熔盐电解法制备镁锂和镁锆合金研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
镁合金作为绿色工程材料,近年来备受关注。镁锂和镁锆合金在航空和宇航等工业领域具有广泛的应用。
     本论文在LiCl-KCl熔盐体系中采用熔盐电解法制备了镁锂和镁锆合金,对金属锂和锆的电沉积过程以及制备镁锂和镁锆合金的电解工艺进行了探索。
     采用循环伏安法、计时电位法、计时电流法和恒电位电解等方法在低共晶组成的LiCl-KCl熔盐体系中研究了Li~+分别在钼电极和镁电极上的电化学还原过程。研究结果表明,在熔盐体系的温度为450℃时,Li~+在钼电极上的还原是通过一步电子转移反应完成的,并且反应不可逆,Li~+的扩散系数为6.68(±0.07)×10~(-6)cm~2/s,锂在钼电极上的电沉积过程存在成核极化现象,且成核过程为瞬时成核过程;金属锂在镁电极上析出时存在去极化作用,并通过控制沉积电位制备了不同相组成的镁锂合金。
     在低温熔融LiCl-KCl电解质体系中制备镁锂合金,优化了电流密度、电解温度和电解时间等电解工艺参数,研究低温条件下制备镁锂合金的最佳工艺条件,并考察了电解装置在进行连续电解实验时的稳定性,试验结果表明采用此工艺实现镁锂合金电解的方案可行。
     由于金属Zr在镁合金中具有强烈的晶粒细化作用,本文试用熔盐电解法制备Mg-Zr合金。文中采用循环伏安法、计时电位法、计时电流法和恒电位电解等方法在K_2ZrF_6-LiCl-KCl熔盐体系中研究了Zr(Ⅳ)在钼电极、钨电极和液态镁电极上的电化学还原过程。实验结果表明Zr((Ⅳ)的还原是通过两步电子转移反应完成的,其中间产物是Zr(Ⅱ),锆在钼电极上的沉积过程也存在成核极化现象;Mg-Zr合金存在两种形成机制:(ⅰ)锆在液态镁电极上电沉积形成Mg-Zr合金;(ⅱ)会属Mg还原Zr(Ⅳ)和Zr(Ⅱ)形成Mg-Zr合金。
     利用熔盐电解法制备镁锆合金,通过研究电流密度、电解温度、电解时间及电解质浓度对Mg-Zr合金中Zr含量的影响,制备Mg-Zr合金并确定了工艺参数,即电解温度为725℃、电流密度为5.66mA/cm~2、K_2ZrF_6的浓度为5 wt.%以及电解时间为1h时,可以使制备的Mg-Zr合金中Zr的含量达到1.55%左右。
As a kind of green engineering material,Mg alloy have recently attracted great attention in academic research and industry application.Mg-Li and Mg-Zr alloys were extensively applied in the aviation and aerospace field.
     In this thesis,the Mg-Li and Mg-Zr alloys were prepared through electrolysis method in the molten LiCI-KCl eutectic.The electrodepositi.on mechanism of Li and Zr as well as the electrolysis process parameters of Mg-Li and Mg-Zr alloys were studied.
     The electrochemical behaviour of Li~+ was studied at the molybdenum and magnesium electrodes in the molten LiCl-KCl eutectic.Transient electrochemical techniques,such as cyclic voltammetry,chronoamperometry and chronopotentiometry were used in order to explore the deposition mechanism of Li.The results showed that the electroreduction of Li~+ proceeds via a single step at 450℃and the reaction is irreversible.The diffusion coefficient of Li~+ was determined to be 1.86×10~(-6)cm~2/s.Nucleation polarization was observed during the electrodeposition of Li.This nucleation is an instantaneous process.At Mg electrode,the electroreduction of Li~+ took place at a less cathodic potential values than that at Mo electrode for the depolarization of the formation of Mg-Li alloy. Two kinds of Mg-Li alloy with different phase were prepared through the controlling of electrolysis potential.
     Mg-Li alloy was prepared in the molten LiCl-KCl electrolyte at low temperature.The electrolysis process parameters such as current density, temperature and electrolysis time were optimized.The stability of the electrolysis equipment were also investigated.The results showed that the optimized electrolysis process was a practicable manufacturing scheme.
