城镇污水处理厂碳源开发与利用试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
全国约三分之一的城市污水存在碳源不足的问题,某些污水处理厂采用化学除磷工艺也难以实现氮磷指标的达标排放。本论文以初沉污泥为底物,采用两级完全混合水解酸化工艺进行碳源开发。采用恒温水浴控制水解酸化池的温度为35℃,研究了HRT、SRT和污泥回流比对初沉污泥水解酸化的影响。研究结果表明,固定SRT为3天,污泥回流比为1的条件下,HRT为32~36小时,工艺具有较好的溶解性有机物累积效果,工艺出水的SCOD稳定在1090~1180mg/L范围内;固定HRT为32小时,污泥回流比为1的条件下,SRT为4~7天时,可以较好地实现水解酸化菌和产甲烷菌的分离,工艺具有较好的水解酸化效果,出水SCOD保持在980~1180 mg/L范围内;污泥回流比对初沉污泥的水解酸化也有较重要的影响,控制HRT为32小时,SRT为4天的条件下,污泥回流比为0.75~1的范围时,工艺具有较好的水解酸化效果。
     开发碳源的目的是为了提高城市污水生物脱氮除磷工艺的生物脱氮除磷效率与效果。采用序批式试验的方式研究了投加酸化液(富含VFAs的工艺出水)对反硝化菌反硝化速率以及聚磷菌厌氧释磷好氧吸磷速率的影响。研究结果表明,投加酸化液能够显著提高微生物的脱氮除磷效率。测定反硝化速率的序批式试验中,随着碳源浓度的降低,反硝化菌的反硝化速率不断减小,当酸化液的投加量为30mg/L(以TOC计)时,反硝化菌在第一阶段的平均反硝化速率为0.367mgNO3-N/mgVSS.d,对应的耗碳速率为0.713mgTOC/mgVSS.d;不同工况中活性污泥中聚磷菌的释磷潜力相近,污水中的碳源越多越能激发它的释磷潜能,因此,酸化液的投加量越大,聚磷菌的释磷速率也越快。当酸化液投加量为30mg/L(以TOC计)时,聚磷菌的平均释磷速率达到0.137mgP/mgVSS.d。碳源充足与否,对聚磷菌的平均好氧吸磷速率影响不大,而对聚磷菌吸磷持续的时间有重要影响。碳源充足的工况聚磷菌吸磷持续的时间长,而碳源不足时聚磷菌吸磷持续的时间短。采用序批式试验研究的各工况中,聚磷菌的平均吸磷速率在0.129~0.160mgP/mgVSS.d范围内,因此,碳源充足时,聚磷菌具有更强的吸磷能力。反硝化菌和聚磷菌能利用的有机物有一定的差别,以酸化液投加量为30mg/L(以TOC计)为例,可被反硝化菌利用的有机碳百分含量为75.7%,而可被聚磷菌利用有机碳的百分含量为57.4%。将酸化液投加到连续运行的A/A/O工艺中,投加点位于厌氧段起端,酸化液的投加量为36mg/L(以TOC计),工艺出水营养物指标分别为TN=14.18 mg/L、TP=0.4mg/L,达到《城镇污水处理厂污染物排放标准(GB18918-2002)》的一级A标准。
About one third wastewater treatment plants had the crisis of carbon source shortage in our nation. Although chemical phosphorus removal process was used in some plants, nitrgon and phosphorus could not meet the discharge standard simultaneously. For the problem of shortage of carbon resource in the sewage, primary sludge would be used as substrate to develop carbon resource with two-stage complete mixing hydrolysis and acidification process. The temperature of hydrolysis and acidification reactor was controlled by thermostatic waterbath and the temperature was 35℃. Effects of HRT、SRT and sludge recycle ratio on hydrolysis and acidification of primary sludge were studied. The results of research showed that when the HRT is in the scope of 32 to 36 hours, the process had a good VFAs cumulative effect and the soluable COD (SCOD) of effluents is 1090~1180mg/L, in the codition of SRT was 3 days and sludge recycle ratio was 1; when the SRT is between 4 to 7days, acidogenic bacteria and methanogenic bacteria could be separated and the process had a good hydrolysis and acidification effect, The SCOD of the effluents was in the scope of 980~1180 mg/L, when the codition of HRT is 32 hours and sludge recycle ratio is 1; recycle ratio also had an improtant effect on hydrolysis and acidification of primary sludge, when HRT and SRT were controlled to 32 hours and 4 day, the process had a good hydrolysis and acidification effect when sludge recycle ratio was between 0.75 to 1.
