在线紫外—可见光谱研究苯胺及其衍生物的电化学共聚和共聚产物的表征及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
尽管聚苯胺具有原料价格低、合成简单、导电率高、耐高温及抗氧化性好、环境稳定性好和优异的氧化还原反应可逆性能等优点,并在许多方面获得了应用和产业化。但是,人们对聚苯胺的结构、特性、合成、掺杂、改性、用途等方面的认识还有待进一步深入。目前在聚苯按研究和开发中主要存在以下两个问题,它们使聚苯胺的应用受到了一定的限制。首先,由于聚苯胺骨架链中存在良好的共轭性,同时聚苯胺中相近聚合物链上的氨基和亚胺其之间存在较强的氢键,使得聚苯胺不能很好地溶于有机溶剂中和具有较高的脆性而难于加工。其次,聚苯胺及其衍生物的性质与聚合方式和聚合条件有密切的关系,尤其是它们的内部结构、表面形貌、导电性和电化学性质均与合成过程中的单体溶度、电解方式、电位高低、电流大小、反应体系中的酸度和介质有着密切的关系。造成此现象的原因直到现在还无明确的结论,这主要是因为苯胺的聚合反应机理可能比人们现在掌握的情况要复杂,目前尚无明确的定论。因此针对这两个问题的研究是这一领域的热点之一。共聚是解决前一个问题的重要方法之一;而后一个问题的解决则要依赖许多现代测试技术和手段;同时,共聚也是深入研究苯胺聚合机理的重要途径。因此,本论文试图用在线紫外-可见光谱较系统地跟踪研究苯胺及其衍生物的共聚过程,并对聚合物和共聚物进行表征,提出一些有关苯胺聚合机理方面的信息;用此测试技术也研究了聚合物和共聚物的电变色性质;并对邻甲基苯胺和对苯二胺共聚物上纳米铂粒子负载情况及其它对甲醇电催化氧化的情况进行了研究,得到了一些有意义的结果。论文的主要内容如下:
     1.电聚合苯胺过程的在线紫外-可见光谱
     用在线紫外-可见光谱电化学的方法在对0.5mol/L硫酸水溶液中苯胺在ITO导电玻璃电极上的电化学聚合的过程进行了较详细的研究。结果表明在循环伏安条件下苯胺发生了电聚合,聚合的速率与苯胺的浓度成正关系;而且在线紫外-可见电化学光谱表明在0.01 mol·dm~(-3)苯胺溶液的电聚合过程的诱导期较长。恒电位条件下的在线紫外-可见电化学光谱显示苯胺浓度为0.05 mol·dm~(-3),电位为0.8 V时,在ITO电极上苯胺低聚合物中间体可能产生于聚苯胺形成之前;而0.01mol·dm~(-3)苯胺在0.8 V电位下不发生聚合,但在线紫外-可见光谱又显示此时在电极上可能存在苯胺小的低聚物的中间体;在线紫外-可见光谱表明这种中间体是可能产生并存在电极表面上的。
     2.在线紫外-可见光谱研究ITO导电玻璃电极上苯胺与对苯二胺的电化学共聚及其产物的表征
     苯胺与对苯二胺在ITO导电玻璃上发生了电化学共聚合,在0.5 mol·dm~(-3)H_2SO_4水溶液的纯苯胺和苯胺与对苯二胺共聚时的循环伏安曲线以及其对应的在线紫外-可见光谱表明对苯二胺的加入除了发生共聚外,也使聚合的速率明显加快;而且纯苯胺在循环伏安电化学聚合时在430nm处出现的吸收带因对苯二胺的加入而消失,说明对苯二胺的加入使聚合的机理与纯苯胺的聚合机理有明显不同,主要原因是苯胺产生的反应中间体可能很快与对苯二胺的阳离子自由基反应聚合。在导电玻璃ITO上的聚合物膜的反射傅立叶红外光谱表明,对苯二胺的加入可能产生了具有1,2取代模式结构,这说明了对苯二胺结合进入到聚合物中。这种共聚使得产物的表面形貌也发生了变化,聚合物扫描电镜图表明对苯二胺的加入有利于纤维状的表面形貌产生,纤维的直径可达到50nm粗细;同时用在线紫外-可见光谱研究了纯聚苯胺和共聚物随电位变化的电变色性质,结果表明在0 V-0.6 V之间共聚物与纯聚苯胺的在线紫外-可见光谱有明显的不同,且共聚物的电变色可逆性比纯聚苯胺好;同时SEM图也表明在0.8 V电位下聚苯胺和共聚物表面形貌发生了团聚。
     3.恒电位电解共聚邻甲基苯胺和对苯二胺的在线紫外光谱研究
     在0.5 mmol·dm~(-3)硫酸介质中和恒电位氧化条件下,用在线紫外-可见光谱较详细地研究了邻甲基苯胺和对苯二胺在氧化铟锡导电玻璃电极上(ITO)的电化学单聚合和共聚合反应。结果表明邻甲基苯胺和对苯二胺在ITO电极上均能发生电化学单聚合反应,反应的情况与电解电位和单体的浓度有关。当邻甲基苯胺浓度为20 mmol·dm~(-3),电解电位为0.9 V(相对于饱和的Ag/AgCl)时,在线紫外-可见光谱表明在电极表面可能产生诸如二聚体等低分子量的集聚物。在低电位0.7 V(相对于饱和的Ag/AgCl)下,电聚合200 mmol·dm~(-3)邻甲苯胺时,有明显的诱导期存在。当电解浓度较低的对苯二胺体系时,用在线紫外-可见光谱可以观察到没有发生明显的电聚合,但在ITO电极表面上可能存在有通过C-C,C-N和N-N键偶合成的二聚体等低分子量的集聚物。当对苯二胺浓度较高时,相应电聚合的在线紫外-可见光谱表明对苯二胺主要通过C-N键的偶合发生了电聚合反应。在恒电位电解的条件下,邻甲基苯胺和对苯二胺能发生电化学共聚反应。相应的在线紫外-可见光谱表明,对苯二胺的加入不但促进和加速了聚合反应,而且还结合进聚合物中形成了phenazine或类似于phenazine的环结构,此结构信息也进一步得到了聚合物的反射傅立叶变换红外光谱的支持。同时,聚合物的扫描电子显微镜(SEM),表明对苯二胺的加入不仅加速了聚合反应,而且由于对苯二胺进入聚合物的骨架引起了聚合物结晶方式的改变使表面形貌有无规则的颗粒状变成纤维状。纤维的直径100 nm左右,长度可达1000 nm。
     4.电化学共聚邻甲基苯胺和邻氨基苯甲酸和共聚物的电变色性能及其表征研究
     在0.5 mol/LH2SO4水溶液中,以ITO导电玻璃为工作电极,用恒电位电解的方法,在0.9 V电位下电化学共聚邻甲基苯胺和邻氨基苯甲酸。本文涉及的电化学聚合均用在线紫外—可见光谱进行跟踪,结果表明电化学共聚随着反应体系中邻氨基苯甲酸的浓度的增加而变慢;同时,在电化学聚合过程中的电流—时间瞬时响应曲线表明聚邻甲基苯胺和共聚物均可能是以三维累积成核的方式沉积在ITO导电玻璃电极上。所得的均聚物和共聚物均用FTIR、扫描电镜和光谱电化学进行表征,扫描电镜图表明由从200mmol·dm~(-3)OT/50 mmol·dm~(-3) AA和150mmol·dm~(-3) OT/50 mmol·dm~(-3) AA反应体系得到的共聚物的表面形貌具有小颗粒和较为致密的表面形貌。共聚物膜具有比聚邻甲基苯胺更好的电变色性能,尤其它的响应时间要比聚邻甲基苯胺的短。
     5.循环伏安法电化学共聚邻甲基苯胺和对苯二胺及其共聚物负载铂纳米粒子的应用研究
     在0.5 M H_2SO_4中,用循环伏安法能使邻甲基苯胺和对苯二胺在金属铂上发生电化学共聚。不同浓度邻甲基苯胺和对苯二胺混合体系的循环伏安图表明对苯二胺和邻甲基苯胺可能形成了较高活性的反应中间体,导致了对苯二胺能加速电化学的聚合反应。聚合物和共聚物的傅立叶变换红外光谱和紫外-可见光谱说明对苯二胺进入了聚合物的骨架中,可能形成了具有phenazine的环结构的结构单元。对苯二胺与邻甲基苯胺的共聚可能使共聚物显现出更好的电子离域结构。聚合物的扫描电镜图表明共聚物的表面形貌与共聚体系中随着对苯二胺的浓度增加而变得更为疏松多孔的小颗粒状。用循环伏安法获得的聚合物膜在不含单体的0.5 mol·dm~(-3)H_2SO_4中的电化学活性实验结果表明与均聚物相比共聚物具有更多的电化学活性位。无论是均聚物还是共聚物均对对苯二酚的电化学氧化还原具有明显的催化作用;而与对苯二胺相关的活性位可能因结构上的位阻作用而不参与对苯二酚的电化学氧化还原。聚邻甲基苯胺和邻甲基苯胺与对苯二胺共聚物的还原态均能与氧气发生氧化还原反应,而且共聚物与氧气的作用要比均聚物的快。导致这种情况的主要原因可能是共聚物表面粗糙和内部多孔性造成的。SEM、EDAX和透射电镜(TEM)表征的结果表明:通过电化学的方法能方便地将铂金属以纳米粒子的形式负载到聚邻甲基苯胺和邻甲基苯胺与对苯二胺共聚物上,而且在共聚物上的铂粒子更小,约在25nm以下。这说明了铂粒子在共聚物较为粗糙的表面上和多孔结构中不易团聚,有利于小颗粒的铂粒子生成。负载有铂纳米粒子的聚邻甲基苯胺和邻甲基苯胺与对苯二胺共聚物均对甲醇具有比裸铂电极更好的电催化氧化活性。由于在共聚物上的铂粒子更小,所以其在电催化氧化甲醇过程中可能不易中毒。
     6.间甲基苯胺电化学聚合以及它与对苯二胺电化学共聚的原位紫外—可见光谱
     在0.5 mol·dm~(-3)硫酸介质中,循环伏安法电解间甲苯胺的原位紫外可见光谱图表明聚间甲基苯胺产生在氧化铟锡(ITO)导电玻璃电极表面上。在恒电位条件下,用原位紫外-可见光谱较详细地研究了间甲基苯胺在氧化铟锡导电玻璃电极上(ITO)的电化学聚合。结果表明间甲基苯胺只能在较高电解电位和单体浓度足够大的条件下才能发生电化学聚合。在0.7V(相对于饱和的Ag/AgCl),0.2mol·dm~(-3)的间甲基苯胺和0.9V,20 mmol·dm~(-3)的间甲基苯的实验条件下,尽管在ITO电极上没有发生电化学均聚合,但原位紫外-可见光谱表明在电极表面上可能还形成低分子量的齐聚物。在低电位0.8 V下,电化学聚合200 mmol·dm~(-3)间甲苯胺时,有明显的诱导期存在。在恒电位电解的条件下,相应的原位紫外-可见光谱和聚合物的FTIR表明间甲基苯胺和对苯二胺能发生电化学共聚反应,由于对苯二胺可能与间甲基苯胺形成了具有较强反应活性的中间体,使得对苯二胺的加入不但促进和加速了聚合反应,而且还结合进聚合物中形成了phenazine或类似于phenazine的环结构。通过比较邻甲基苯胺和间甲基苯胺在同等条件下电化学聚合的在线紫外-可见光谱、电流时间瞬时曲线和聚邻甲基苯胺与聚间甲基苯胺的表面形貌图,可以得出尽管这两个聚合物的链结构一样,但它们的表面形貌和聚合物表面与相应单体发生作用的反应活性是不一样的。
For more than 30 years,Polyaniline,as a very hopeful conducting polymers withmany potential advanced applications,have attracted considerable attention due to itsrelatively easy preparation,excellent environmental stability,good acidic and electricdopability.The conductivity of polyaniline comes from its delocalizedπ-conjugatedbond,but the structure of polyaniline also leads to its lack of solubility in organicsolvents and its poor processible properties,which have restricted its practical utility.In order to overcome these difficulties,there are two important approaches employedto improve the properties of polyaniline conductive polymers:one is to polymerizesubstituted anilines such as N-substitued and aromatic ring substituted anilines usingchemical and electrochemical methods;the other is to produce some specialcopolymers between different aniline derivatives through the two methods mentionedabove.In particular,not only could the copolymerization approach tune the propertiesof copolymers by changing the ratio of different monomer concentration incopolymerization system bath;but also the structural information of copolymers andhomopolymers might be acquired through comparing the characteristics,i.e,FTIRspectra,Raman spectra,SEM images and UV-vis spectra,of copolymers with that ofhomopolymers.Further,the studies on copolymerization get more knowledge aboutthe reactivity of monomers and the mechanism of homo/copolymerization using insitu FTIR spectra,in situ UV-vis spectra,etc..For this reason,the copolymerizationbetween different aniline derivatives is being paid more and more attentionincreasingly.In this thesis,the main studies are focused on the following six topics
     1、Study on Electropolymerization of Aniline with in situ UV-VISSpectroelectrochemistry
     The mechanism of the electro-polymerization of aniline in 0.5M sulfuric acidwas studied in detail by in situ UV-vis spectrometry.Spectroelectrochemicalexperiments were done in a three electrode cell built with a quartz cuvette of lcmpath length.the work electrode was ITO(indium-tin oxide) conductive glassperpendicular to light path,and the counter electrode was platinum wire.OneAg/AgCl with saturated KCl served as reference electrode.All potential values in thearticle were against to the reference.The acquired in situ UV-vis spectra showed thatpolyanilines could be electropolymerized at aniline concentrations 0.01 mol·dm~(-3),0.05 mol·dm~(-3) and 0.2 mol·dm~(-3) in sulfuric acid by cyclic voltammetry.Based onin situ UV-Vis spectra corresponding to cylic potential sweep at three differentconcentration of aniline above,the plots of the relationship between absorbance at350nm and 750nm and elctrolysis time was made,which showed that the obviousinductive period in electropolymerization of aniline by cyclic voltammetry was seen for 0.01 mol·dm~(-3) aniline in 0.5 mol·dm~(-3) sulfuric acid water solution.In order tostudy how the concerntration of aniline in 0.05 mol·dm~(-3) sulfuric acid and potentialapplied ITO conductive glass electrodes effected the polymerization of aniline,In situUV-Vis