     The addition of zirconium element can significantly refine the microstructure of magnesium alloy.Molten salt electrolysis method was used to produce Mg-Zr alloy.The electroreduction process of Zr(Ⅳ) was studied in LiCl-KCl-K_2ZrF_6 melt at molybdenum,tungsten and liquid magnesium electrodes.Transient eletrochemical techniques,such as cyclic volmmetry,chronoamperometry and chronopotentiometry were used.The results showed that Zr(Ⅳ) was reduced to Zr metal by a two-step mechanism corresponding to the Zr(Ⅳ)/Zr(Ⅱ) and Zr(Ⅱ)/Zr transitions.The intermediate product was identified as Zr(Ⅱ) by X-ray diffraction. Nucleation polarization was also observed during the electroreduction process of Zr at molybdenum electrode.Two formation mechanism of Mg-Zr alloy were promoted:(ⅰ) Zirconium is electrodeposited on the magnesium electrode,and (ⅱ) Zr(Ⅳ) and Zr(Ⅱ) ions are reduced by Mg metal.
     The factors which might affect the Zr content were investigated,such as current density,temperature,electrolysis time and the K2ZrF6 concentration.The optimized electrolysis process was determined as follows:electrolyte composition: 53%KCl-42%LiCl-5%K_2ZrF_6(mass%),electrolysis temperature:998 K, electrolytic time:1 h,cathode current density:5.66 mA cm~(-2).The Zr content of Mg-Zr alloy could be as high as 1.55 wt%.
引文
[1]陈振华著.镁合金.北京:化学工业出版社,2004:50-53页
    [2]曾荣昌,柯伟,徐永波等,Mg合金的最新发展及应用前景.金属学报,2001,37(7):673-685页
    [3]李窘,孟南,张今虹.镁合金研究现状及其应用.金属材料研究,2003,29(3):34-31页
    [4]秦训鹏,华林.汽车新材料的应用现状与发展趋势.新材料产业,2002,12:22-26页
    [5]孙伯勤.镁合金压铸件在汽车行业中的巨大应用潜力.特种铸造及有色合金,1998,3:40-41页
    [6]范琦,张立波.飞速发展的镁合金工业.特种铸造及有色合金,2001,17:381-385页
    [7]訾炳涛,王辉.镁合金及其在工业中的应用.稀有金属,2004,28(1):229-232页
    [8]张同俊,李兴国.镁合金的应用和中国镁工业.材料导报,2002,16(7):11-13页
    [9]Ю.И·奥斯特罗什科等著.曾华跣译.锂的化学与工艺学.北京:中国工业出版社,1965:5-10页
    [10]李明慧,郑绵平.锂资源的分布及其开发利用.科技导报(北京),2003,12:38-41页
    [11]潘立玲,朱建华,李渝渝.锂资源及其开发技术进展.矿产综合利用,2002,2:28-33页
    [12]钟辉,周燕芳,殷辉安.卤水锂资源开发技术进展.矿产综合利用,2003,1:23-28页
    [13]郑春辉.卤水锂资源及其开发进展.盐业与化工,2006,35(6):38-42页
    [14]郑绵平,刘喜方.中国的锂资源.新材料产业,2007,8:13-16页
    [15]张文钲.世界锂业新产品.世界有色金属,1999,2:29-31页
    [16]郑绵平.我国锂工业的生产现状和发展对策.新材料产业,2004,5:32-37页
    [17]刘建军.我国锂工业的生产现状和发展对策.新材料产业,2004,5:32-37页
    [18]冀康平.锂资源的开发与利用.无机盐工业,2005,37(5):7-9页
    [19]沈祥木,王学元.离子筛法从水溶液中提锂的研究.化学学报,1981,39(8):711-717页
    [20]李丹,邓天龙,孙柏.无机离子交换法从卤水中提锂的研究进展.广东微量元素科学,2007,14(1):6-10页
    [21]乔玲,周本华,姚成.锂云母中提取锂的方法初步研究.南京工业大学学报,2004,26(5):47-49页
    [22]Б.И.科干著.李广才译.锂(第二版).北京:中国工业出版社,1962:3-8页
    [23]狄晓亮.2000安培电解槽制取金属锂优化工艺研究.中国科学院研究生院硕士学位论文.2005:4-5页
    [24]冯光熙,黄祥玉著.无机化学丛书.第一卷,稀有气体.北京:科学出版社,1984:291-302页
    [25]汪家铭.金属锂的生产应用及市场分析.无机盐工业,2007,39(3):15-17页
    [26]边延江,韩雪峰,李记太.超声波作用下金属锂诱发的芳香醛的还原偶联反应.廊坊师范学院学报,2002,18(4):66-67页
    [27]Jackson J H,Frost P D,Loonam A C,et al.Magnesium-lithium base alloys-preparation,fabrication,and general characteristics.Metals Transactions,1949,185(2):149-168P