     The aim of developing carbon resource was improving the nitrogen and phosphrous removal effect of biological nutrient removal (BNR) process. Effects of dosing hydrolysate (process’effluents is rich in VFAs) on denitrification rate of denitridiers and phosphorus release and phosphorus uptake rate of PAOs (phosphorus accumulating organisms) were be studied by sequencing bath reactor. The studied results showed that dosing hydrolysate to the BNR process could improve nitrogen and phosphorus removal rate remarkablely, in the sequencing bath reactor of denitrification, as the concentration of carbon resource reducing, the denitrification rate was changing by stages. When the hydrolysed dosage was 30 mg/L (measured by TOC), the average dentrification rate of the denitrifier was 0.367mgNO3-N/mgVSS.d while carbon consumption rate was 0.713mgTOC/mgVSS.d at the first stage; phosphorus accumulating organisms have the same phosphorus release potential in the active sludge, the more carbon resource in the sewage, the stronger phosphorus release potential would be stimulated. The more hydrolysate addition in the sewage, the quicker phosphorus release rate PAOs have. When hydrolysate dosage was 30mg/L (measured by TOC), the average phosphorus release rate of PAOs is 0.137mgP/mgVSS.d. Carbon resource rich in the sewage or not had a less impact on the average aerobic phosphorus uptake rate, but a strong effect on the sustained time of phosphorus uptake process. When the sewage was rich in carbon resource, phosphorus uptake process of PAOs sustained a long time, and vice versa. The average phosphorus uptake rate of PAOs was between 0.129 to 0.160mgP/mgVSS.d in the sequecing bath reactor, therefore PAOs had strong phosphorus uptake capacity. Organic matters uptaked by denitrifier and PAOs were different, such as the conditions that dosage of hydrolysate was 30mg/L(measured by TOC), the percentage of organic carbon that could be used by denitrifier was 75.7%, and uptaked by PAOs was 57.4%. When dosing hydrolysate to the anaerobic origin of A/A/O (anaerobic-anoxic-oxic) process and the dosage is 36mg/L (measured by TOC) , the nutrient parameter of the effluents were as follows, TN is 14.18 mg/L and TP is 0.4mg/L, which meet the first level A criteria specified in the Discharge standard of pollutants for municipal wastewater treatment plant (GB18918-2002).
引文
1张自杰,林荣忱,金孺霖.排水工程(第三版)[M].北京:中国建筑工业出版社,1996:100~299
    2余杰,田宁宁,王凯军.我国污泥处理、处置技术政策探讨[J].中国给水排水,2005,21(8):84~87
    3国家统计局《中国统计年鉴》编委会编.2007年中国统计年鉴[M].北京:中国统计出版社,2007:68~70
    4国家环境保护总局. 2004年环境状况公报[J].环境保护,2005,(6):11~24
    5国家环境保护总局. 2005年环境状况公报[J].环境保护,2006,(6B):10~19
    6国家环境保护总局. 2006年环境状况公报[J].环境经济,2007, (B07):14~32
    7国家环境保护总局. 2007年环境状况公报[J].环境经济,2008,(9):10~32
    8 Banerjee A., Elefsiniotis P.,Tuhtar D. The effect of addition of potato-processing wastewater on the acidgenesis of primary sludge under varied hydraulic retention time and temperature [J]. Journal of Biotechnology, 1999, 72(3):203~212
    9 Raghid Lepisto. Extreme Thermophilic (70),VFA-Fed UASB Reactor: Performance,Temperature Response, Load Potential and comparison with 35℃and 55℃UASB reactors[J]. Water Res,1999,33 (14): 3162~3170
    10 Hatziconstantinou G J,Yannakopulos P, Andreadskis A. Primary sludge hydrolysis for biological nutrient removal[J]. Wat. Sci. Tech.,1996, 34( 2):417~423
    11 Anderson,G K, Yang G. Determination of bicarbonate and total volatile acid concentration in anaerobic digesters using a simple tritration[J]. Water Environ Res,1992,64(4):659-665
    12李建政,任南琪.产酸相最佳发酵类型工程控制对策[J].中国环境科学,1998,18(5): 398~402
    13竺建荣,胡纪萃,顾夏声.颗粒厌氧污泥中的产氢产乙酸细菌研[J].微生物学通报,1994,21(4): 207~209
    14秦智,任南琪,李建政等。产酸相反应器的过酸状态及其控制[J].哈尔滨工业大学学报,2003,35(9):1105~1108
    15沈耀良,王宝贞.水解酸化工艺及其应用研究[J].哈尔滨建筑大学学报,1999,32(6): 29~34
    16蓝梅,周琪,宋乐平,等.水解酸化一好氧工艺处理混合化工废水[J].污染防治技术,2000,13 (1):1~4
    17吴一平.初沉污泥水解产酸及利用研究.西安建筑科技大学硕士论文. 2004
    18苑宏英.基于酸碱调节的剩余污泥水解酸化及其机理研究.同济大学博士论文. 2006
    19 Young Ho Ahn, Richard E,Speece. Elutriated acid fermentation of municipal primary sludge [J]. Water research,2006(40):2210 ~2220.