spectra was recrded during electrolysis of solution by potentiostaticmethod at different concentrations of aniline in 0.5 mol·dm~(-3) sulfuric acid.Thesein situ UV-vis spectra indicated that the polymerization of aniline occurred byelectrolysis of aniline at potential 0.8V,1.0V and 1.3V when the concentration ofaniline was greater than 0.05mol/L,however at potential 0.8V,the polymerization ofaniline did not happen in 0.01mol/L of aniline.In situ UV-vis spectra at the earlierphase of aniline electropolymerization by potentiostatic way showed that the 350nmabsorbance band appeared before 750nm absorbance band.This fact proposed thatlower molecular weight oligomer intermediates during electrochemicalpolymerization of aniline might be existed and that the intermediate was brought outprior to the production of polyaniline on ITO electrode.When ITO conductive glasselectrode was placed parallel to light path,no absorbance bands were observed duringelectrolyzing 0.05 mol/L of aniline at potential 0.8V,which showed that intermediateand polymer mainly were produced on ITO conductive glass electrode.Thesephenomena was not reported up to now.When aniline concentration was 0.01mol/Land the potential applied on ITO glass conductive was 0.8V,there were onlyabsorbance band at 350nm in corresponding in situ UV-vis spectra,which showedthat the intermediates such as low molecular oligomers could be produced and existedon ITO electrode,but did not lead to form polyaniliane because of lowerconcentration of intermediate.After aniline of 0.05 mol/L in 0.5mol/L sulfuric acidwas electropolymerized by potentiostatic electrolysis at potential 0.8V for 70 minutes,the electrolysis was stopped,but in situ UV-Vis spectra were recorded continually.The red shift of absorbance band in spectra was seen,which indicated that polyanilineproduced on ITO electrode was of oxidized state and could react with anilinemonomer in solution to form polyaniline toward reduced state.
     2、Study on Electrochemical copolymerization of aniline withp-phenylenediamine on ITO electrode by in situ UV-visSpectroelectrochemistry and Characterization of the copolymer
     It was observed by in situ UV-vis spectrometry that the polymerization ofp-phenylenediamine and the electrocopolymerization between aniline andp-phenylenediamine happened by cyclic voltammetry.Experimental results showedthat the absorbance band at 430nm in in situ UV-Vis spectra disappeared because ofthe presence of p-phenylenediamine.It was a direct evidence which indicated theaddition of p-phenylenediamine changed the mechanism of theelectro-polymerization of aniline on ITO electrode in 0.5 mol/L sulfuric acid solution.FTIR spectra of films deposited on ITO electrode was obtained and showed that 1,2or 1,2,3 substituted modes could exist in the copolymer films.The SEM images of the films showed the additional p-phenylenediamine could changed markedlymorphology of films and promoted the growth of fibrous morphology with large area.The diameter of fiber in film grown on ITO electrode might reach 50nm.Theelectrochromic behaviors of polymer films were studied in detail.At the potentialranged from 0.0v to 0.6v,the in situ UV-Vis spectra of copolymer film deposited onITO electrode was obviously different from that of polyaniline film on ITOelectrode.The electrochromic reversibility of copolymer was better than that ofpolyaniline.Furthermore,SEM morphology images indicated that electrolyzingpolyaniline and copolymer on ITO electrode at 0.8V in 0.5 mol/L H2SO4 madethem aggregate.
     3、Study on Electrochemical Copolymerization of o-Toluidine withp-Phenylenediamine on ITO Electrode by in situ UV-VisSpectroelectrochemistry
     On the condition of potentiostatic electrolysis,the electropolymerization ofo-toluidine and p-phenylenediamine,and the electrocopolymerization betweeno-toluidine and p-phenylenediamine on indium-tin oxide(ITO) conductive glasselectrode was studied in detail by in situ UV-Vis spectrometry in a 0.5 mol/L sulfuricacid media.It was showed that both o-toluidine and p-phenylenediamine could beelectropolymerrized on ITO electrode,which depended on the applied electrolysispotential and the concentration of monomer.At 20 mmol/L of o-toluidine and 0.9V(vs saturated Ag/AgCl) of electrolysis potential,the polymerization did not happenwhereas the low molecule weight oligomer such as dimers could be produced on ITOelectrode.The obvious induction period was observed when elctropolymerization ofo-toluidine was performed on the 200 mmol/L o-toluidine at 0.7 V (vs saturatedAg/AgCl).At low concentration of p-phenylenediamine,in situ UV-Visspectrometry showed that the elctropolymerization of p-phenylenediamine did nothappen,but the low molecule weight oligomers such as dimers,etc could be createdon the surface of ITO electrode through C-C,C-N and N-N coupling.Theelctropolymerization of p-phenylenediamine,however,was carried out by C-Ncoupling at higher concentration of p-phenylenediamine.Furthermore,in situ UV-Visspectra indicated that the electrocopolymerization between o-toluidine andp-phenylenediamine could happen.The presence of p-phenylenediamine was not onlypromote polymerization but also accelerated polymerization.In addition,p-phenylenediamine could be incorporated into copolymer to make the copolymerhave phenazine or phenazine like cyclic structure,which was proved by thereflectance FTIR spectra of polymer and copolymer.The SEM morphology image ofpolymers obtained showed that beside accelerating polymerization,p-phenylenediamine also could change the way of nucleation for polymer to makecopolymer possess fibrous surface morphology.The diameter of copolymer fibre isabout 100 nm and the length of that reachs about 1000 nm
     4、Study on Electrocopolymerization of o-Toluidine and AnthranilicAcid,the Electochromism of Copolymers,and Characterization of theCopolymers
     The copolymers of o-Toluidine(OT) with anthranilic acid(AA) waselectrochemically synthesized on indium tin oxide (ITO) conducting glass electrodeby potentiostatic method at a potential of 0.9 V in sulfuric acid of 0.5 mole.dm-3.Theelectropolymerizaitons in the present study was followed by in situ UV-visspectrometry,which showed the rate of elecctropolymerization decreased as theconcerntration of anthranilic acid in reaction solution.The current-time transientcurve during electropolymerization indicated that poly(o-Toluidine) and copolymersmight be deposited on ITO electrode in three-dimensional progressivenucleation(3DPN).The resultant homo/copolymers was characterized using FTIR,SEM and spectroelectrochemistry.The SEMs of the copolymers from 200mmol·dm~(-3)OT/50 mmol·dm~(-3) AA and 150mmol·dm~(-3) OT/50 mmol·dm~(-3) exhibit thatcopolymers have a smaller granular compact morphology.the resultant Copolymerfilms has more distinct electrochromic properties than poly(o-Toluidine).Especially,the response time of copolymers is shorter than that of poly(o-Toluidine).
     5、Study on Copolymerization of o-Toluidine with p-Phenylenediamineon Platium Electrode by Cyclic Voltammetry,and Charatrization andApplication of Platinum Nano Particles Loaded on Copolymers