    [28]李劲风,郑子樵,陶光勇.超轻Mg-Li合金.轻合金加工技术,2004,32(10):35-38页
    [29]乐启帜,崔建忠,李红斌等.Mg-Li合金研究最新进展及其应用.材科导报,2003,17(12):1-4页
    [30]Munroe R A.Mg-Li alloy lightens electronic packaging.Metal Progress,1966(7):89-92P
    [31]Saia A.Aerospace castings produced from Mg-Li-Si alloys.Metal Progress,1967,91(2):117-120P
    [32]狄晓亮,庞全世,李权.金属锂提取工艺比较分析.盐湖研究,2005,13(2):45-52页
    [33]Kroll W J,Schlechton A W.Reactions of carbon and metal oxides in a vacuum.Journal of The Electrochemical Society,1948,93(6):247-258P
    [34]戴永年,杨斌著.有色金属材料的真空冶金.北京:冶金工业出版社,2000:331-339页
    [35]杨斌,戴永年,王达健.金属锂的制备及应用.昆明理工大学学报,1996,21(6):42-45页
    [36]贾永忠,周园,景燕.真空热还原.蒸馏法制备高纯金属锂.无机化学学报,2001,17(5):735-740页
    [37]兰海苍,赵炜.金属锂的精制.新疆有色金属,1996,1:55-57页
    [38]兰海苍,赵炜,胡初潜等.真空蒸馏法制取高纯金属锂工业试验.稀有金属,1998,22(4):286-289页
    [39]熊炳昆等著.锆铪及其化合物应用.北京:冶金工业出版社,2002:1-24页,170-239页,250-269页
    [40]林振汉著.有色金属提取手册.锆铪.北京:冶余工业出版社,2002:3-13页.11-128页
    [41]稀有金属编写组.稀有金属应用(上册),第二版.北京:冶金工业出版社.1984:207-246页
    [42]陈增,张密林,吕艳卓等.锆在镁及镁合金中的作用.铸造技术,2007,28(6):820-822页,846页
    [43]Chang S Y,Tezuka H,Kamio A.Mechanical properties and structure of ignition-proof Mg-Ca-Zr alloys producted by squeeze casting.Material Transactions JIM,1997,38(6):526-535P
    [44]Watanabe H,Mukai T,Ishikawa K,et al.Realization of high-strain-rate superplasticity at low temperature in a Mg-Zn-Zr alloy.Materials Science and Engineering,2001,307A:119-128P
    [45]赵志远.稀土金属在铸造镁合金中的作用.材料工程,1993,12:31-34页
    [46]张波,杜文博,吴玉峰等.Zr对铸造MgZnNd3.5合金组织和性能的影响.特种铸造及有色合金,2006,26(2):74-76页
    [47]张世军,黎文献.Zr对Mg-Ce合金的晶粒大小及铸态组织性能的影响.轻合金加工技术,2003,31(2):16-18页
    [48]Onishi T,Ito T.Work-hardening and annealing characteristics of Mg-Li binary alloys.Journal of Japanese Institure of Light Metals,1989,39(1):15-20P
    [49]Lee Y C,Dahle A K,Sbjohn D H.The Role of solute in grain refinemen of magnesium.Metallurgical and Materials Transaction,2000,31A(11):2895-2906P
    [50]陈振华著.变形镁合金.北京:化学工业出版社,2005,102-104页
    [51]Tamura T,Kono N,Motegi T,et al.Grain refining mechanism and casting structure of Mg-Zr alloy.Journal of Japan Institute of Light Metals,1998,48(4):185-189P
    [52]王辅忠,李荣华,费英.Mg-Li基复合材料研究进展.材料科学与工程学报,2003,21(1):134-137页
    [53]Hori S,Fujitani W.Cold workability of Mg-Li and Mg-Li-Zr Alloys. Journal of Japanese Institute of Light Metals,1990,40(4):285-289P
    [54]余刚,刘跃龙,李瑛等.Mg合金的腐蚀与防护.中国有色金属学报,2002.12(6):1087-1098页
    [55]Song G L,David S J.The effect of zirconium grain refinement on the corrosion behaciour of magnesium-rare earth alloy MEZ.Journal of Light Metals,2002,2:1-16P
    [56]张永健,雷.杜诺德.铝从AlCl_3-NaCl-CsCl熔体中析出的电化学研究.中国政治学院学报,1986,48(2):37-43页
    [57]张永健,雷.杜诺德.氯化铝电解时铝的析出反应速度的测定.中南政治学院学报.1987,18(2):158-162页
    [58]张永健,江名喜.氯化镁电解过程中碱金属的行为.中南工业大学学报,1996,27(5):538-542页
    [59]张永健,罗亮明.镁从工业电解质熔体中析出的电化学研究.轻金属,1991,9:37-40页
    [60]张永健,罗亮明.氯化镁电解时液镁阴极析出相过程的研究.中国政治学院学报,1991,22(5):529-533页
    [61]张永健,罗亮明.氯化镁电解阴极过程机理及液镁析出状态的研究.中南矿冶学院学报,1994,25(2):176-181页
