热塑性聚氨酯弹性体的耐水解与老化性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
热塑性聚氨酯弹性体(TPU)具有良好的力学性能、耐磨性、耐油性等,通常作为一种韧性材料来改善其它材料的低温冲击性能。然而聚酯型TPU的耐水解与老化性差,限制了其应用范围。本文采用了耐水解助剂聚碳化二亚胺(PCD),环氧类化合物(苯基缩水甘油醚(PGE),环氧树脂(E51),3―(2,3-环氧丙氧)丙基三甲氧基硅烷(KH560)),马来酸酐接枝苯乙烯-乙烯/丁烯-苯乙烯嵌段共聚物(SEBS-g-MAH),填料(碳酸钙,硫酸钡)对TPU的力学性能,耐水解与老化性,加工性,热性能等进行了研究。
     1.研究了PCD和SEBS-g-MAH对TPU的力学性能,耐水解与老化性,热性能的影响。结果表明:加入PCD提高了体系的拉伸强度,断裂伸长率,在25℃空气或80℃水中的力学性能保持率,热稳定性,降低了吸水率和熔融流动速率;当PCD含量为3%时,体系的耐水解与老化性最佳。SEBS-g-MAH的加入,提高了TPU的拉伸强度,断裂伸长率,在25℃空气或80℃水中的力学性能保持率,降低了TPU的熔融流动速率,吸水率,热稳定性;当SEBS-g-MAH的质量分数为15%时,体系的耐水解与老化性最佳。FTIR分析测试结果表明,PCD,SEBS-g-MAH均可能与TPU存在一定氢键作用;同时PCD,SEBS-g-MAH的特征基团已接枝到TPU分子主链上。DSC测试结果表明,PCD,SEBS-g-MAH均与TPU之间存在一定的相容性。
     2.考察了环氧化合物(PGE,KH560,E51)对TPU的力学性能,耐水解与老化性,热性能的影响。加入KH560提高了体系的拉伸强度,断裂伸长率,在25℃空气或80℃水中的力学保持率,降低了体系的吸水率,熔融指数;加入E51或者PGE均降低了TPU的拉伸强度,断裂伸长率,在25℃空气或80℃水中的吸水率以及熔融指数,但提高了TPU在25℃空气或80℃水中的力学性能保持率。DSC测试结果表明,三种环氧化合物均与TPU存在一定的相容性。FTIR分析测试结果表明,三种环氧化合物的特征基团均已接枝到TPU主链上,且与TPU之间存在一定氢键作用。TGA测试结果表明,加入PGE,KH560以及E51等三者均使TPU的热稳定性下降。
     3.研究了填料(碳酸钙,硫酸钡)对TPU的力学性能,耐水解与老化性,热性能等影响。结果表明,加入硫酸钡,TPU的力学性能,在25℃空气中或80℃恒温水浴中的力学性能保持率均先增大后减小,吸水率以及熔融流动速率降低。碳酸钙的加入,TPU的拉伸强度,断裂伸长率先增大后减小,吸水率以及熔融流动速率降低,无论TPU放置于25℃空气中还是浸入80℃的恒温水浴中,加入5%~20%碳酸钙均可提高其耐水解与老化性。当碳酸钙质量分数为20%时,其耐水解与老化性达到最佳,然而体系的力学性能却略有降低。TGA测试结果表明,加入硫酸钡或碳酸钙使TPU热稳定性略有下降。
     4.考察了不同水解稳定助剂对TPU的平衡扭矩的影响。结果表明,加入PCD使TPU的加工性能变差,环氧类化合物,SEBS-g-MAH以及填料的加入则改善了TPU的加工性能。
Thermoplastic polyurethane (TPU) elastomer has excellent mechanical properties, high abrasion resistance, anti-oil properties etc, which is widely used as a toughing material to improve toughness. However, polyester-based TPU is easily hydrolytic, which limits the application, and there’s few reseach work about how to improve TPU’s hydrolysis-aging resistance. In this paper, the effects of PCD, epoxy compounds (glycidyl phenyl ether (PGE), 3-(2, 3-Epoxypropoxy) propyltrimethoxy- silane (KH560) and epoxy (E51)), SEBS-g-MAH, inorganic filler (CaCO3, BaSO4) on the hydrolysis-aging resistance, mechanical properties, processing properties, thermo- stability of TPU are inverstigated.