     The electrocopolymerization of o-toluidine and p-phenylenediamine occurred onplatinum electrode in the solution of 0.5 mol·dm~(-3) H_2SO_4 using cyclic voltammetry,during which the cyclic voltamgrams for different feed ratio of systems witho-toluidine and p-phenylenediamine showed the addition of p-phenylenediamine tothe solution of o-toluidine in 0.5 mol·dm~(-3) H_2SO_4 might lead to formation of morereactive intermediates.They accelerated the electrocopolymerization of o-toluidineand p-phenylenediamine.in comparison with the elctro-homopolymerization ofo-toluidine.Through FTIR and UV-vis spectra for polymer and copolymer,it wasindicated that the unit of p-phenylenediamine should be integrated into thebackbones of copolymers to form phenazine-like ring structures in the copolymers ofo-toluidine and p-phenylenediamine.These spectra also showed the delocalization ofelectron in copolymer might be better than homopoymer of toluidine.The SEMimages for copolymers clearly implied that the morphologies of copolymers wouldbecome more porous and smaller particles as the concentrations ofp-phenylenediamine in reaction system increased.By dynamic-potential scanningpolymers in 0.5 M H_2SO_4 in absence of monomers,the acquired cyclicvoltammgrams proved that the copolymers have more kinds of electrochemical activesites due to the presence of the unit of p-phenylenediamine in the backbone ofcopolymers.Both poly(o-toluidine) and copolymers could catalyzed the redox of hydroquinone electrochemically,but the cyclic voltammgrams for the electrochemicalredox of hydroquinone on polymers suggested that the active sites relative to the unitofp-phenylenediamine in the backbone of copoplymers seemed not to catalyze thisredox reaction due to steric hindrance arising from the unit ofp-phenylenediamine.Furthermore,oxygen can easily oxidized both reduced poly(o-toluidine) andcopolymers;the later were oxidized by oxygen faster than the former sincecopolymers had a more porous and rough morphology with smaller particles.It wasproved through SEM,EDAX and TEM that Nano platinum particles could be loadedon poly(o-toluidine) and the copolymer of o-toluidine and p-phenylenediamine.Inparticular,the size of nano platinum particles on the copolymer was much smallerthan on poly(o-toluidine) to reach below 25 nm,which showed that unlike onpoly(o-toluidine),the platinum particles can not aggregated easily to form largerparticles on copolymers.The nano platinum particles loaded on poly(o-toluidine) andcopolymers had better electrochemical catalytic activity toward electro-oxidation ofmethanol than bare platinum.Due to much smaller platinum particles on copolymers,they had better ability to resist poison during their electrocatalytic oxidation ofmethanol than the larger nano platinum particles on poly(o-toluidine).
     6、In situ UV-Vis Spectroelectrochemistry for Electropolymerization ofm-Toluidine and Electrocopolymerization of m-Toluidine withp-Phenylenediamine
     In a 0.5 mol·dm~(-3) sulfuric acid medium,cyclic voltammograms of m-toluidineand its corresponding in situ UV-Vis spectra indicate that the poly(m-toluidine) filmwas produced on the surface of the electrode.Under the condition of potentiostaticelectrolysis,the electropolymerization of m-toluidine on an indium-tin oxide(ITO)conductive glass electrode was studied in detail by in situ UV-Vis spectrometry.Itwas showed that m-toluidine could be electropolymerized on the ITO electrode onlyunder the condition of higher electrolysis potential and lager concentration of themonomer.At 0.2 mol·dm-3 of m-toluidine,0.7V(vs.saturated Ag/AgCl) and 20mmol·dm-3 of m-toluidine,0.9 V(vs.saturated Ag/AgCl),in situ UV-Visspectrometry indicated the polymerization did not happen whereas the low moleculeweight oligomer such as dimers could be produced on the ITO electrode.The obviousinduction period was observed when elctropolymerization of m-toluidine wasperformed in the 200 mmol·dm-3 m-toluidine at 0.8 V (vs.saturated Ag/AgCl).Furthermore,in situ UV-Vis spectra showed that the electrocopolymerizationbetween m-toluidine and p-phenylenediamine was performed.Thep-phenylenediamine might react with m-toluidine to yield more active intermediates,which not only promote polymerization but also accelerate polymerization.Inaddition,through that p-phenylenediamine could be incorporated into copolymer tomake the copolymer have a phenazine or phenazine like cyclic structure,which wasproved by the FTIR of polymers.
引文
1 刘丹丹,宁平,夏林合成材料老化与应用 2004,33(3),43
    2 Street GB.Polypyrrole:from powders to plastics.In:Skotheim TA,editor.Handbook of conducting polymers,Vol.Ⅰ.New York:Marcel Dekker;1986.p.265-91.
    3 Shirakawa,H.;Louis,E.J.;MacDiarmid,A.G.;Chiang C.K;Heeger,A.J.JChem Soc Chem Commun 1977,578
    4 Heeger,A.J.Angew Chem Int Ed 2001,40,2591
    5 Feast,W.J.Synthesis of conducting polymers.In:SkotheimTA,editor.Handbook of conducting polymers,vol.Ⅰ.NewYork:Marcel Dekker;1986.p.1-43.
    6 Kundu,K;Giri,D.Am Inst Phys 1996,105,11075-80.
    7 Hong,S.Y;Marnick,D.S.Macromolecules 1992,4652-7.
    8 MacDiarmid,A.G.JChem Soc 1986,82(1),2385
    9 Jing Xiabin;Wang Lixiang;Wang Xianhong;Geng Yanhou;Wang Fosong Acta Polymerica Sinica 2005,(5),655~663(景遐斌,王利祥,王献红,耿延候,王佛松,高分子学报,2005,(5),655~663)
    10 Barta,P.;Kugler,T.h.;Salaneck,W.R Synth.Met.,1998,93,83-87.
    11 Yang,D. Synth.Met.,2001,119,301-302.
    12 Wan,M.;Yang,J.;Zhu,C.et al.J.Thin Solid Films,1992,208,153-155.
    13 Wang,L.X.;Jing,X.B.;Wang,F.S.Synth.Met.,1989,29,E363-E370
    14 Wang Lixiang;Li Ji,Jiang Hai;Wang Xianhong;Jing Xiabin;Wang Fosong Acta Chimica Sinica,1994,52,779-783(王利祥,李季,姜海,王献红,景遐斌,王佛松,化学报,1994,52,779-783)
    15 Chiang,J.C.;MacDiarmid,A.G.Synth.Met.,1986,13,193~205
    16 MacDiarmid,A.G.;Chiang,J.C.;Richter,A.F.;Epstein,A.J.Synth Met.,1987,18,285~290
    17 Menardo,C.;Nechtschein,M.;Rousseau,A.;Travers,J.P.;Hany,P.Synth.Met.,1988, 25,311
    18 Jing Xiabin;Tang Jingsong;Wang Ying;Lei Liangcai;Wang Baochen;Wang Fosong Science in China,Ser B,1990,(1),15~20(景遐斌,唐劲松,王英,雷良才,王宝忱,王佛松,中国科学B辑1990,(1),15~20)
    19 Jing,X.B.;Tang,J.S.;Wang,Y.;Lei,L.C.;Wang,B.C.;Wang,F.S.Science in China,Ser B(Eng),1990,33(7),787
    20 Zhou Yuqing;Lei Liangcai;Jing Xiabin;Tang Jingsong;Wang Fosong;Tian Zhongqun Acta Polymerica Sinica,1992,(4),438~443(周宇清,雷良才,景遐斌,唐劲松,王佛松,田中群,高分子学报,1992,(4),438-443)
    21 Ray,A.et al.Synth.Met.1989,29,E141.
    22 Cao,Y.Synth.Met.1990,35,319.
    23 Wei,Y.;Hariharan,R.;Patel,S.A.Macromolecules 1990,23,758.
    24 Pekmez-(?)zcicek,N.;Pekmez,K.;Holze,R.;Yildiz,A.;Polym,Appl.J.Sci.2003,89,862.
    25 Shah,A.A.;R.Holze,J.Solid State Electrochem.,in press.
    26 Mortimer,R.J.;Mater,J.Chem.1995,5,969.
    27 Wei,Y.;Focke,W.W.;Wnek,G.E.;Ray,A.;MacDiarmid,A.J.;Phys,J.Chem.1989,93,495
    28 Shreepathi,S.;Hoize,R.Chem.Mater.2005,17,4078.
    29 Schemid,A.L.;Lira,L.M;C(?)rdoba de Torresi,S,.I.Electrochim.Acta.2002,47,2005
    30 Panero,S.;Prosperi,P.;Klapste,B.;Scrosati,B.;Electrochim.Acta.1986,31,1597.
    31 Geni(?)s,E.M.;Hany,P.;Santier,Ch.J.Appl.Electrochem.1988,18,751
    32 Wang,B.;Li,G.;Wang,F.J.Power Sources 1988,24,115.
    33 Boschi,T.;Di Vona,M.L.;Tagliatesta,P.;Pistoia,G.J.Power Sources 1988,24,185.
    34 Michaelson,J.C.;McEvoy,A.J.;Kuramoto,N.J.Electroanal.Chem.1990,287,191.
    35 Somasiri,N.L.D.;MacDiarmid,A.G.J.Appl.Electrochem.1988,18,92.
    36 MacDiarmid,A.G.;Yang,L.S.;Huang,W.S.;Humphrey,B.D.Synth.Met.1987,18,393.
    37 Cameron,R.E.;Clement,S.K.U.S.Patent No.5,008,041,1991.