    20贺延龄.废水的生物处理「M].北京:中国轻工业出版社,1998:21~79
    21 McIntosh K. B., Oleszkiewicz J. A. Volatile pre-treatment of primary sludge acid production in aerobic thermophilic[J]. Wat. Sci.Tech., 1997, 36(7):189~196
    22 Haug T. R., Stuckey D. C., Gossett J. M., McCarty P. L. Effect of thermal pretreatment on digestibility and deeaterability of organic sludges [J]. Water Pollu. Control. Fed., 1978,50(1):73~85
    23 Pinnekamp J. Effect of thermal pretreatment of sewage sludge on anaerobic digestion [J]. Wat. Sci. Tech., 1989, 21(4):97~108
    24 Kepp U., Machenbach L, Weisz N., et al. Enhanced stabilization of sewage sludge through thermal hydrolysis-three years of experience with scale plant [J]. Wat. Sci. Tech., 2000, 42(9):89~96
    25 Huang T. R. Thermal pretreatment of sludges-a field demonstration [J]. J. Water Pollut.Control. Fed., 1983, 55(1):23~34
    26 Elefsiniotis P., Oldham W. K. Influence of pH on the acid-phase anaerobic digestion of primary sludge[J]. Chem. Tech. Biotech., 1994, 60(1):89~96
    27苑宏英,张华星,陈银广,等. pH对剩余污泥厌氧发酵产生的COD ,磷及氨氮的影响[J].环境科学,2006,27(7):1358~1361
    28何品晶,潘修疆,吕凡,等. pH值对有机垃圾厌氧水解和酸化速率的影响[J].中国环境科学, 2006,26(1):57~ 61
    29胡纪萃编著.废水厌氧生物处理理论与技术[M].北京:中国建筑工业出版社,2002:51~53
    30 Eastman J. A., Ferguson J. F. Solubilization of particulate organic matter during the acid-phase of anaerobic digestion [J]. J. Water Pollut. Control. Fed., 1981, 53(3):352~366
    31 I. Maharaj., P. Elefsiniotis. The role of HRT and low temperature on the acid-phase anaerobic digestion of municipal and industrial wastewaters[J]. Biorcsourcc Technology, 2001 (76): 191~197
    32任健,李军,王洪臣,等. 2008.基于污泥水解酸化的厌氧活性污泥系统启动试验研究[A].第三届中国城镇水务发展国际研讨会论文集[C].北京,2008: 375~380
    33 Law rence A W, McCarty P L. Kinetics of Methane Fermentation in Anaerobic Treatment[J].Water Poll Cont,1969( 41):1-17
    34 Skalsky D. S., Daigger G. T. Wastewater sludge fermentation for volatile acid production and enhanced biological phosphorus removal [J]. Water Environ. Res.,1995, 67 (2): 230~237
    35 Mabmoud N., Zeeman G., Gijzen H., et al. Anaerobic stabilization and conversion of biopolymers in primary sludge-effect of temperature and sludge retention time [J]. Water Res., 2004, 38 (4): 983~991
    36 Miron Y.,Zeeman G,Van Lier J.B.,et al. The role of sludge retention time in the hydrolysis and acidification of lipids ,carbohydrates and proteins during digestion of primary sludge in CSTR systems[J]. Water Res., 2000, 34 (5): 1705~1713
    37廖连华.一株厌氧中温纤维素分解菌的分离和鉴定[J].中国沼气,1986,15(3):6~11
    38 Levin G.V., Shapiro J. Metabolic uptake of phosphorus by wastewater organisms[J]. Water Pllution Control Federation,1965,(37):800~821.