     Firstly, the influence of PCD and SEBS-g-MAH on mechanical properties, hydrolysis-aging stablity and thermostabity of TPU were studied. The results showed: adding PCD to TPU, the maintenance of mechanical properties in 25℃air or 80℃water, tensile strength and elongation at break of TPU were increased, while water absorptivity in 25℃air or 80℃water and the melt flow index were decreased. When the content of PCD was 3%wt, the hydrolysis-aging resistance of TPU became the best. For the TPU/SEBS-MAH blends, as the amount of MAH-SEBS increased, the tensile strength, elongation at break and maintenance of mechanical properties in 25℃air or 80℃water were increased, while the melt flow index and water absorptivity in 25℃air or 80℃water were decreased. When the content of SEBS-MAH reached 15%wt, the hydrolysis-aging resistance of the TPU became the best. The FTIR analysis revealed that the characteristic groups of the PCD and SEBS-g-MAH have grafted on the TPU backbone chain, separately. The DSC analysis showed there were exisisting some compatibity between the TPU and PCD or SEBS-g-MAH and TPU. The TGA results indicated that the addition of PCD increased the thermo stablity of TPU while SEBS-g-MAH made it worse.
     Secondly, the effects of glycidyl phenyl ether (PGE), 3-(2, 3-Epoxypropoxy) propyltrimethoxysilane (KH560) and epoxy (E51) on the hydrolysis-aging resistance, mechanical properties, thermostabity of the TPU were investigated. The results showed: adding KH560 to TPU, the tensile strength, elongation at break, and the maintenance of mechanical properties in 25℃air or 80℃water were increased, while water absorptivity in 25℃air or 80℃water and the melt flow index of TPU were decreased. Adding PGE or E51 to TPU, the tensile strength, elongation at break, water absorptivity in 80℃water or in 25℃air and the melt flow index of TPU were decreased, while the maintenance of mechanical properties in 25℃air or 80℃water increased. The DSC analysis indicated that there was exsisting some compatibility between TPU and these there epoxy compounds. The FTIR analysis showed the characteristic groups of there epoxy compounds had grafted on the TPU backbone chain respectively, moreover there might be exsisting hydrogen bond between the epoxy compounds and TPU. The TGA analysis indicated that all of them decreased the thermo stability of TPU.
     Thirdly, the effects of BaSO_4, CaCO_3 on mechanical properties, hydrolysis -aging resistance and thermostabity of TPU were studied. The results revealed that adding BaSO_4 to TPU, the mechanical properties and maintenance of mechanical properties in 25℃air or 80℃water showed a trend from ascent to descent, while water absorptivity in 25℃air or 80℃water and melt flow index were decreased. Adding CaCO_3 to TPU, the mechanical properties were firstly increased then decreased, water absorptivity in 25℃air or 80℃water and melt flow index were decreased, maintenance of mechanical properties in 25℃air or 80℃water were increased. When the content of CaCO_3 achieved 20%wt, the hydrolysis-aging resistance got the best effect, while the mechanical properties were decreased compared with pure TPU. The TGA results indicated that adding BaSO_4 or CaCO_3 both decreased the thermo-stability of TPU.
     Fourthly, the effects of different hydrolysis resistance agents on the balance torque of TPU were investigated. The results showed that the processing properties of TPU were decreased by PCD while improved in the presence of SEBS-g-MAH, epoxy compouds and inorganical filler.
引文
[1]李绍雄,刘益军.聚氨酯树脂及其应用[M].北京:化学工艺出版社, 2002: 266–274.
    [2]黄茂松. TPU和PUE原材料发展近况[J].聚氨酯, 2007, 6(7): 77–88.
    [3]黄茂松.聚氨酯弹性体国内市场与技术进展浅析[J].化工新型材料, 2006, 34(1): 1–4.
    [4]樊敏,陈金周,刘雪莹,等. PP/EPDM–g–MAH/TPU共混物流变行为的研究[J].塑料工业, 2004, 32(11): 43–45.
    [5] Lu Q W, W.Macosko C. Comparing the compatibility of various functionalized polypropylenes with thermoplastic polyurethane (TPU) [J]. Polymer, 2004, 45(6): 1981–1991.