    [62]邓伟平,曾兴蒂,池向东.熔盐电解制取镁钇合金和金属镁.稀土,1997,18(2):57-60页
    [63]徐达峰,张文智,徐晓贤.恒电流暂态法研究镁在非水体系的电沉积.物理化学学报,1991,7(5):609-612页
    [64]张文智,徐达峰,吴锡尊.镁在DMF中电沉积机理的研究.物理化学学报,1989,5(1):103-106页
    [65]Bermejo M R,G6mez J,Medina J,et al.The electrochemistry of gadolinium in the eutectic LiCI-KC1 on W and AI electrodes.Journal of Electroanalytical Chemistry,2006,588:253-266P
    [66]Castrillejo Y,Bermejo M R,Barrado E,et al.Electrochemical behaviour of erbium in the eutectic LiCi-KCI at W and AI electrodes.Electrochimica Acta,2006,51:1941-1951P
    [67]Castrillejo Y,Bermejo M R,Barrado E,et al.Electrodeposition of Ho and Electrochemical formation of Ho-AI alloys from the eutectic LiCl-KCl.Journal of The Electrochemical Society,2006,153(10):C713-C721P
    [68]李颖君,王淑兰,钟和香等.电化学还原TiO_2反应机理及电极电势的研究.有色金属,2003,55(4):68-70页
    [69]杜继红,奚正平,李晴宇等.电化学还原TiO_2制备金属态及反应过程的研究.稀有金属材料过程,2006,35(3):1045-1049页
    [70]冯书争,宣天鹏,琚正挺等.含Ce化学沉积Co-Ni-B合金电化学行为的研究.金属功能材料,2006,13(3):17-19页
    [71]李宝善,苏连永.SmCl_3在LiCl-KCl熔盐中的电化学反应.甘肃联合大学学报,2006,20(3):55-56页,60页
    [72]Iida T,Nohira T,Ito Y.Electrochemical formation of Yb-Ni alloy films by Li codeposition method in a molten LiCl-KCl-YbCl_3 system.Electrochimica Acta,2003,48:1531-1536P
    [73]Cotarta A,Bouteillon J,Poignet J C,et al.Preparation and characterization of chromium depositionts obtained from molten salts using pulsed currents.Journal of Applied Electrochemistry,2001,31:987-995 P
    [74]Qiu G H,Wang D,Jin X B,et al.A direct electrochemical route from oxide precursors to the terbium-nickel intermetailic compound TbNi_5.Electrochimica Acta,2006,51(26):5785-5793P
    [75]Volkovicha V A,Griffiths T R,Thied R C,et al.Behaviour of molybdenum in pyrochemical reprocessing:A spectroscopic study of the chlorination of molybdenum and its oxides in chloride melts.Journal of Nuclear Materials,2003,323:93-100P
    [76]lizuka M,Uozumi K,Inoue T,et al.Behaviour of plutonium and americium at liquid cadmium chthode in molten LiCl-KCl electrolyte.Journal of Nuclear Materials,2001,299:32-42P
    [77]段淑珍,乔芝郁.熔盐化学原理和应用.北京:冶金工业出版社,1990:337-338页,393页
    [78]Polyakova L P,Taxil P,Polyakov E G.Electrochemical behaviour and codeposition of titanium and niobium in chloride-fluoride-melts.Journal of Alloys and Compounds,2003,359:244-255P
    [79]Iida T,Nohira T,Ito Y.Electrochemical formation of Sin-Co alloys by cedeposition of Sm and Co in a molten LiCl-KCl-SmCl_3-CoCl_2 systtem.Ecletrochimica Acta.2003,48:2517-2521P
    [80]Ebe H,Ueda M,Ohtsuka T.Electrodeposition of Sb,Bi,Te,and their alloys in AlCl_3-NaCl-KCl molten salt.Electrochimica Acta,2007,53:100-105P
    [81]柯山,杨绮琴,刘冠昆.尿素熔体中Cu-Ti合金电沉积研究.电镀与涂饰,1996,15(2):1-4页
    [82]陈必清,刘青,王建朝等.低温熔盐中Ni(Ⅱ),Co(Ⅱ)诱导稀土共沉积的电化学行为.青海师范大学学报,2006,3:34-67页
    [83]丘开容,杨绮琴.尿素熔体中镧钻电解共沉积的研究.中国稀土学报,14(1):20-22页
    [84]刘莉治,刘鹏,童叶翔等.尿素-NaBr低温熔盐体系中Er-Co合金的电沉积.中山大学学报,1999,38(3):119-120页