    38 Chiang,J.C.;MacDiarmid,A.G.Synth.Met.1986,13,193.
    39 Chiang,J.C.;Macdiarmid,A.G.Synth.Met.1987,18(3),285-290.
    40 Kuzmany,H.;Sariciftci,N.S.Synth.Met.1987,18(3),353-358.
    41 Wei,Y.;Jang,G.W.;Chan,Ch.Ch.Journal of Physical Chemistry,1990,94,7716
    42 Wei,Y.;Tang,X.;Sun,Y.;Journal of Polymer Science,1989,27,2385-2396.
    43 Wei,Y.;Hariharan,R.;Patel,S.A.Macromolecules,1990,23:758-76
    44 Morales,G.M.;Llusa,M.;Miras,M.C.;Barbero,C.Polymer 1997,38,5247.
    45 Patil,R.C.;Patil,S.F.;Mulla,I.S.;Vijayamohanan,K.Polym Int 2000,49,189.
    46 Karakisla,M.;Sac_ak,M.;Erdem,E.;Akbulut,U.JAppl Electrochem 1997,27,309.
    47 Erdem,E.;Sac_ak,M.;Karakisla,M.Polym Int 1996,39,153.
    48 Dhawan,S.K.;Trivedi,D.C.JAppl Electrochem 1992,22,563.
    49 Palaniappan,S.Eur Polym J2001,37,975.
    50 Campos,T.L.A.;Kersting,D.F.;Ferreira,C.A.Surf Coat Technol 1999,122,3.
    51 Kuo,C-T;Chen,C.H.Synth Met 1999,99,163.
    52 SrinivasanPalaniappan_;Amalraj John Polym.Sci.2008,32,732
    53 Taguchi,S.;Tanaka,T.J.Power Sources 1987,20,249.
    54 Goto,F.;Abe,K.;Okabayashi,K.;Yoshida,T.;Morimoto,H.J.Power Sources 1987,20, 243.
    55 Goto,F.;Asaoka,T.;Okabayashi,K.;Abe,K.;Yoshida,T.Denki Kagaku 1989,57,798.
    56 Daifuku,H.;Kawagoe,T.;Yamamoto,N.;Ohsaka,T.;Oyama,N.J.Electroanal.Chem. 1989,274,313.
    57 Miyazaki,K.;Sawaura,M.;Nishihama,H.Proc.Symp.“Primary and Secondary Ambient Temperature Lithium Batteries”,Electrochem.Soc.Proc.1988,88-6,762.
    58 Kanamura,K.;Kawai,Y.;Yonezawa,S.;Takehara,Z.J.Electrochem.Soc.1995,142,2894.
    59 Maeda,Y.;Katsuta,A.;Nagasaki,K.;Kamiyama,M.J.Electrochem.Soc.1995,142,2261.
    60 Wang,B.;Li,G.;Wang,F.J.Power Sources 1988,24,115.
    61 Mengoli,G.;Musiani,M.M.;Pletcher,D.;Valcher,S.J.Appl.Electrochem.1987,17,525.
    62 Mengoli,G.;Musiani,M.M.;Pletcher,D.;Valcher,S.J.Appl.Electrochem.1987,17,515.
    63 Lee,J.Y.;Ong,L.H.;Chuah,G.K.J.Appl.Electrochem.1992,22,738.
    64 Mailhe-Randolph,C.;Desilvestro,J.J.Electroanal.Chem.1989,262,289.
    65 Kitani,A.;Kaya,M.;Sasaki,K.J.Electrochem.Soc.1986,133,1069.
    66 Tsakova,V.;Milchev,A.;Electroanal,J.Chem.1993,346,85.
    67 Giz,M.J.;Albuquerque Maranha,S.L.;Torresi,R.M.Electrochem.Commun.2000,2,377
    68 Tang,Z.Y.;Liu,S.Q.;Wang,Z.X.;Dong,S.J.;Wang,E.Electrochem.Commun.2000,2, 32.
    69 Zhou,H.H.;Jiao,S.Q.;Chen,J.H.;Wei,W.Z.;Kuang,Y.F.Thin Solid Films 2004,450, 233.
    70 Jiao,S.Q.;Zhou,H.H.;Chen,J.H.;Luo,S.L.;Kuang,Y.F.;Appl,J.Polym.Sci.2004,94, 1389.
    71 Zhou,H.;Wen,J.;Ning,X.;Fu,C.;Chen,J.;Kuang,Y.Synth.Met.2007,157,98-103
    72 TuncayO zyilmaz,A.;Colak,N.;Sang(?)n,M.K.;Erbil,M.;Yazic,B.Progress in Organic Coatings 2005,54,353
    73 龙晋明;王少龙;王静材料保护,2003,36(12),23.
    74 颜流水;魏洽;王承宜功能材料,2000,31(5),548.
    75 Guimard,N.K.;Gomez,N.;Schmidt,C.E.Sci.2007,32,876
    76 Ali Shah,A.;.Electrochim.Acta.2006,52,1374
    77 Malinauskas;A.;Holze,R Electrochim.Acta.1998,43(16-17),2413
    78 Lin,X.;Zhang,H.Electrochim.Acta.1996,41(13),2019
    79 Ma(?)eikien_ e,R.;Statino 1,A.;Kuodis,Z.;Niaura,G.;Malinauskas,A.Electrochem. Commun 2006,8,1082
    80 Andreas Neudeck;Andreas Petr;Lothar Dunsch Synth.Met.1999,107,143
    81 穆绍林;阔锦晴;张爱光电化学1996,2(1),54
    82 王杨勇;强军锋;井新利;姚胜化工新型材料,2003,31(3),2.
    83 冯真真;努丽燕娜;杨军 物理化学学报2007,23(3),327
    84 Yang,L.S.;Shan,Z.Q.;Hou,P.M.;Chen,W.X.;Liu,L.J.Power Sourses.1993,44,999
    85 Ogawa,M.J.Nikke Electronics,1987,12,193
    86 Osaka,T.;Ueyama,K.Chemical Industry,1989,3,31.
    87 Ren,X.;Zelenay,P.;Thomas,S.;Davey,J.;Gottesfeld,S.J.Power Sources 2000,86,111
    88 Chen,C.Y.;Yang,P.J.Power Sources 2003,123,37.
    89 Arico,A.S.;Creti,P.;Modica,E.;Monforte,G.;Baglio,V.;Antonucci,V.Electrochim. Acta.2000,45,4319.
    90 Surampudi,S.;Narayan,S.R.;Vamos,E.;Frank,H.;Halpert,G.;Laconti,A.;Prakash,G.K. S.;Olah,G.A.J.Power Sources 1994,47,377
    91 Wu,G.;Chen,Y.-S.;Xu,B.-Q. Electrochem.Commun.2005,7,1237.
    92 Shimazu,K.;Uosaki,K.;Kita,H.;Nodasaka,Y.Electroanal.Chem.1988,256,481.
    93 Watanabe,M.;Saegusa,S.;Stonelhart,P.J.Electroanal.Chem.1989,271,213.
    94 Shimazu,K.;Inada,R.;Kita,H.J.Electroanal.Chem.1990,284,523.
    95 Wu,G.;Chen,Y.-S.;Xu,B.-Q.Electrochem.Commun.2005,7,1237.
    96 Lee,J.S.;Han,K.I.;Park,S.O.;Kim,H.N.;Kim,H.Electrochim.Acta 2004,50,807.
    97 Uchida,M.;Aoyama,Y.;Tanabe,M.;Yanagihara,N.;Eda,N.;Ohta,A.J.Electrochem. Soc.1995,142,2572.
    98 Raghuveer,V.;Manthiram,A.J.Electrochem.Soc.2005,152,A 1504.
    99 Kitani,A.;Akashi,T.;Sugimoto,K.;Ito,S.Synth.Met.2001,121,1301.
    100 Liu,F.-J.;Huang,L.-M.;Wen,T.-C.;Gopalan,A.Synth.Met.2007,157,651.
    101 Kost,K.M.;Bartak,D.E.;Kazee,B.;Kuwana,T.Anal.Chem.1988,60,2379.
    102 Rajesh,B.;Thampi,K.R.;Bonard,J.-M.;Mathieu,H.J.;Xanthopoulos,N.;Viswanathan,B Chem.Commun.2003,16,2033.
    103 Wu,G.;Li,L.;Li,J.-H.;Xu,B.-Q.J.Power Sources 2006,155,118.
    104 Selvaraj,V.;Alagar,M.Electrochem.Commun.2007,9,1145.
    105 Swathirajan,S.;Mikhali,Y.M.J.Electrochem.Soc.1992,139,2105.
    106 Gang Wu *;Li Li,Jing-Hong Li;Bo-Qing Xu* Journal of Power Sources 2006,155,118
    107 Chunming Jiang;Xiangqin Lin Journal of Power Sources 2007,164,49
    108 曾幸荣;龚克成.合成材料老化及应用,2001,(4),8
    109 夏林;宁平.合成材料老化与应用,2002,31(4),15
    110 陈贻炽;尹五生,等.高分子材料科学与工程,2000,16(1),77
    111 Li,D.;Jiang,Y.;et al.Polymer,1999,40,7065
    112 李丹;蒋亚东等.功能材料(增刊),1998,10,1231
    113 汪雨明;康忠汉等.华中理工大学学报,1996,24(5),109
    114 汪雨明;蔡映等.华中理工大学学报,1995,23(9),124
    115 DeBerry,D.W.Elect rochemcal Society,1985,132(5),1022.
    116 王建雄;郭清萍;郭有军腐蚀与防护 2008,29(4),211
    117 Lu,W.K.;Elsenbaumer,R.L.;Wessling,B.Synth.Met.1995,71,2163.
    118 Wei Yen;Wang J ianguo;J ia Xinru;et al.J.Polymer,1995,36,4535.
    119 刘军喜;苏光耀;高德淑;等.J.表面技术,2005,34(1),50.
    120 Talo,A.;Passiniemi,P.;Forsen,O.Synth.Met.1997,85,1333.
    121 Wessling,B.J.Advanced Materials,1994,6,226.
    122 Herrasti,P.;Occon,P.;Ibanez,A.;Fatas,E.;Appl,J.Electrochem.2003,33,533.
    123 Herrasti,P.;Occon,P.;Appl,J.Surf.Sci.2001,172,276.
    124 DeBerry,D.W.;J.Electrochem.Soc.1985,132,1022.
    125 Iroh,J.O.;Su,W.Electrochem.Acta 2000,46,15.
    126 Martins,J.I.;Reis,T.C.;Bazzaoui,M.;Bazzaoui,E.A.;Martins,L.;Corros.Sci.2004,46, 2361.
    127 Wrobleski,D.A.;Benecewicz,B.C.;Thompson,K.G.Polymer preprints,1994,35,265~266
    128 王扬勇;强军锋;等.宇航材料工艺,2002,4,1
    129 卢华军;曾波.涂料工业,2007,37(1),30.
    130 Kobayashi,T.;Yone,Yama.H.;Tamurah.JElectroanal Chem,1984,161(2),419
    131 Mater J.Chem.,1994,13,365.
    132 Shen,P.K.;Huang,H.T.;Tseung,A.C.C.J.Electrochem.Soc.,1992,139,1840.
    133 Kang,E.T.;Neoh,K.G.;Tan,K.L.Synth.Met,1993,55-57,3514.
    134 Ferreira,M.;Constrantino,C.J.L.;Riul,Jr.A.;et al.J.Polymer,2003,44,4205-4211.
    135 Peltola,J.;Cao,Y.;Smith,P.J.Adhesives Age,1995,38,18.
    136 何天白;胡汉杰.功能高分子与新技术[M].2001.
    137 Paligova,M.;Vilcakova,J.J.Physica,2004,335(3-4),421-429.
    138 Wojdiewicz,J.L.;Fauveaux,S.Synth.Met.,2003,135-136(4),127-128.
    139 Aldissi,M.J.Academic Publishers,1993,12,1652178.
    140 吕生华;王飞;周志威化工新型材料,2008,36(4),7
    141 桂长清.电池工业,2003,8(4),163
    142 Conway,B.E.J.Electrochem Soc,1991,138(6),1539
    143 Aewatert,B.;Cygan,P.J.;Leung,F.C.J.Power Sources,2000,91,27.
    144 Kotz,R.;Carlen,M.J.Electrochim Acta 2000,45,2483
    145 Marina Mast ragostino;Catia Arbizzani;Francesca Soavi.Solid State Ionics,2002,148, 493
    146 王晓峰;解晶莹;等.电子元件与材料,2001,20(5),24
    147 Belanger Daniel;Ren Xiaoming;et al.J.Elect rochem Soc,2000,147(8),2923.
