Rivas J, Zaragoza G J. Influence of the synthesis parameters on the crystallization and magnetic properties of cobalt nanowires [J].Non-crystalline Solids, 2001, 287(1):5~9.
    [45] Valizadeh S , George J M, Leisner P. Template synthesis of Au/Co multilayered nanowires by electrochemical deposition[J]. Electrochim.Acta, 2001, 47(6):856~874.
    [46] Mbindyo J K N, Mallouk T E, Mattzela J B , et al . Template synthesis of metal nanowires containing monolayer molecular junctions[J].J. Am.Chem. Soc., 2002, 124(15):4020~4026.
    [47] Pena D J, Mbindyo J K N, Carado A J , et al . Template growth of photoconductive metal-CdSe-metal nanowires[J]. Phys. Chem.B, 2002, 106(30):7458~7462.
    [48] Hong B H , Bae S C , Lee C W, et al . Ultrathin single-crystalline silver nanowire arrays formed in an ambient solution phase[J].Science , 2001 , 294:348~351.
    [49] 王成伟, 彭勇, 潘善林. α-Fe 纳米线阵列膜磁各向异性的穆斯堡尔谱研究[J].物理学报, 1999,48(11):2146~2150.
    [50] Shen C M, Zhang X G, Li HL. Effect of pH on the electrochemical deposition of cadmium selenide nanocrystal films[J].Materials Science and Engineering A , 2001,303(1):19~23.
    [51] 苏轶坤, 王臻, 力虎林. 低频交流电沉积金纳米线阵列的AFM研究[J].高等学校化学学报, 2002 , 23 (5):944~946.
    [52] 曾曙, 马生, 郭桐鹤. 铝阳极氧化膜纳米级微孔内电沉积 Fe-Co-Mn 合金的磁性和垂直磁记录介质特性研究[J].功能材料, 2000 , 31(增刊):32~33.
    [53] 唐冬雁, 蔡伟民, 张巨生. 聚醚氨酯/聚甲基丙烯酸甲酯 IPN 阻尼性能研究[J].哈尔滨工业大学学报,2000 , 32(2):56~59.
    [54] 黄微波, 杨宇润, 刘东辉. 聚醚氨酯结构与阻尼性能的研究[J].高分子材料科学与工程, 1995,11(2):102~108.
    [55] Waldner G.Photoelectro catalytic degradation of 4-chlorophenol and oxalic acid on titanium dioxide electrodes[J].Chemosphere, 2003,50(8):989~998.
    [56]Tai C A.Feasibility study of photoelectrochemical degradation of methylene blue with three-dimensional electrode-photocatalytic reactor[J].Chemosphere,2002,46(6):897~903.
    [57]丁敦煌.光电激发与均相催化降解可溶性染料水的研究[J].工业水处理,2003,23(9):38~41.
    [58] Hamnett A, Kennedy B J, Weeks S A. XPS investigation of platinized carbon electrodes for the direct methanol air fuel cell[J]. Electroanal.Chem., 1987,91:1528.
    [59] 李伟,王晓冬,杨建军,等.高比面积TiO_2纳米管的制备与表征[J].化学研究,2002, 13(3):12~14
    [60] Oliver S, Dietmar V L, Steffen J, et al. Preparation and application of new ruthenium(II) polypyridyl complexes as sensitizers for nanocrystalline TiO_2 [J]. Journal of Photochemistry and Photobiology A: Chemistry, 2000, 132 (1-2):91~98.
    [61] 王爱华.氧化铝有序阵列模板的制备与研究[D].北京:北京科技大学. 2001.
    [61] Bard A. J., Faulkner L. R., Electrochemical Methods [M]. New York.1980:538.
    [62] 李廷盛,尹其光.超声化学[M].北京:科学出版社,1995,20:212~217.
    [63] 张 成 孝 . 超 声 电 化 学 及 其 研 究 进 展 [J]. 陕 西 师 范 大 学 学 报 ( 自 然 科 学版).2001,29(2):103~109.
    [64] 林书玉.功率超声技术的研究现状及其最新进展[J].陕西师范大学学报(自然科学版) , 2001,29 (1):101~106.
    [65] Thompson L H, Doraisamy L K. Sonochemistry :science and engineering [J].Ind Eng ChemRes ,1999,38(4):1215~1249.
    [66] Suslick K S. Sonochemistry and its application [J].Science, 1990, 247:1439~1445.
    [67] Doktycz S J, Suslick K S. Interparticle collisions driven by ultrasound [J].Science, 1997, 247:1067~1069.
    [68]Compton R G, Eklund J C , Marken F. Sonoelectrochemical processes---a review[J].Electroanalysis,1997,9(7):509~522.
    [69]Mason T J.Ultrasound in synthetic organic chemistry[J].Chemical Society Reviews,1997,26(6):443~451.
    [70]冯若, 赵逸云.声化学—一个引人注目的新的化学分支[J].自然杂志,2004,26(3):160~163.
    [71] Koltypin Y, Katabi G, Cao X, et al.Sonochemical preparation of amorphous nickel[J]. Journal of non-crystalline solid, 1996,201(1-2):159~162.
    [72] Li B, Xie Y, Huang J, et al. Sonochemical synthesis of silver, copper and lead selenides [J]. Ultrasonics Sonochemistry, 1999, 6 (4):217~220.