    [85]周豪,黄开胜,袁定胜等.DMSO和DMSO-尿素体系中制备Pr-Co合金膜.中山大学学报,2003,42(5):35-38页
    [86]徐秦英,王建朝,郭承育.乙酰胺.尿素-NaBr熔体中Dy-Co合金的电化学制备.华中师范大学学报,2006,40(2):217-221页
    [87]童叶翔,刘鹏,刘莉治等.尿素-NaBr低温熔盐中Fe~(2+)和Sm~(3+)的电化学 行为及其诱导共沉积.中国稀土学报,2002,20(1):11-15页
    [88]刘莉治,王喜梅,童叶翔.低温熔盐中Sm-Co薄膜合金的电化学制备.中山大学学报,2000,39(3):131-132页
    [89]徐常威,童叶翔.乙酰胺-尿素-NaBr熔体中Gd-Co-Ni薄膜合金的制备.中山大学研究生学刊,2002,23(4):19-27页
    [90]王建朝,徐常威,何风荣等.酰胺-尿素-NaBr熔体中电沉积Tb-Co合金的研究.中国稀土学报,2003,21(5):584-588页
    [91]王建朝,徐常威,童叶翔等.乙酰胺-尿素-NaBr熔体中Tb-Ni薄膜合金的制备.中山大学学报,2002,41(1):119-121页
    [92]徐常威,袁定胜,童叶翔等.酰胺低温熔盐中Y-Ni合金薄膜的电化学制备.中山大学学报,2001,40(4):127-128页
    [93]沙励嫦,杨绮琴,刘冠昆等.尿素-NaBr-KBr熔体中Tb-Co电沉积的研究.稀土,1997,18(1):18-20页
    [94]王金贵,王建朝,郭承育等.乙酰胺-尿素-NaBr熔体中Nd-Ni合金的电化学制备.青海师范大学学报,2005,4:60-63页
    [95]陈必清,王建朝,刘青等.低温熔盐中Yb-Ni合金膜的电沉积研究.武汉理工大学学报,2006,28(8):5-8页
    [96]王审,赵胜海,陈德海等.镍钨合金共沉积的电化学研究.大庆石油学院学报,1997,21(3):65-68页
    [97]曹经倩.镍铬合金共沉积的电化学研究.材料保护,1998,26(1):11-15页
    [98]郭乃名,熊申海,过家驹.熔盐中Al-Ti合金共沉积的电极过程.化工冶金,1997,18(4):318-321页
    [99]Konishi H,Nohira T,Ito Y.Formation of Dy-Fe alloy films by molten salt electrochemical process.Electrochimica Acta,2002,47:3533-3539P
    [100]Kubota T,Iida T,Nohira T,et al.Formation and phase control of Co-Gd alloy films by molten salt electrochemical process.Journal of Alloys and Compounds,2004,379:256-261P
    [101]Mansfeld F,Pérez.Surface modification of aluminum alloys in molten salts containing CeCl_3.Thin Solid Films,1995,270:417-421P
    [102]Ueda M,Kigawa H,Ohtsuka T.Co-deposition of Al-Cr-Ni alloys using constant potential and potential pulse techniques in AlCl_3-NaCl-KCl molten salt.Electrochimica Acta,2007,52:2515-2519P
    [103]Castrillejo Y,Bermejo M R,Barrado A I,et al.Electrochemical behaviour of dysprosium in the eutectic LiCl-KCl at W and AI electrodes.Eceltrochemica Acta,2005,50:2047-2057P
    [104]Castrilejo Y,BermejoM R,Barrado E,et al.Electrochemical behaviour of erbium in the eutectic LiCI-KCI at W and Al electrodes.Electrochimica Acta.2006,51:1941-1951P
    [105]刘冠昆,童叶翔,洪惠婵等.氯化物熔体中钇离子在铁电极上的电还原.物理化学学报,1998,14(5):463-466页
    [106]童叶翔,杨绮琴,刘冠昆等.氯化物熔体中镨钴合金形成的电化学研究.中山大学学报,1997,36(2):118-121页
    [107]童叶翔,杨绮琴,刘冠昆等.熔盐电解制取镧铜中间合金的研究.中国稀土学报,1991,9(4):311-314页
    [108]刘冠昆,洪惠婵,杨绮琴等.电解制备铒钻中间合金的电化学研究.中国稀土学报,1994,12(4):309-312页
    [109]童叶翔,杨绮琴,刘冠昆等.氯化物熔体中电解研制镨镍合余.稀有金属,1994,18(6):433-435页
    [110]杨绮琴,丘开容,刘冠昆等.氯化物熔体中钇的电还原和合金化.中国稀土学报,1994,12(2):116-119页
    [111]管从胜,段淑贞,王新东.锂离子在铝电极上的电极过程机理.中国有色金属学报,1996,6(4):51-55页
    [112]段淑贞,管丛胜,石青荣等.LiCl-KCl熔盐中锂在铝电极上的电极过程. 电化学,1998,4(2):205-209页
    [113]Iida T,Nohira T,Ito Y.Electrochemical formation of Sm-Co alloy films by Li codeposition method in a molten LiCl-KCl-SmCl_3 system.Electrochimica Acta,2003,48:901-906P
    [114]苏明忠,宋丕莹,邹天楚等.熔盐电解制取Al-Dy合金.稀土,1995,16(5):61-63页
    [115]张英珊,王长志.熔盐电解法制备Al-Li合金工艺研究.吉林师范大学学报,2003,3:33-36页
    [116]杜森林,苏明忠.氯化物熔盐中Nd~(3+)在液体Ga电极上还原的电化学行为.金属学报,1991;27(3):B171-B175页