    148 Fusalba Florence;Gouerec Pascal;et al J.Elect rochem Soc,2001,148(1),1.
    149 陈宏;等.物理化学学报,2004,20,593
    150 Naoi Kat suhiko;Suemat su Shunzo;Manago Ari J.Electrochem Soc,2000,147(2),420
    151 Abell,L.;Pomfret,S.J.;Adams,P.N.Synth.Met.1997,84,127
    152 Zhang,L.;Wan,M.J.Adv Funct Mater,2003,13(10),815
    153 Zhang,Z.;Wei,Z.;Wan,M.J].Macromolecules,2002,35(16),5937
    154 Long,Y.Z.;Chen,Z.J.;Wang,N.I.;et al.J.Appl Phys Lett,2003,83(9),1863
    1 Chiang,J.C.;MacDiarmid,A.G.Synth.Met.,1986,13,193.
    2 Watanabe,A.;Mori,K.;Nakamura,Y.;Murakami,S.;Iwasaki,Y.J.Polym.Chem.1989,27, 4431.
    3 Li,X.-G;Huang,M.-R.;Lu,Y.-Q;Zhu,M.-F.J.Mater.Chem.2005,15,1343.
    4 Wei,Y.;Hariharan,R.;Patel,S.A.;Macromolecules 1990,23,758
    5 Majewski,L.A.;Grell,M.Synth.Met.2005,151,175.
    6 Argun,.A.J.;Reynolds,R.J.Mater.Chem.2005,15,1793.
    7 Sirringhaus,H.;Tessler,N.;Friend,R.H.Science 1998,280,1741.
    8 Lin,Y.;Chen,Q.;Song,L.;Hou,F.-Z.;Lu,J.-Y..Acta Chim.Sinica 2006,64(19),2015.(in Chinese)(林毅,陈奇,宋鹂,侯凤珍,陆剑英,化学学报,2006,64(19),2015.)
    9 Savitha,P.;Sathyanaryana,D.N.J.Polym.Sci.,Part A:Poly.Chem.2005,43,3040.
    10 Xin,L.-Y.;Zhang,X.G.;Zhang,G.-Q.;Schen,C.-M.J.Appl.Polym.Sci.2005,96,1539.
    11 Cotarelo,M.A.;Huerta,F.;Quijada,C.;Cases,F.;Vazquez,J.L.Synth.Met.2005,148,81.
    12 Yang,C.-H.;Yang,T.C.;Chih,Y.K.J.Electrochem.Soc.2005,152,E273.
    13 Li,X.-G.;Zhou,H.-J.;Huang,M.-R.Polymer 2005,46,1523.
    14 Manisankar,P.;Vedhi,C.;Selvanathan,G.;Somasundaram,R.M.Chem.Mater.2005,17,1722.
    15 Malinauskas,A.;Bron,M.;R Holze,.;Synth.Metals 1998,92,127.
    16 Si,S.H.;Xu,Y.J.;Nie,L.H.;Yao,S.Z.Electrochim.Acta 1995,40,2715.
    17 Mazeikiene,R.;Malinauskas,A.Synth.Metals 1998,92,259.
    18 Yang,C.-H.;Wen,T.-C.J.Appl.Electrochem.1994,24,166.
    19 Yang,C.-H.;Wen,T.-C.J.Electrochem.Soc.1994,141,2624.
    20 Tang,H.;Kitani,A.;Maitani,S.;Munemura,H.;Shiotani,M.Electrochim.Acta 1995,40,849.
    21 Lee,M.H.;Luo,Y.C.;Do,J.S.Journal of Power Sources 2005,146,340
    22 Malinauskas A.;Holze R.Electrochim Acta 1998,43,2413
    23 Lindfors,T.;Ivaska,A.;J.Electroanal.Chem.2002,535,65
    24 Cataldo,F.Eur.Polym.J.1996,32,43.
    25 Haq,A.-u.;Shah,A.;Holze R.Synth.Met.2006,156,566
    26 Rao,P.S.;Subrahmanya,S.;Sathyanarayana,D.N.Synth.Met.2002,128,311.
    27 Maz(?)eikiene,R.;Malinauskas,A.Reactive & Functional Polymers 2000,45,45
    28 Tang,H.;Kitani,A.;Miaitani,S.;Munemura,H.,Tshiotani,M.Electrochimica Acta.1995, 40,849.
    29 Li,X.-G.;Huang,M.-R.;Duan,W.;Yang,Y.-L.Chem.Rev.2002,102,2925
    30 Singh,R.;Arora,V.;Tandon,R.P.;Chandra,S.;Kumar,N.;Mansingh,A.Polymer 1997,38, 4897.
    31 Yang,C.;Chen,C.;Zeng,Y.Spectrochimica Acta Part A 2007,66,37
    32 Zhou,H.;Wen,J.;Ning,X.;Fu,C.;Chen,J.;Kuang,Y.Synth.Met.2007,157,98
    33 Hoang,H.V.;Holze,R.Chem.Mater.2006,18,1976
    34 Gorqalves,D.;Matvienko,B.;Bulhdes L.O.S.Synth.Met.1996,83,98
    1 Riul,Jr.A.;Soto,A.M.G.;Mello,S.V.;Bone,S.;Taylor,D.M.;Mattoso,L.H.C.Synth. Met.2003,132,109.
    2 Yasuda,A.;Shimidzu,T.Polym.J 1993,25,329.
    3 Cao,Y.;Andreatta,A.;Heeger,A.J.;Smith,P.Polymer 1989,30,2305.
    4 Ma,X.Y.;Shi,W.L.Microelectronic Engineering 2003,66,153.
    5 Anderson,M.R.;Mattes,B.R.;Reiss,H.;Kaner,R.B.Science 1991,252,1412.
    6 Sharma,S.K.;Misra,S.C.K.;Tripathi,K.N.J.Nonlinear Opt Phys 2003,12,39.
    7 Saxena,V.;Malhotra,B.D.Curr.Appl.Phys 2003,3,293.
    8 Thanneermalai,M.;Jeyaraman,T.;Sivakumar,C.;Gopalan,Vasudevan,A.;Wen,T.;T.C. Spectrochimica Acta Part A 2003,59,1937.
    9 Wei,Y.;Hariharan,R.;Patel,S.A.Macromolecules 1990,23,758.
    10 Pekmez-O zcicek,N.;Pekmez,K.;Holze,R.;Yildiz,A.J.Appl.Polym.Sci.2003,89,862.
    11 Sahin,Y.;Percin,S.;Sahin,M.;Ozkan,G.J.Appl.Polym.Sci.2004,91,2302.
    12 Malinauskas,A.;Bron,M.;Holze,R.Synth.Met. 1998,92,127.
    13 Savita,P.;Sathyanarayana,D.N.Polym.Int.2004,53,106.
    14 Savita,P.;Sathyanarayana,D.N.Synth.Met.2004,145,113.
    15 Tang,H.;Kitani,A.;Maitani,S.;Munemura,H.;Shiotani,M.Electrochim.Acta 1995,40, 849.
    16 Mazeikiene,R.;Malinauskas,A.Synth.Met.1998,92,259.
    17 Probst,M.;Holze,R.Macromol.Chem.Phys.1997,198,1499.
    18 Ogura,K.;Kokura,M.;Nakayama,M.J.Electrochem.Soc.1995,142,L152.
    19 Borole,D.;Kapadi,U.R.;Mahulikar,P.P.;Hundiwale,D.G.Polym.Adv.Technol.2004,15, 306.
    20 Elia,L.F.D.;Ortiz,R.L.;Marquez,O.P.;Marquez,J.;Martinez,Y.J Electrochem.Soc. 2001,148,C297.
    21 Sivakkumar,S.R.;Saraswathi,R.J.Appl.Electrochem.2004,34,1147.
    22 Genies,E.M.;Lapkowski,M.J.Electroanal.Chem.1987,236,189.
    23 Malinauskas,A.;Holze,R.Electrochim.Acta 1999,44,2613.
    24 Malinauskas,A.;Holze,R.;Besenges.B.Phys.Chem.1997,101,1859.
    25[Malinauskas,A.;Holze,R.Electrochim.Acta 1998,43,2413.
    26 Wu,M.S.;Wen,T.C;Gopalan,A.Mater.Chem.Phys.2002,74,58.
    27 Wen,T.C.;Sivakumar,C.;Gopalan,A.Electrochim.Acta 2001,46,1071.
    28 Shah,A.A.;Holze,R.Synth.Met.2006,156,566.
    29 Santhosh,P.;Sankarasubramanian,M.;Thanneermalai,M.;Gopalan,A.;Vasudevan,T.Mater Chem.Phys.2004,85,316.
    30 Bilal,S.;Holze,R.Electrochimica Acta 2007,52,5346
    31 Kumar,D.European Polymer Journal 2001,37,1721
    32 Rao,P.S.;Subrahmanya,S.;Sathyanarayana,D.N.Synth.Met.2002,128,311.
    33 Karatchevtseva,I.;Zhang,Z.;Luca,J.x;Luca,V.Chem.Mater.2006,18,4908.
    34 Kinyanjui,J.M.;Wijeratne,N.R.;Hanks,J.;Hatchett,D.W.Electrochimica Acta 2006,51, 2825
    35 Zhang,G.R.;A.J.;Wang,H.;Liu,X.L.;Lu,J.-X.Acta Polymerica Sinica 2008,47.
    36 Shreepathi,S.;Holze,R.Langmuir 2006,22,5196.
    37 Yang,H.;Bard,A.J.J.Electroanal.Chem.1992,339,423.
    38 Yoo,J.S.;Song,I.;Lee,J.H.;Park,S.M.Anal.Chem.2003,75,3294
    39 Kennedy,Glidle,B.;A.;Cunnane,V.J.J.Electroanalytical Chemistry 2007,608,22
    40 Stejskal,J.;Kratochvil,P.;(?)p(?)rkov(?)t,M.Polymer 1995,36,4135.
    41 Stejskal,J.;Trchov(?),M.;Proke(?),J.;Sapurina,I.Chem.Mater.2001,13,4083.
    42 Lu,X.;Yu,Y.;Chen,L.;Mao,H.;Zhang,W.;Wei,Y.Chem Commun 2004,1522.
    43 Mallick,K.;Witcomb M.J.,;Scurrell,M.S.European Polymer Journal 2006,42,670.
    44 Hasik,Wenda,M.;E.;Bernasik,A.;Kowalski,K.;Sobczak,J.W.;Sobczak,E.Polymer 2003,44,7809
    45 Dufour,B.;Rannou,P.;Travers,J.P.;Pron,A.Macromolecules 2002,35,6112
    46 Prokes,J.;Stejskal,J.;K(?)ivka,I.;Tobolkov(?),E.Synth.Met.1999,102,1205
    47 Sulimenko,T.;Stejskal,J.;Prokes,J.J.Colloid and Interface Science 2001,236,328
    48 Cataldo,F.Eur.Polym.J.1996,32,43.
    49 Ichinohe,D.;Muranaka,T.;Sasaki,T.;Kobayashi,M.;Kise,H.J of Polymer Science: Part A:Polymer Chemistry,1998,36,2593
    50[Ichinohe,D.;Saitoh,N.;Kise,H.Macromol.Chem.Phys.1998,199,1241.
    51 Li,X.-G.;Huang,M.-R.;Duan,W.;Yang,Y.-L.Chem.Rev.2002,102,2925
    52 Tang,H.;Kitani,A.;Maitani,S.;Munemura,H.;Shiotani,M.Electrochim.Acta 1995,40, 849.
    53 Zhang,G.-R.;Xu,C.-T.;Zhang,A.-J.;Chen,L.;Lu,J.X.Acta Chim.Sinica 2008,66, 376.
    54 Yang,C.-H.;Wen,T.-C.J.Appl.Electrochem.1994,24,166.
    55 Tang,H.-Q.;Kitani,A.;Aitani,S.;Munemura,H.;Shiotani,M.Electrochim.Acta.1995,40, 849
    56 Kulkarni,M.V.;Viswanath,A.K.European Polymer Journal 2004,40,379.
    57 Borole,D.D.;Kapadi,U.R.;Mahulikar,P.P.;Hundiwale,D.G.Spectrochimica Acta Part A 2007,66,37.
    58 Borole,D.D.;Kapadi,U.R.;Mahulikar,P.P.;Hundiwale,D.G.Materials Letters 2006,60, 2447.
    59 Tang,H.;Kitani,A.;Miaitani,S.;Munemura,H.;Tshiotani,M.Electrochim.Acta 1995,40, 849.
    1 Wu, M-S.; Wen, T-C.; Gopalan, A. Mater Chem Phys 2002, 74, 58.
    