    [6]刘玉坤,谭晓莉,陈金周,等. TPU增韧PP共混材料的力学性能[J].包装工程, 2007, 28(9): 39–41.
    [7] Bajsic E G, Smit I, Leskovac M. Blends of thermoplastic polyurethane and polypropylene. I. mechanical and phase behavior [J]. Journal of applied polymer science, 2007, 104(6): 3980–3985.
    [8]马晓峰,朱国强,李新法,等. PA6/TPU共混物的力学性能研究[J].塑料工业, 2008, 36(5): 19–21.
    [9]李新法,马丽,马晓峰,等. PA6/TPU共混物的结构与性能[J].塑料工业, 2007, 35(10): 39–41.
    [10]张淑玲,王贵宾,姜振华,等. PA1010/TPU共混物流变性能的研究[J].弹性体, 2005, 15(2): 40–43.
    [11] Zhang S L, Wang D, Guan S W, et al. Toughing mechanism of PA1010/ester–based TPU blends [J]. Materials letters, 2007, 61(1): 267–273.
    [12] Li W L, Liu J L, Hao C W, et al. Interaction of thermoplastic polyurethane with polyamide 1212 and its influence on the thermo and mechanical properties of TPU/PA1212 blends [J]. Polymer engineering and science, 2008, 48(2): 249–256.
    [13]邬素华,文志红,赵铭山.聚甲醛/热塑性聚氨酯弹性体共混增韧的研究[J].中国塑料, 1999, 11(13): 39–43.
    [14]刘鹏波,徐闻,范萍,等.热塑性聚氨酯弹性体对聚甲醛结晶行为的影响[J].高分子材料科学与工程, 2005, 3(21): 137–140.
    [15] Kawaguchi K, Tajima Y. Interfacial reaction and its influence on phase morphology and impact properties of modified–polyacetal/thermoplastic polyurethane blends [J]. Journal of applied polymer science, 2006, 6(100): 4375–4382.
    [16] Cheng Z G, Wang Q. Morphology control of polyoxymethylene/thermoplastic polyurethane blends by adjusting their viscosity ratio [J]. Polymer international, 2006, 9(55): 1075–1080.
    [17]刘春林,周如东,吴盾,等. TPU增韧改性POM的研究[J].聚氨酯工业, 2008, 23(4): 12–15.
    [18]谢刚,耿凯,王鹏,等.聚甲醛/热塑性聚氨酯弹性体共混增韧的研究[J].黑龙江大学自然科学学报, 2008, 25(2): 163–165.
    [19]程振刚,王琪.热塑性聚氨酯弹性体改性聚甲醛的研究[J].四川大学学报,2006, 38(5): 107–111.
    [20] Gao X L, Qu C, Fu Q. Toughening mechanism in polyoxymethylene/thermoplastic polyurethane blends [J]. Polymer international, 2004, 53(11): 1666–1671.
    [21] Palaninivelu K, Balakrishnan S, Rengasamy P. Thermoplastic polyurethane toughened polyacetal blends [J]. Polymer testing, 2000, 19(1): 75–83.
    [22] Gao X L, Qu C, Zhang Q, et al. Brittle–ductile transition and toughing mechanism in POM/TPU/CaCO3 ternary composites [J]. Macromolecular materials and engineering, 2004, 289(1): 41–48.
    [23] Holden G, Legge N R.热塑性弹性体[M].北京:化学工艺出版社, 2000: 148–149.
    [24] Nikos K, Kalfoglou. Properties composition dependency of polyurethane poly (vinyl chloride) polyblends [J]. Journal of applied polymer science, 1981, 26(3): 823–831.
    [25] June K S, Kim B K, Jeong H M. Dynamic mechanical properties of poly (vinyl chloride) and polyurethane carboxylate blends [J]. Journal of applied polymer science, 1994, 51(13): 2187–2190.
    [26] Ann T O, Han K T, Jeong H M, et al. Miscibility of thermoplastic polyurethane elastomers with chlorine–containing polymers [J]. Polymer international, 1992, 29(2): 115–120.
    [27] Kim Y, Ha C S, Cho W J. Dynamic mechanical and morphological studies on the compatibility of platicized PVC/thermoplastic polyurethane blends [J]. Journal of applied polymer science, 1999, 71(3): 415–422.