    [117]苏明忠,彭建军,宋丕营等.熔盐电解制备Ga-Nd合金的研究.1992,10(2):173-174页
    [118]徐君莉,石忠宁,邱竹贤.熔盐电解法制取Al-Li母合金.矿冶工程,2004,24(3):56-58页
    [119]张明杰,邱竹贤.熔盐电解法生产铝锂合金的研究.稀有金属,1988(4):249-252页
    [120]Qiu Z X,Zhang M J.Prepration of aluminium master alloy by electrolysis in molten salt.Aluminium,1990,76(6):560-564P
    [121]仇世源,刘援,张景怀.Al-Li母合金工艺及其应用研究.新疆有色金属,1996.1:49-54页
    [122]张明杰,邱竹贤,狄鸿利.在铝电解槽中电解铝基合金的几个基本问题(上).轻金属,1987,1:27-31页
    [123]张明杰,邱竹贤,狄鸿利.在铝电解槽中电解铝基合金的几个基本问题(下).轻金属,1987,2:29-34页
    [124]赵恒先.电解法制取铝中间合金的热力学.轻金属,1983,11:26-28页
    [125]沈时英.在工业铝电解槽中直接制取铝基合金时金属在铝液与电解质间的浓度分配.轻金属,1991,9:26-28页
    [126]赵敏寿,冯力,唐定骧.浅谈铝电解槽制备铝-稀土合金方法.稀土,1986,3:48-52页
    [127]杜森林,刘应明,路连清等.直流脉冲电解Al-La合金的研究.稀土,1993,14(3):66-69页
    [128]戴兴福,张明杰,谭亚菊.熔盐电解法制取高浓度铝锂合金.轻金属,1998,1:38-41页
    [129]徐建华,陈建华,邱仕麟.电解法制取铝锶合金的研究.轻金属,2001,8:36-38页
    [130]Yang B G,Qiu Z X,Gao B L,et al.Electrolytic prepration of AI-Ca master.alloy on liquid Al cathode.Transactions of Nonferrous Metals Society of China,2000,10(2):246-249P
    [131]Zhang X,Jiao S Q,Xiao S J,et al.Electrochemical behaviour of magnesium and aluminium ions in alkali chloride melt.Materials Science Forum,2005,488-489:811-814P
    [132]韩学印.氯化物电解共析法制取铈镁合金.中国,发明专利,1122848,1996.5.22
    [133]Smolinski.Electrolytic deposition and diffusion of lithium into magnesium.Journal of Appllied Chemistry,1956,6:180-186P
    [134]Smolinski J,Hannam J C,Leach A L.An electrolysic method for direct production of magnesium lithium alloys from lithium chloride.Journal of Appllied Chemistry,1956,6:187-196P
    [135]张丁非,彭建,丁培道等.镁及镁合金的资源、应用及其发展现状.材料导报,2004,18(4):72-76页
    [136]汪的华,陈政.熔盐电化学创新研究.电化学,2005,11(2):119-124页
    [137]Chen G Z,Fray D J,Farthing T W.Direct electrochemical reduction of titanium dioxide to titanium in molten calcium chloride.Nature,2000,407:361-364P
    [138] Martinez A M, Castrillejo Y, B0rresen B, et al. Chemical and electrochemical behaviour of chromium in molten chlorides. Journal of Electroznalytical Chemistry, 2000, 493: 1-14P
    [139] Martinez A M, B(?)rresen B, Haarberg G M, et al. Electrodeposition of magnesium from the eutectic LiCl-KCl melt. Journal of Applied Electrochemistry, 2004, 34: 1271-1278P
    [140] Prabhakara Reddy B, Vandarkuzhali S, Subramanian T, et al. Electrochemical studies on the redox mechanism of uranium chloride in molten LiCl-KCl eutectic. Electrochemica Acta, 2004,49: 2471-2478P
    [141] Serp J, Chamelot P, Fourcaudot S, et al. Electrochemical behaviour of americium ions in LiCl-KCl eutectic melt. Electrochimica Acta, 2006, 51: 4024-4032P
    [142] Nakajima H, Nohira T, Hagiwara R. Electrodeposition of metallic molybdenum films in ZnCl_2-NaCl-KCl-MoCl_3 systems at 250℃ . Ecletrochimica Acta, 2006, 51: 3776-3780P
    [143] Goto T, Ishigaki H, Ito Y. Electrochemical surface nitriding of zirconium in LiCl-KCl-Li_3N systems. Materials Science & Engimeering, 2004, 371: A 253-A358P