    2 Camalet, JL.; Lacroix, JC.; Aeiyach, S.; Chane-ching, K.; Lacaze, PC. Synth Metal 1998, 95,133.
    
    3 Salaneck, WR.; Huang, WS.; Lundstrom, I.; MacDiarmid, AG. Synth Metal 1986,13,291.
    
    4 Paul, EW.; Ricco, AJ.; Wrighton, WS. J Phys Chem 1985, 89,1441.
    
    5 MacDiarmid, AG.; Chiang, J.; Halpern, M.; Wu, WS.; Somasiri, NLD.; Yaniger, SI. Mol Cryst Liq Cryst 1985,121, 375.
    
    6 Oyama, N.; Ohsaka, T. Synth Met 1987,18, 375.
    
    7 Carlin, CM.; Kepley, LJ.; Bard, AJ. J Electrochem Soc 1985,132, 353.
    
    8 Lofton, EP.; Thackeray, JW.; Wrighton, MS. J Phys Chem 1986, 90, 6080.
    
    9 Chao, S.; Wrighton, MS. J Am Chem Soc 1987, 109, 6672.
    
    10 Mortimer, R. J. Chem. Soc. Rev. 1997,26, 147.
    
    11 Novak, P.; Mueller, K.; Santhanam, K. S. V.; Haas, O. Chem. Rev. 1997, 97, 207.
    
    12 MacDiarmid, A. G. Angew. Chem., Int. Ed. 2001, 40, 2581.
    
    13 Pouget, J. P.; Oblakowski, Z.; Nogami, Y.; Albouy, P. A.; Laridjani, M.; Oh, E. J.; Min, Y.;MacDiarmid, A. G.; Tsukamoto, J. Synth. Met. 1994, 65, 131.
    
    14 Kitani, A.; Yano, J.; Sasaki, K. J Electroanal Chem 1986, 209,227.
    
    15 Edelson, E. Popular Science 1990(June), 90.
    
    16 Krishnamoorthy, K.; Contractor, A. Q.; Kumar, A. Chem. Commun. 2002, 240.
    
    17 Salavagione, H. J.; Miras, M. C.; Barbero, C. J Am Chem Soc 2003, 25, 5290.
    
    18 Heeger, A. J. Angew Chem Int Ed 2001, 40, 2591.
    
    19 Yue, J.; Epstein, A. J. J. Am Chem Soc 1990, 112, 2800.
    
    20 Yue, J.; Gordon, G.; Epstein, A. J. Polymer 1992, 33, 4410.
    
    21 Salavagione, H.; Morales, G. M.; Miras, M. C.; Barbero, C. Acta Polym 1999, 1, 40.
    
    22 Cattarin, S.; Doubora, L.; Mengoli, G.; Zotti, G. Electrochim. Acta 1988, 33, 1077.
    
    23 Punkka, E.; Laakso, K.; Stubb, H.; Levon, K.; Zheng, W.Y. Thin Solid Films 1994, 243, 515.
    
    24 Chan, H.S.O.; Ho, P.K.H.; Ng, S.C.; Tan, B.T.G.; Tan, K.L. J. Am. Chem. Soc. 1995, 117,8517.
    
    25 Watanabe, A.; Mori, K.; Iwabuchi, A.; Iwasaki, Y.; Nakamura, Y. Macromolecules 1989, 22,3521.
    
    26 Wei, Y.; Hariharan, R.; Patel, S.A. Macromolecules 1990,23, 758.
    
    27 Pekmez-O ¨ zcicek, N.; Pekmez, K.; Holze, R.; Yildiz, A. J. Appl. Polym. Sci. 2003, 89, 862.
    
    28 Sahin, Y.; Percin, S.; Sahin, M.; Ozkan, G. J. Appl. Polym. Sci. 2004, 91, 2302.
    
    29 Malinauskas, A.; Bron, M.; Holze, R. Synth. Met. 1998,92, 127,
    
    30 Savita, P.; Sathyanarayana, D.N. Polym. Int. 2004, 53, 106.
    
    31 Savita, P.; Sathyanarayana, D.N. Synth. Met. 2004, 145, 113.
    
    32 Tang, H.; Kitani, A.; Maitani, S.; Munemura, H.; Shiotani, M. Electrochim. Acta 1995, 40, 849.
    
    33 Mazeikiene, R.; Malinauskas, A. Synth. Met. 1998, 92, 259.
    
    34 Mav, I.; Zigon, M.; Vohlidal, J. J Macromol Symp 2004, 212, 307.
    
    35 Kumar, D. European Polymer Journal 2001, 37, 1721.
    
    36 Salvagione, HJ.; Acevedo, DF.; Miras, MC.; Motheo, AJ. J Polym Sci 2004, 42, 5587.
    
    37 Nateghi, M.R.; Borhani, M. Reactive & Functional Polymers 2008, 68, 153.
    
    38 Ayad M.M.; Salahuddin, N.A.; Abou-Seif, A.K.; Alghaysh, M.O. European Polymer Journal 2008, 44, 426.
    
    39 Chan, H.S.O.; Ng, S.C.; Sim, W.S.; Tan, K.L.; Tan, B.T.G. Macromolecules 1992, 25, 6029.
    
    40 Jiang, L.; Xie, Q.J.; Yang, L.; Yang, X.Y.; Yao, S.Z. J. Colloidal Interface Sci. 2004,274,150.
    
    41 Malinauskas A.; Holze R. Electrochim Acta 1998, 43, 2413.
    
    42 Lindfors, T.; Ivaska, A. J. Electroanal.Chem. 2002, 535, 65.
    
    43 Pawar, P; Gaikwad, A.B.; Patil, P.P. Electrochimica Acta 2007, 52, 5958.
    
    44 Johnson, B.J.; Park, S.M. J. Electrochem. Soc. 1996, 143, 1277.
    
    45 Shim, Y.B.; Won, Park, M.S.; S.M. J. Electrochem. Soc. 1990, 137, 538.
    
    46 Zimmermann, A.; Kunzelmann, U.; Dunsch, L. Synth. Met. 1998, 93, 17.
    
    47 Ginder, J. M.; Epstein, A. J. Phys Rev B 1990, 41, 10674.
    
    48 Stafstrom, S.; Bredas, J. L.; Epstein, A. J.; Woo, H. S.; Tanner, D. B.; Huang, W. S.;MacDiarmid, A. G. Phys Rev Lett 1987,59,1464
    
    49 Epstein, A. J.; Ginder, J. M.; Zuo, F.; Bigelow, W. R.; Woo, H. S.; Tanner, D. B.; Richter, A. F.; Huang, W. S.; MacDiarmid, A. G. Synth. Met. 1987, 18, 303
    
    50 Masters, J. G.; Sun, Y.; MacDiarmid, A. G.; Epstein, A. J. Synth Met 1994, 715, 41.
    
    51 Chan, HSO.; Ng, SC.; Sim, WS.; Tan, KL.; Tan, BTG. Macromolecules 1992, 25, 6029
    
    52 Nguyen, MT.; Diaz, AF. Macromolecules 1995, 28, 3411.
    
    53 Savitha, P.; Sathyanarayana, D.N. Synth. Met. 2004, 145, 113.
    
    54 Kaushik,K; Witcomb, M. J.; Dinsmore, A.; Scurrell, M. S.; Macromol. Rapid Commun. 2005,26,232
    
    55 Borole, D.D.; Kapadi, U.R.; Mahulikar, P.P.; Hundiwale*, D.G. Materials Letters 2006, 60,2447.
    
    56 Kulkarni, M. V.; Viswanath A. K. European Polymer Journal 2004, 40, 379.
    
    57 Hu, H.; Cadenas, J.L.; Saniger, J.M.; Nair, PK. Polym Int 1998, 45, 262
    
    58 Leclerc, M.; D'Aprano, G.; Zotti, G. Synth. Met. 1993, 55, 1527.
    
    59 Ginder, J.M.; Epstein, A.J.; MacDiarmid, A.G. Solid State Commun. 1989, 72, 987.
    
    60 Cordova, R.; Delvalle, M. A.; Arratia, A.; Gomez, H.; Schrebler, R. J. Electroanal. Chem.1994,377,75.
    
    61 Sazou, D.; Kourouzidou, M.; Pavlidou, E. Electrochim. Acta 2007, 52, 4385.
    
    62 Scharifker, B.; Hills, G. Electrochim. Acta 1983, 28, 879.
    63 Scharifker, B. R.; Hills, G. J. Eleclrochim. Acta 1983, 28, 879.
    