    [28] Pielichowski K, Hamerton I. Compatible poly (vinyl chloride)/chlorinated polyurethane blends: thermal characteristics [J]. European Polymer journal, 2000, 36(2): 171–181.
    [29]郑昌仁,祝元龙,殷敬华. HPVC/TPU共混物相容性研究[J].高分子材料科学与工程, 1998, 14(5): 78–81.
    [30]叶成兵,张军.热塑性聚氨酯与聚氯乙烯共混研究进展[J].中国塑料, 2003, 17(10): 1–5.
    [31] Ha C S, Kim Y, Lee W K, et al. Fracture toughness and properties of plasticized PVC and thermoplastic polyurethane blends [J]. Polymer, 1998, 39(20): 4765–4772.
    [32]方少明,陈志军,李淑勉,等. PVC/TPU/SBS–g–MMA共混体系研究[J].中国塑料, 1999, 13(5): 31–34.
    [33]叶成兵,张军,周圣中.热塑性聚氨酯与聚氯乙烯共混改性研究[J].中国塑料, 2004, 18(8): 48–52.
    [34]陆波,亢萍. TPU增韧改性PBT的研究[J].塑料工业, 2005, 33(1): 14–17.
    [35] Palanivelu K, Sivaraman P, Reddy M D. Studies on thermoplastic polyurethane toughened poly (butylene terephthalate) blends [J]. Polymer testing, 2002, 21(3): 345–351.
    [36]孙清,郑昌荣,吴石山,等. TPU改性PC的研究[J].高分子材料科学与工程, 1999, 15(3): 139–141.
    [37]郑昌荣,孙清,李洪. PC/TPU合金的断裂韧性[J].高分子材料科学与工程, 1998, 14(6): 132–134.
    [38]杨建军,李增滋. TPU/ABS塑料合金的研制[J].塑料工业, 1994, 4(1): 13–16.
    [39]陈红祥,郑茂盛,孙红英,等.聚苯硫醚/聚氨酯共混材料的相容性和性能[J].高分子材料科学与工程, 2007, 5(23): 120–123.
    [40]罗欣,苏玉峰,武德珍,等. TPU/EPDM共混体系相态与力学性能的研究[J].中国塑料, 2003, 2(17): 39–42.
    [41]陈建国,姜宏伟.硫酸钡填充热塑性聚氨酯弹性体的热性能研究[J].中国塑料, 2006, 20(12): 39–43.
    [42]付青存,陈晓峰,宋文生.热塑性聚氨酯弹性体/氢氧化铝纳米复合材料制备与性能[J].弹性体, 2008, 18(2): 12–15.
    [43] Pinto U A, Visconte L L Y, Gallo J, et al. Flame retardancy in thermoplastic polyurethane elastomers (TPU) with mica and aluminum trihydrate (ATH) [J]. Polymer degradation and stability, 2000, 69(3): 257–260.
    [44] Dan C H, Lee M H, Kim Y D. Effect of clay modifiers on the morphology and physical properties of thermoplastic polyurethane/clay nanocomposites [J]. Polymer, 2006, 47(19): 6718–6730.
    [45] Zou H, Ran Q P, Wu S S, et al. Study of nanocomposites prepared by melt blending TPU and montmorillonite [J]. Polymer composites, 2008, 29(4): 385–389.
    [46] Pizzatto L, Lizot A, Fiorio R, et al. Synthesis and characterization of thermoplastic polyurethane/nanoclay composites [J]. Materials science and engineering. C, 2009, 29(2): 474–478.
    [47] Chavarria F, Paul D R. Morphology and properties of thermoplastic polyurethane nanocomposites: effect of organoclay structure [J]. Polymer, 2006, 47(22): 7760–7773.
    [48] Meng X Y, Du X H, Wang Z, et al. The investigation of exfoliation process of organic modified montmorillonite in thermoplastic polyurethane with different molecular weights [J]. Composites Science and Technology, 2008, 68(8): 1815–1821.鹿海军,马晓燕,梁国正.累托土/热塑性聚氨酯弹性体复合材料的制备与性能[J].复合材料学报, 2003, 20(5): 57–60.