    39 Levin G.V.,Topol G.J.,Tarnay A.G. Operation of full scale biological phosphorus removal plant[J]. Water Pllution Control Federation, 1975, (47): 577~590
    40吕鑑,赵永志,王佳伟,等.初沉污泥水解酸化对A~2/O工艺强化除磷影响[J].北京工业大学学报,2008,34(9):981~984
    41 Ahmed Suheyl Ucisik, Mogens Henze. Biological hydrolysis and acidification of sludge under anaerobic conditions:The effect of sludge type and origin on the production and composition of volatile fatty acids[J]. Water research, 2008,(42): 3729~3738
    42 C.P.Leslie Grady, Jr., Glen T.Daigger, Henry C.Lim. Biological wastewater treatment, second edition, revised and expanded.北京:化学工业出版社,2003: 403~817
    43 Barnard, J.L. Activated primary tanks for phosphate removal [J]. Water SA. 1984,(10):121~126
    44 Gerber, A., Mostert, E.S., Winter, C.T., Villiers, R.H. Interactions between phosphate, nitrate and organic substrate in biological nutrient removal processes[J]. Water Sci. Technol. 1987,(19):1873~1894
    45 Maurer,M., Gujer, W., Hany, R., Bachmann, S.. Intracellular carbon flow in phosphorus accumulating organisms from activated sludge[J]. Water Res., 1997, 31 (4):907~917
    46 Xu,Y. Volatile fatty acids carbon source for biological denitrification[J]. Environ. Sci,1996,(8):257~268
    47 Rajapakse, J.P, Scutt, J.E.. Denitritication with natural gas and various new growth media[J]. Water Res. 1999,(33): 3723~3734
    48 Li, D.. Denitrification using volatile fatty acids (VFAs): the effects of nitrate concentrations, types of VFAs, C/N ratio and temperature. M.E. Thesis, University of Auckland, Auckland,New Zealand. 2001:34~45
    49 Fass, S,Canaye,V,Urbain, V.. Volatile fatty acids as organic carbon source in denitritication[J]. Environ. Technol. 1994,(15):459~467
    50 ?s?y,A., ?degaard,H. Denitritication in biotilms with biologically hydrolyzed sludge as carbon source[J]. Water Sci.Technol. 1994,29 (10): 93~100
    51 Hatzi G.J., Yannakopoulos P, Andreadakis A. Primary sludge hydrolysis for biological nutrient removal[J]. Water Sci. Technol. 1996,34 (1/2): 417~423
    52 Pavan,R,Battistioni,R,Traverso,P,Musacco, A., Cecchi, F. Effect of addition ofanaerobic fermented OFMSW on BNR Process: preliminary results[J]. Water Sci. Technol. 1998,38 (1):327~334
    53 Llabres.R, Pavan.R, Battistioni.R, et.al. The use of organic traction of municipal solid waste hydrolysis products for biological nutrient removal in wastewater treatment plants [J]. Water Res. 1999,(33):214~222
    54 Yinguang Chen, Andrew A. Randall, Terrence McCue. The efficiency of enhanced biological phosphorus removal from real wastewater affected by different ratios of acetic to propionic acid[J]. Water Research,2004,38(1):27~36
    55 Che Ok Jeon, Jong Moon Park. Enhanced biological phosphorus removal in a sequencing batch reactor supplied with glucose as a sole carbon source[J]. Water Research, 2000, 34(7) : 2160~2170
    56 S. Puig, M. Coma, H. Monclús. Selection between alcohols and volatile fatty acids as external carbon sources for EBPR[J]. Water Research,2008,42(3):557~566
    57戴万红,安蕾.用COD速测仪测定废水的化学需氧量[J].包钢科技2005,31(3):56~57
    58周振,吴志超,王志伟.基于批式呼吸计量法的溶解性COD组分划分[J].环境科学,2009,30(1):75~79