    64 M. Fleischmann and H. R. Thirsk, Elecwochim. Acra 1960, 2,22.
    
    65 Armstrong, R. D.; Harrison, J. A. J. Elecrrochem. Soc. 1969, 116, 328.
    
    66 Armstrong, R. D.; Fleischmann, M.; Harrison, J. A. J. Eledronnal. Chem. 1966, 11, 208.
    
    67 Hwang, B. J.; Santhanam, R.; Wu, C. R.; Tsai, Y. W. J. Solid State Electrochem. 2001, 5,280.
    
    68 Mandic, Z.; Duic, L.; Kovacicek, F. Electrochim. Acta 1997,42, 1389.
    
    69 Bade, K.; Tsakova, V.; Schultze, J. W. Electrochim. Acta 1992,37, 2255.
    
    70 S. Roth and W. Graupman, Synth. Met., 1993,55-57, 3623.
    
    71 Lei, J.; Cai, Z.; Martin, R.C. Synth. Met. 1992,46, 53.
    
    72 Kupila, E.L.; Kankare, J. Synth. Met. 1993, 55, 1402.
    
    73 Stankovie, R.; Pavlovic, O.; Vojnovic, M.; Jovanovic, S. Eur. Polym. J 1994, 30, 385.
    
    74 Schwendeman,I; Hickman,R; S(o|¨)nmez, G; Schottland,P; Zong, K;Dean M. Welsh, D. M.; Reynolds, J. R. Chem. Mater. 2002,14,3118
    
    75 M. Vuki, M. Kalaji, L. Nyholm, L.M. Peter, J.Elelectroanal. Chem. 1992,332,315.
    
    76 M. Kalaji, L. Nyholm, L.M. Peter, J. Electroanal. Chem. 1991,313, 271.
    
    77 [K. Kanamura, Y. Kawai, S. Yonezawa, Z. Takehara, J. Phys. Chem. 1994, 98 , 1311.
    
    78 J. Heinze, M. Storzbach, J. Mortensen, Ber. Bunsenges. Phys. Chem. 1987,91, 960.
    
    79 Kanamura, K.; Yonezawa, S.; Yoshioka, S.; Takehara, Z.; J. Phys. Chem. 1991,95,7939.
    
    80 Kanamura, K.; Kawai, Y.; Yonezawa, S.; Takehara, Z. J.Electrochem. Soc. 1995,142, 2894.
    
    81 Mathias, M.F.; Haas, O.; J. Phys. Chem. 1992, 96,3174.
    
    82 Albery, J.; Elliot, CM.; Mount, A.R.; J. Electroanal.Chem. 1990, 288, 15.
    
    83 Ram, M.K.; Maccioni,E.; Nicolini, C. Thin Solid Films 1997,303 ,27
    1 Salaneck,WR.;Lundstrom I.;Ranby B.Conjugated polymers and related materials Oxford: University Press;1993,65,169.
    2 Skotheim,TA.;editor.Handbook of conducting polymers vols.1&2.New York:Dekker, 1986.
    3 Lee,J.Y.;Ong,L.H.;Chuah,G.K.J.Appl.Electrochem.1992,22,738.
    4 Li,Y.;Qian,R.Synth.Met.1993,53,149.
    5 Khomenko,V.G.;Barsukov,V.Z.;Katashinskii,A.S.Electrochim.Acta 2005,50,1675.
    6 Moon,D.K.;Ezuka,M.;Maruyama,T.;Osakada,K.;Yamamoto,T.Macromolecules 1993, 26,364.
    7 Doubova,L.;Mengoli,G.;Musiani,M.M.;Valcher,S.Electrochim.Acta 1989,34,337.
    8 Mengoli,G.;Musiani,M.M;Zotti,G.;Valcher,S.J.Electroanal.Chem.1986,202,217.
    9 Kitani,A.;Akashi,T.;Sugimoto,K.;Ito,S.Synth.Met.2001,121,1301.
    10 Coutanceau,C.;Croissant,M.J.;Napporn,T.;Lamy,C.Electrochim.Acta 2001,46,579.
    11 Lai,E.K.W.;Beatttie,P.D.;Holdcroft,S.Synth.Met.1997,84,87.
    12 Ficicioglu,F.;Kadirgan,F.J.Electroanal.Chem.1997,430,179.
    13 Wang,Y.;Huang,J.;Zhang,C.;Wei,J.;Zhou,X.Electroanalysis 1998,10,776.
    14 Conn,C.;Sestak,S.;Baker,A.T.J.Unsworth,Electroanalysis 1998,10,1137.
    15 Zhang,Z.-R.;Bao,W.-F.;Liu,C.-C.Talanta 1994,41,875.
    16 Hu,C.-C.;Chen,E.;Lin,J.-Y.Electrochim.Acta 2002,47,2741.
    17 Maksimov,Y.M.;Kolyadko,E.A.;Shishlova,A.V.;Podlovchnko,B.I.Russ.J.Electrochem 2001,37,777.
    18 Hasik,M.;Drelinkiewicz,A.;Choczynski,M.;Quillard,S.;Pron,A.Synth.Met.1997,84, 93.
    19 Drelinkiewicz,A.;Hasik,M.;Kloc,M.Catal.Lett.2000,64,41.
    20 Josowicz,M.;Li,H.-S.;Domansky,K.;Baer,D.R.Electroanalysis 1999,11,10.
    21 Kang,E.T.;Ting,Y.P.;Neoh,K.G.;Tan,K.L.Synth.Met.1995,69,477.
    22 Liu,H.;Kameoka,J.;Czaplewski,D.A.;Craighead,H.G.Nano Lett.2004,4,671.
    23 Sarma,T.K.;Chowdhury,D.;Paul,A.;Chattopadhyay,A.Chem.Commun.2002,1048.
    24 Kinyanjui,J.M.;Hatchett,D.W.;Smith,J.A.;Josowicz,M.Chem.Mater.2004,16,3390.
    25 Horacio J.;Salavagione;Carlos Sanch(?)s;Emilia Morall(?)n J.Phys.Chem.C 2007,111, 12454.
    26 Gholamian,M.;Sundaram,J.;Contractor,A.Q.Langmuir 1987,3,741.
    27 Mallick,K;Witcomb,M.J.;Dinsmore,A.;Scurrell,M.S.Langmuir 2005,21,7964.
    28 Kim,Seok;Park,Soo-Jin Solid State Ionics 2008,178,1915.
    29 Hasik,M;Wenda,Ea;Bernasik,A;Kowalski,K;Sobczak,J.W.;Sobczak,E;Biela(?)ska,E. Polymer 2003,44,7809.
    30 Mallick,K.;Witcomb,M.J.;Scurrell,M.S.European Polymer Journal 2006,42,670.
    31 Wei,Y.;Jang,G.W.;Chan,C.C.;Hsueh,K.F.;Hariharan,R.;Patel,S.A.;Whitecar,C.K.J. Phys.Chem.B 1990,94,7716.
    32 Tang,H.;Kitani,A.;Maitani,S.;Munemura,H.;Shiotani,M.Electrochim.Acta 1995,40, 849.
    33 Mailhe-Randolph,C.;Desilvescro,J.J.Electroanal.Chem.Interfacial Electrochem.1989, 262,289.
    34 Desilvestro,J.;Scheifele,W.J.Mater.Chem.1993,3,263.
    35 Yang,C.H.;Wen,T.C.J.Electrochem.Soc.1997,144,2078.
    36 Wei,Y.;Jang,G.W.;Hsueh,K.F.;Hariharan,R.;Patel,S.A.;Chan,C.C.;Whitecar,C. Polym.Mater.Sci.Eng.1989,61,905.
    37 Michaelson,J.C.;McEvoy,A.J.;Kuramoto,N.React.Polym.1992,17,197.
    38 Stejskal,J.;Kratochvil,P.;Spirkova,M.Polymer 1995,36,4135.
    39 Mazeikiene,R.;Malinauskas,A.React.Funct.Polym.2000,45,45.
    40 Duic,L.;Kraljic,M.;Grigic,S.J.Polym.Sci.,Part A:Polym.Chem.2004,42,1599.
    41 Shim,Y.B.;Won,M.S.;Park,S.M.J.Electrochem.Soc.1990,137,538.
    42 Stilwell,D.E.;Park,S.M.J.Electrochem.Soc.1988,135,2254.
    43 Stilwell,D.E.;Park,S.M.J.Electrochem.Soc.1989,136,427
    44 MacDiarmid,A.G.;Chiang,J.C.;Epstein,A.J.;Richter,A.F.Synth.Met.1987,18(30),285.
    45 Wei,D.;Lindfors,T.;Kvarnstro(?)m,C.;Kronberg,L.;Sjo(?)holm,R.;Ivaska,A.J.Electroanal Chem.2005,575,19.
    46 Lindfors,T;Ivaska,A.J.Electroanal.Chem.2002,535,65.
    47 Ping,Z.;Nauer,G.E.;Neugebauer,H.;Theiner,J.JElectroanal Chem 1997,420,301.
    48 Nalwa,HS.editor.Conductive polymers:spectroscopy and physical properties.Handbook of organic conductive molecules and polymers New York:Wiley;1996.
    49 Adams,PN.;Laughlin,PJ.;Monkman,AP.;Kenwright,AM.Polymer 1996,37,3411.
    50 Gordana C.;Konyushenko,E.N.;Miroslava T.;Jaroslav S.Synth.Met.2008,158,200.
    51 Johnson,B.J.;Park,S.M.J.Electrochem.Soc.1996,143,1277.
    52 Yang,C.H.;Yang,T.C.;Chih,Y.K.J.Electrochem.Soc.2005,152(9),E273.
    53 Kulkarni,M.V.;Viswanath,A.K.European Polymer J.2004,40,379.
    54 Borole,D.D.;Kapadi,U.R.;Mahulikar,P.P.;Hundiwale,D.G.Spectrochimica Acta Part A 2007,66,37.
    55 Borole,D.D.;Kapadi,U.R.;Mahulikar,P.P.;Hundiwale,D.G.Mat.Let.2006,60,2447.
    56 Quillard,S.;Louarn,G.;Buisson,J.P.;Boyer,M.;Lapkowski,M.;Pron,A.;Lefrant,S. Synth.Met.1997,84,805.
    57 Nekrasov,A.A.;Ivanov,V.F.;Vannikov,A.V.J.Electroanal.Chem.2000,482,11.
    58 Kuo,C.T.;Chen,C.H.Synth.Met.1999,99,163.
    59 Hwang,G.W.;Wu,K.Y.;Hua,M.Y.Synth.Met.1998,92,39.
    60 Pawar,P.;Gaikwad,A.B.;Patil,P.P.Electrochimica Acta 2007,52,5958.
    61 Kulkarni, M. V.; Viswanath, A. K. European Polymer Journal 2004, 40, 379.
    