    [50]马晓燕,鹿海军,梁国正,等.累托石粘土/热塑性聚氨酯弹性体纳米复合材料的研究[J].高分子学报, 2003, (1): 62–66.
    [51]赵燕,卿宁.纳米SiO2对聚氨酯的改性研究进展[J].中国皮革, 2008, 37(11): 31–34.
    [52]马晓燕,鹿海军,梁国正,等.炭黑填充热塑性聚氨醋弹性体混炼工艺的研究[J].橡胶工业, 2002, 49(11): 685–688.
    [53] Chen C H, Mao C F, Tsai M S, et al. Influence of surface modification on the dispersion of nanoscale a–Al2O3 particles in a thermoplastic polyurethane matrix [J]. Journal of Applied Polymer science, 2008, 11(1): 237–243.
    [54] Bourbigot S, Turf T, Bellayer S, et al. Polyhedral oligomeric silsesquioxane as flame retardant for thermoplastic polyurethane [J]. Polymer Degradation and Stability, 2009, 94(8): 1230–1237.
    [55] Nguyen D A, Lee Y R, Raghu A V, et al. Morphological and physical properties of a thermoplastic polyurethane reinforced with functionalized graphene sheet [J]. Polymer international, 2009, 58(4): 412–417.
    [56] Baral D, De P P, Nando G B. Thermal characterization of mica–filled thermoplastic polyurethane composites [J]. Polymer degradation and stability, 1999, 65(1): 47–51.
    [57] Pinto U A, Visconte L L Y, Nunes R C R. Mechanical properties of thermoplastic polyurethane elastmers with mica and aluminum trihydrate [J]. European polymer journal, 2001, 37(9): 1935–1937.
    [58]刘凉冰.聚氨酯弹性体耐水性能[J].弹性体, 1995, 5(3): 39–46.
    [59]刘凉冰.聚氨酯的化学降解及其性能[J].聚氨酯工业, 2001, 16(2): 5–8.
    [60]张启卫,章勇化,熊红兵,等.热塑性聚氨醋弹性体的增硬与耐水性[J].合成橡胶工业, 2003, 26(3): 162–164.
    [61]骆永标,庞德光,李方俊.颗粒填料对聚氨酯弹性体耐水解性能的影响[J].液压与气动, 2005, (6): 60–63.
    [62] Thompson D G, Osborn J C, Kober E M, et al. Effects of hydrolysis–induced molecular weight changes on the phase separation of a polyester polyurethane [J]. Polymer degradation and stabilty, 2006, 91(12): 3360–3370.
    [63] Pegorettia A, Fambri L, Penati A, et al. Hydrolytic resistance of model poly (ether urethane ureas) and poly (ester urethane ureas) [J]. Journal of applied polymer science, 1998, 70(3): 557–586.
    [64] Boubakri A, Elleuch K, Guermazi N, et al. Investigations on hygrothermal aging of thermoplastic polyurethane material [J]. Materials and design, 2009, 30(10): 3958–3965.
    [65]谢飞,刘宗惠,魏德卿.聚碳化二亚胺研究进展[J]. 2001, 17(2): 5–8.
    [66] Williams A, Ibrahim T. Carbodiimide chemistry: recent advance [J]. Chemical reviews, 1981, 81(6): 590–636.
    [67]朱玉璘,王淑荣.聚氨酯橡胶水解稳定剂–环氧化合物[J].合成橡胶工业, 1990, 13(2): 133–137.
    [68] Huh D S, Cooper S L. Dynamic mechanical properties of polyurethane block polymer [J]. Polymer engineering and science, 1971, 11(5): 369–375.
    [69]李利民,李文刚,黄象安.热处理对热塑性聚氨酯性能及微相分离影响的情况[J].聚氨酯工业, 2004, 19(1): 9–11.
    [70] Posthumus W, Derksen A J, Goorbergh J A M V D, et al. Crosslinking by polycarbodiimides [J]. Progress in organic coating, 2007, 58(3): 231–236.
    [71] Mikolajczyk M, Kielbasinski P. Recent developments in carbodiimide chemistry [J]. Tetrahedron, 1981, 37(2): 233–284.
    [72]杜启玟,周持兴.哈克转矩流变仪在聚合物加工中的应用[J].实验室研究与探索, 2004, 23(7): 46–47.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700