    59 Doaruel S, Genceli E A, Babuna F G, et al. An investigation on the optimal location of ozonation within biological treatment for a tannery wastewater[J]. Chem Tech Biotechnol, 2006, 81(12):1877~1885
    60 Roeleveld P J, Van Liisdercht M C,M. Experience with guidelines for wastewater characterization in the Netherlands [J]. Water Sci Technol, 2002,45(6):77~87
    61 Hu G. Chandran K. Smets B F,et nl. Evaluation of a rapid physical-chemical method for the determination of extant soluble COD[J]. Water Res,2002, 36(3): 617~624
    62许传珍,孙春宝,郝二成,等. 5点pH值滴定法测定VFA方法的研究[J].市政技术,2007,25(1):54~56
    63赵剑强.厌氧酸化工艺的COD去除率的理论分析[J].西安公路学院学报,1994,14(1):57~63
    64 Anderson,GK, Yang G. Determination of bicarbonate and total volatile acid concentration in anaerobic digesters using a simple tritration[J].Water Environ Res,1992,(64):1023~1031
    65 Raghid L. Extreme Thermophilic (70℃),VFA-Fed UASB Reactor:Performance, Temperature Response, Load Potential and comparison with 35℃and 55℃UASB reactors[J]. Water Res,1999,33 (14): 3162~3170
    66任南琪,刘敏,王爱杰,等.两相厌氧系统中产甲烷相有机酸转化规律[J].环境科学,2003,24(4):89~93
    67 Bae J H, Cho K W, Bum B S, et al. Effects of leachate recycle and anaerobic digester sludge recycle on the methane production from solid waste [J]. Water Sci,Technol., 1998, 38(2):68~75
    68 Young Ho Ahn, Richard E,Speece. Elutriated acid fermentation of municipal primary sludge[J]. Water research,2006( 40):2210~2220
    69 A.Bouzas,J.Ribes,J.Ferrer. Fermentation and elutriation of primary sludge: Effect of SRT on process performance[J]. Water research, 2007, (41):747~ 756
    70 Christensson M, Lie E, Welander T. A comparison between ethanol and methanol as carbon sources for denitrification[J]. Wat Sci Tech, 1994, 30(6): 83~90
    71徐亚同.不同碳源对生物反硝化的影响[J].环境科学,1994,15(2):29~32
    72徐亚同.生物反硝化除氮研究[J].环境科学学报,1993,14(4):445~453
    73张亚雷,李咏梅.活性污泥数学模型[M].同济大学出版社,2002
    74郭春艳,王淑莹,李夕耀,等.聚磷菌和聚糖菌的竞争影响因素研究进展[J].微生物学通报,2009, 36(2): 267~275
    75郝晓地,戴吉,兰荔,等.控制BNR工艺好氧反硝化除磷效果因素实验研究[J].环境科学学报,2008,28(11):2186~2191
    76 Thomas M,W right P,Blackall L,et al. Optimisation of Noosa BNR plant to improve performance and reduce operating costs[J]. Water Sci Technol, 2003, 47(12):141~148
    77 Filipe C D M,Daegger G T,Gradv Jr C P L.Stoichiometrv anrd kinetics of acetate uptake under anaerobic conditions by an enriched culture of phosphorus accumulating organisms at different pHs[J].Bioeng Biotech, 2001,76(1):32~43
    78 Smolders G J F, van der Meij J,van Loosdrecht M C M,et al. Model of the anaerobic metabolism of the biological phosphorus removal process: Stoichiometry and pH infuluence [J].Biotechnol Bioeng, 1994,(43): 461~470
    79豆俊峰,罗固源,刘翔.生物除磷过程厌氧释磷的代谢机理及其动力学分析[J].环境科学学报,2005, 25( 9) : 1164~1169
    80王亚宜,彭永臻,王淑莹,等.碳源和硝态氮浓度对反硝化聚磷的影响及ORP的变化规律[J].环境科学,2004,25(4):54~58
    81王伟,彭永臻,王海东,等.溶解氧对分段进水生物脱氮工艺的影响[J].中国环境利学,2006,6(3): 293~297
    82王亚宜,彭永臻,李探微,等. A2N连续流双泥系统反硝化除磷脱氮试验研究[J].哈尔滨工业大学学报,2004,36(8):1046~1049
    83彭永臻,马斌.低C/N比条件下高效生物脱氮策略分析[J].环境科学学报,2009,29(2): 225~230
    84李捷,张杰.厌氧氨氧化工艺处理低氨氮污水的影响因素研究[J].中国给水排水,2008,24(23):67~71
    85黄俊丽,肖丽,王贵学,等.全程自养脱氮反应系统的微生物区系分析[J].微生物学通报, 2005,32(06):78~81

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700