    62 Rodriguez Presa, M.J.; Bandeya, H.L.; Tucceri, R.I.; Florit, M.I.; Posadasa, D.; Hillman, A.R.Electrochimica Acta 1999, 44, 2073.
    
    63 T.F. Otero, E. Angulo, J. Rodriguez, C. Santamaria, J. Electroanal.Chem. 341 (1992) 369.
    
    64 Herod, T.E.; Schenloff, J.B. Chem. Mater. 1993, 5, 951.
    
    65 Takashima, W.; Fukui, M.; Kaneko, M.; Kaneto, K. Jpn. J. Appl.Phys. 1995, 34, 3786.
    
    66 Andrade, E.M.; Molina, F.V.; Florit, M.I.; Posadas, D. Electrochem. Solid-State Lett. 2000, 3,504.
    
    67 Maria Grzeszczuk; Roman Szostak Redox switching hysteresis in polyaniline-acetate systems: a search of molecular factors important for the dynamics of the polymer reaction Journal ofElectroanalytical Chemistry 2004, 571, 51.
    
    68 Rodriguez Presa, M.J.; Posadas, D.; Florit, M.I. J. Electroanal.Chem. 2000, 482, 117.
    
    69 Otero, T.F.; Grande, H.; Rodr_1guez, J. J. Electroanal. Chem. 1995, 394, 211.
    
    70 Otero, T.F.; Grande, H.; Rodr_1guez, J. J. Phys. Chem. B 1997,101, 3688.
    
    71 Duic', Lj.; Grigic', S. Electrochim Acta 2001, 46, 2795.
    
    72 Matveeva, E. S. Synth Met 1996, 83, 89.
    
    73 Matveeva, E. S.; Hernandez-Fuentes, I.; Parkhutik,V.; Diaz-Calleja, R. Synth Met 1996, 83,181.
    
    74 Darowicki, K.; Kawula, J. Electrochimica Acta 2004, 49, 4829.
    
    75 Hong, Sung-Young; Park, Su-Moon J. Phys. Chem. B 2007, 111, 9779.
    
    76 M.R. Tarasevich, A. Sadkowski, E. Yeager, in: B.E. Conway, J.O'.M.Bockris, E. Yeager,S.U.M. Khan (Eds.), Comprehensive Treatise ofElectrochemistry, vol. 7, Plenum Press, NewYork, 1983
    
    77 Maillard, F.; Schreier, S.; Hanzlik, M.; Savinova, E. R.; Weinkaul, S.; Stimming, U. Phys. Chem. Chem. Phys. 2005, 7, 385.
    
    78 Savinova, E. R.; Lebedeva, N. P.; Simonova, P. A.; Kryukova, G. N.Russ. J. Electrochem.2000, 36, 952.
    
    79 Cherstiouk, O. V.; Simonova, P. A.; Savinova, E. R. Electrochim. Acta 2003, 48, 3851.
    
    80 Wu, G.; Chen, Y.-S.; Xu, B.-Q. Electrochem. Commun. 2005, 7, 1237.
    
    81 Shimazu, K.; Uosaki, K.; Kita, H.; Nodasaka, Y. J. Electroanal. Chem. 1988, 256, 481.
    
    82 Watanabe, M.; Saegusa, S.; Stonelhart, P. J. Electroanal. Chem. 1989, 271, 213.
    
    83 Shimazu, K.; Inada, R.; Kita, H. J. Electroanal. Chem. 1990, 284, 523.
    
    84 Wu, G.; Chen, Y.-S.; Xu, B.-Q. Electrochem. Commun. 2005, 7, 1237.
    
    85 Lee, J. S.; Han, K. I.; Park, S. O.; Kim, H. N.; Kim, H. Electrochim. Acta 2004, 50, 807.
    
    86 Uchida, M.; Aoyama, Y.; Tanabe, M.; Yanagihara, N.; Eda, N.; Ohta, A. J. Electrochem. Soc.1995,142, 2572.
    
    87 Raghuveer, V.; Manthiram, A. J. Electrochem. Soc. 2005,152, A 1504.
    
    88 Kitani, A.; Akashi, T.; Sugimoto, K.; Ito, S. Synth. Met. 2001, 121, 1301.
    89 Liu,F.-J.;Huang,L.-M.;Wen,T.-C.;Gopalan,A.Synth.Met.2007,157,651.
    90 Kost,K.M.;Bartak,D.E.;Kazee,B.;Kuwana,T.Anal.Chem.1988,60,2379.
    91 Rajesh,B.;Thampi,K.R.;Bonard,J.-M.;Mathieu,H.J.;Xanthopoulos,N.;Viswanathan,B Chem.Commun.2003,16,2033.
    92 Wu,G.;Li,L.;Li,J.-H.;Xu,B.-Q.J.Power Sources 2006,155,118.
    93 Selvaraj,V.;Alagar,M.Electrochem.Commun.2007,9,1145.
    94 Swathirajan,S.;Mikhali,Y.M.J.Electrochem.Soc.1992,139,2105.
    95 Manoharanr,R.;Goodenough,J.B.J.Mater.Chem.1992,2,875.
    96 Vaithilingam,S.;Alagar,M.Electrochemistry Communications 2007,9,1145.
    97 Iwasita,T.Electrochim.Acta 2002,47,3663.
    98 Scheijen,F.J.E.;Beltramo,G.L.;Hoeppener,S.;Housmans,T.H.M.;Koper,M.T.M.J. Solid State Electrochem.2008,12,483.
    99 Pletcher,D.;Sotiropoulos,S.J.Chem.Soc.,Faraday Trans.1994,90,3663
    100 Liu,Z.;Ling,X.Y.;Su,X.;Lee,J.Y.J.Phys.Chem.2004,108,8234.101 Patra,S.;Munichandraiah N.Langmuir 2009,25,1732.
    102 Gholamian,M.;Sundaram,J.;Contractor A.Q.Langmuir 1987,3,741.
    1.Riul,Jr.A.;Soto,A.M.G.;Mello,S.V.;Bone,S.;Taylor,D.M.;Mattoso,L.H.C.Synth. Met.2003,132,109.
    2.Yasuda,A.;Shimidzu,T.Polym.J 1993,25,329.
    3.Cao,Y.;Andreatta,A.;Heeger,A.J.;Smith,P.Polymer 1989,30,2305.
    4.Ma,X.Y.;Shi,W.L.Microelectronic Engi.2003,66,153.
    5.Anderson,M.R.;Mattes,B.R.;Reiss,H.;Kaner,R.B.Science 1991,252,1412.
    6.Sharma,S.K.;Misra,S.C.K.;Tripathi,K.N.J.Nonlinear Opt Phys.2003,12,39.
    7.Saxena,V.;Malhotra,B.D.Curr.Appl.Phys.2003,3,293.
    8.Thanneermalai,M.;Jeyaraman,T.;Sivakumar,C.;Gopalan,Vasudevan,A.;Wen,T.;T.C. Spectrochimica Acta Part A 2003,59,1937.
    9.Wei,Y.;Hariharan,R.;Patel,S.A.Macromolecules 1990,23,758.
    10.Savita,P.;Sathyanarayana,D.N.Synth.Met.2004,145,113.
    11.Santhos,P.;Sankarasubramanian,M.;Thanneermalai,M.;Gopalan,A.;Vasudevan,T. Mater.Chem.Phys.2004,85,316.
    12.Savita,P.;Sathyanarayana,D.N.J.Polym.Sci.Part A:Polym.Chem.2005,43,3040.
    13.Proke(?),J.;Stejskal,J.;K(?)ivka,I.;Tobolkova,E.Synth.Met.1999,102,1205
    14.Sulimenko,T.;Stejskal,J.;Proke(?),J.Journal of Colloid and Interface Science 2001,236, 328.
    15.Cataldo,F.Eur.Polym..J..1996,32,43.
    16.Ichinohe,D.;Muranaka,T.;Sasaki,T.;Kobayashi,M.,Kise,H. Journal of Polymer Science Part A:Polymer Chemistry,1998,36,2593
    17.Genies,E.M.;Lapkowski,M..J.Electroanal.Chem.1987,236,189.
    18.Malinauskas,A.;Holze,R.Electrochim.Acta 1999,44,2613.
    19.Bilal,S.;Holze,R.Electrochimica Acta 2007,52,5346
    20.Kumar,D.European Polymer J.2001,37,1721
    21.Rao,P.S.;Subrahmanya,S.;Sathyanarayana,D.N.Synth.Met.2002,128,311.
    22.Karatchevtseva,I.;Zhang,Z.;Hana,J.;Luca,V.Chem.Mater.2006,18,4908.
    23.Kinyanjui,J.M;Wijeratne,N.R.;Hanks,J.;Hatchett,D.W.Electrochim.Acta 2006, 51,2825
    24.Zhang,G.R.;Zhang,A.J.;Wang,H.;Liu,X.L.;Lu,J.-X.Acta Polymerica Sinica 2008, 1,47(in Chinese)(张贵荣,张爱健,王欢,刘秀丽,陆嘉星,高分子学报,2008,1,47)
    25.Shreepathi,S.;Holze,R.Langmuir 2006,22,5196.
    26.Yang,H.;Bard,A.J.J.Electroanal.Chem.1992,339,423.
    27.Yoo,J.S.;Song,I.;Lee,J.H.;Park,S.M.Anal.Chem.2003,75,3294
    28.Kennedy,Glidle,B.;A.;Cunnane,V.J. J.Electroanalytical Chem.2007,608,22
    29.Stejskal,J.;Kratochv(?)l,P.;(?)p(?)rkov(?)t,M. Polymer 1995,36,4135.
    30.Stejskal,J.;Trchov(?),M.;Proke(?),J.;Sapurina,I.Chem.Mater.2001,13,4083.
    31.Zhang,G.-R.;Xu,C.-T.;Zhang,A.-J.;Chen,L.;Lu,J.X.Acta Chim.Sinica 2008,66, 376(in Chinese)(张贵荣,徐承天,张爱健,陈丽,陆嘉星,化学学报,2008,66,376)
    32.Li,X.-G.;Huang,M.-R.;Duan,W.;Yang,Y.-L. Chem.Rev.2002,102,2925
    33.Kulkarni,M.V.;Viswanath,A.K.European Polymer J.2004,40,379.
    34.Borole,D.D.;Kapadi,U.R.;Mahulikar,P.P.;Hundiwale,D.G.Spectrochimica Acta Part A 2007,66,37.
    35.Borole,D.D.;Kapadi,U.R.;Mahulikar,P.P.;Hundiwale,D.G.Mat.Let.2006,60,2447.
    36.Jing Xiabin(景遐斌),Wang Lixiang(王利祥),Wang Xianhong(王献红),GengYanhou(耿延候),Wang Fosong(王佛松).Acta Polymerica Sinica(高分子学报),2005(5),656

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700