    [73] Mason T J. Practical Sonoelectrochemistry[M].Ellis Horwood :Cheichester , 1991.
    [74] Birkin P R, Silva-Martines S. Determination of heterogeneous electron transfer kinetics in the presence of ultrasound at microelectrode employing sampled voltammetry[J].Anal. Chem.,1997,69(11):2055~2062.
    [75] Manna R R, Lee B, Brecher K C. Probe ultrasonics : increased productivity and accelerated reactions in modern laboratory[J].Am Lab,1998,30(13):14~15.
    [76] Lorimer J P, Mason T J , Paniwnyk L , et al. The use of ultrasound in electrochemical process[J].Acta Phys Sin,1999,8 (Sup):5319~5325.
    [77] Klima J, Bernard C, Pegrand C. Sonoelectrochemistry: the effect of ultrasound on voltammetric measurements at a solid electrode[J] . Chem. Listy., 1995, 89 (9):587~589.
    [78] Cooper E L, Coury L A. Mass-transport in sonovoltammetry with evidence of hydronamic modulation from ultrasound[J].J.Electrochem.Soc., 1998,145(6):1994~1999.
    [79] Hagan C R S, Coury L A. Comparison of hydrodynamic voltammetry implemented by sonication to a rotating disk electrode[J] . Anal.Chem., 1994,66(3):399~405.
    [80] Hernandez R M , Marquez J , Marquez O P , et al. Reduction of carbon dioxide on modified glassy carbon electrodes[J] . J.Electrochem.Soc, 1999, 146(11):4131~4136.
    [81] Atobe M, Nonaka T. Ultrasonic effects on electroorganic processes 7. Reduction of benzaldehydes on ultrasound vibrating electrodes[J] . J.Electroanal.Chem, 1997,425(122):161~166.
    [82] Mastai Y, Polsky R , Koltypin Yu , et al. Pulsed sonoelectrochemical synthesis of cadmium selenide nanopartical[J] . J.Am.Chem.Soc, 1999, 121(43): 10047~10052.
    [83] Matysik F M , Matysik S , Brett A M O. Ultrasound enhanced anodic voltammetry using perfluorolfonatedionomer2coated mercury thin film electrode [J] . Anal.Chem., 1997,69(8):1651~1656.
    [84] 包胜华, 吴蒙华.功率超声在电沉积Ni-纳米Al2O3复合涂层中应用[J].现代工程制造, 2004,9:3~5.
    [85] Perusich S A, Alkire R C. Ultrasonically induced cavitation studies of electrochemical passivity and transport mechanisms[J]. Electrochem.Soc., 1991 ,138(3):700~707.
    [86]Szpyrkowicz L ,Naumczyk J ,Zilio-Grandi F. Electrochemical treatment of tannerywastewater using Ti/ Pt/Ir Electodes.[J]Water Research ,1995 ,29 (2):517~524.
    [87] Vlyssides A G, Loizidou M, Karlis P K, et al. Electrochemicaloxidation of a textile dye wastewater using a Pt/Ti electrode[J]. Hazardous Material, 1999,70:41~52.
    [88] Armadi T S, Wang Z L, Green T C, et al. Shape-controlled synthesis of colloidal platinum nanoparticles [J].Science, 1996, 272:1924
    [89] Liu Z L,Lee J Y,Han M, et al. Synthesis and characterization of PtRu/C catalysts from microemulsions and emulsions [J]. J.Mater.Chem., 2002,12(5):2453~2458.
    [90] Honma I , Toda T. Temperature dependence of kinetics of methanol electro-oxidation on PtSn alloys[J] . J.Electrochem.Society,2003,150(12):A1689~A1692.
    [91] 田立朋, 李伟善.直接甲醇燃料电池研究进展[J] .现代化工, 1998, 18:14~17.
    [92] Rojas M I, Esplandiu M J ,Avalle L B , et al . The oxygen and chlorine evolution reactions at titanium oxide electrodes modified with platinum [J] .Electrochimica Acta, 1998,43(12-13):1785~1794.
    [93] 刘长鹏,杨辉,刑巍,等.铂、钌共修饰的氧化钛电极对甲醇的电催化氧化[J] .应用化学,2001,18(7):517~520.
    [94] Hamnett A. Mechanism and electrocatalysis in the direct methanol fuel cell [J].Catalysis Today, 1997, 38(4):445~457.
    [95] Prabhuram J, Manoharan R. Investigation of methanol oxidation on unsupported platinum electrodes in strong alkal and strong acid[J]. J. Power Sources, 1998, 74(1):54~61.
    [96] Burstein G T, Barnett C J, Kucernak A R, et al.Aspects of the anodic oxidation ofmethanol[J].Catalysis Today ,1997, 38(4):425~437.
    [97]Hogarth M P, Ralph T R, Catalysis for low temperature fuel cells-Part III: Challenges for the direct methanol fuel cell[J].Platinum Metals Rev.,2002,46(4):146~164.
    [98] Prabhuram J, Manoharan R. Investigation of methanol oxidation on unsupported platinum electrodes in strong alkal and strong acid [J].J. Power Sources,1998, 74:54~61.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700