    [144] Nohira T, Kambara H, Amezawa K, et al. Electrochemical formation and phase control of Pr-Ni alloys in a molten salt LiCl-KCl-PrCl_3 system. Jounal of The Electrochemical Society, 2005, 152(4): C183-C189P
    [145] Masset P, Bottomley D, Konings R, et al. Electrochemistry of uranium in molten LiCl-KCl eutectic. Journal of The Electrochemical Society, 2005, 152(6): A1109-A1115P
    [146] Ghosh S, Vandarkuzhali S, Venkatesh P, et al. Redoc behaviour of cerium oxychloride in molten MgCl_2-NaCl-KCl eutectic. Electrochimica Acta. 2006, 52(3): 1206-1212P
    [147] Murakami T, Nohira T, Ogata Y H, et al. Electrochemical window of a LiCl-KCl-CsCl melt. Electrochemical and Solid-State Letters, 2005, 8(1): E1-E3P
    [148] Iizuka M. Diffusion coefficients of cerium and gadolinium in molten LiCl-KCl. Journal of The Electrochemical Society, 1998,145(1): 84-88P
    [149] Jafarian M, Mahjani M G, Gobal F, et al. Effect of potential on the early stage of mucleation and growth during aluminum electrocrystalization from molten salt(AlCl_3-NaCl-KCl). Journal of Electroanalytical Chemistry. 2006, 588:190-196P
    [150] Sakamura Y, Shirai O, Iwai T, et al. Thermodynamics of neptunium in LiCl-KCl eutectic/liquid bismuth systems. Journal of The Electrochemical Society, 2000,147(2): 642-649P
    [151] Tsujimura H, Goto T, Ito Y. Electrochemical formation and control of chromium nitride films in molten LiCl-KCl-Li_3N systems. Electrochimica Acta, 2002, 47: 2725-2731P
    [152] Jafarian M, Gobal F, Danaee I, et al. Impedance spectroscopy study of aluminum electrocrystalllization from basic molten salt (AlCl_3-NaCl-KCl). Electrochimica Acta, 2007, 52: 5437-5443P
    [153] Jafarian M, Mahjani M G, Gobal F, et al. Electrodeposition of alumiunum from molten AlCl_3-NaCl-KCl mixture. Journal of Applied Electrochemistry, 2006, 36: 1169-1173P
    [154] Mohamedi M, Martinet S, Bouteillon J, et al. Comprehensive examination of the electrochemistry of indium in the molten LiCl-KCl eutectic. Electrochimica Acta, 1998, 44: 797-803P
    [155] Store T, Haarberg G M, Tunold R. Determination of diffusion coefficients of depositing ions in molten chlorides by transient electrochemical techniques. Jouranl of Applied Electrochemistry, 2000, 30: 1351-1360P
    [156] Shirai O, Iwai T, Suzuki Y, et al. Electrochemical behaviour of actinide ions in LiCl-KCl eutectic melts. Journal of Alloys and Compounds, 1998, 271-273: 685-688P
    [157] Serp J, Konings R J M, Malmbeck R, et al. Electrochemical behaviour of plutonium ion in LiCl-KCl eutectic melts. Journal of Electroanalytical Chemistry, 2004, 561: 143-148P
    [158] Fung Y S, Zhang W B. Electrochemical deposition of superconductor alloy precursor in a low melting molten salt medium. Journal of Applied Electrochemistry, 1997, 27: 857-861P
    [159] Mohamedi M, Bouteillon J, Poignet J C, et al. Electrochimical impedance. spectroscopy study of indium couples in LiCl-KCl eutectic at 450℃. Electrochimica Acta, 1996,41(9): 1495-1504P
    [160] Serrano K, Taxil P. Electrochemical reduction of trivalent uranium ions in molten chlorides. Journal of Applied Electrochemistry, 1999, 29: 497-503P
    [161] Mohamedi M, Kawaguchi N, Sato Y, et al. Electrochemical study of the mechanism of formation of the surface alloy of aluminum-niobium in LiCl-KCl eutectic melt. Journal of Alloys and Compounds, 1999, 287: 91-97P
    [162] Cotata A, Bouteillon J, Poignet J C. Electrochemistry of molten LiCl-KCl-CrCl_3 and LiCl-KCl-CrCl_2 mixtures. Journal of Applied Electrochemistry, 1997, 27: 651-658P
    [163] Shirai O, Iizuka M, Iwai T, et al. Electrode reaction of plutonium at liquid cadmium in LiCl-KCl eutectic melts. Journal of Electroanalytical Chemistry, 2000, 490: 31-36P
    [164] Shirai O, Uozumi K, Iwai T, et al. Electrode reaction of the Np~(3+)/Np couple at liquid and Bi electrodes in LiCl-KCl eutectic melts. Journal of Applied Electrochemistry, 2004, 34: 323-330P
    [165]B0rresen B,Haarberg G M,Tunold R.Electrodeposition of magnesium from halide melts-charge transfer and diffusion kinetics.Electrochimica Acta,1997,42(10):1613-1622P
    [166]Sakamura Y,Hijikata T,Kinoshita K,et al.Measurement of standard potential of actinides(U,Np,Pu,Am)in LiCI-KCI eutectic salt and separation of actinides from rate earths by electrorefining.Journal of Alloys and Compounds,1998,271-273:592-596P
    [167]陆庆桃,叶云蔚,李国勋.氯化钕熔盐电解的阴极过程.中国稀土学报,1991,9(1):17-19页
    [168]童叶翔,杨绮琴,刘冠昆等:氯化物熔体中电解制取镨钴合金的研究.广东有色金属学报,1993,3(2):111-115页
    [169]管从胜.铁和钼在LiCI-KCI熔盐中的电化学行为.腐蚀科学与防护技术.2000,12(6):329-332页
    [170]梁行方,马宏军,段淑贞等.在氟盐体系中钕离子阴极过程的研究.稀土,1999,20(4):21-23页
    [171]陈建华.低温熔盐体系铝电沉积.表面技术,1994,23(4):159-163页
    [172]赵立忠,段淑贞,魏寿昆.钇离子在氟化物熔盐体系中的电化学还原.中国稀土学报,1993,11(3):271-273页
    [173]赵立忠,段淑贞,顾学范等.钇离子在氯化物熔盐中的电化学还原.中国稀土学报,1992,10(4):326-330页
    [174]陆庆桃,余仲兴,颜晓勇.氧化钕电解的阴极过程及钕的溶解行为.上海金属(有色分册),1991,12(4):1-7页
    [175]祁雪,焦树强,朱鸿民.NaCl-CsCl熔盐中Ce(Ⅲ)离子的阴极过程研究.中国稀土学报,2004,22:319-322页
    [176]A.J.巴德等著.邵元华等译.电化学方法原理和应用.第二版.北京:化学工业出版社,2005:157-214页
    [177]招光文,王才荣.熔盐电镀.Ⅰ.电化学成核及其在离子扩散控制下的长 大.北京钢铁学院学报,1986,12(4):78-84页
    [178]Rao G M.Electrochemical studies of magnesium ions in magnesium chloride containing chloride melt at 710 ± 10℃.Journal of Electroanalytical Chemistry,1988,249:191-203P
    [179]Hills G J,Schiffrin D J,Thompson J.Electrochemical nucleation from molten salts- Ⅰ.Diffusion controlled electrodeposition of silver from alkali molten salts.Electrochimica Acta,1974,19:657-670P
    [180]Janz G J,Tomkins R P T,Allen C B,et al.Chlorides and mixture-elkectrical conductance,density,viscosity,and surface tension data.Journal of P.hysical and Chemical Refence Data,1975,4(4):871-1178P
    [181]Baboian R,Hill D L,Bailey R A.Electrochemical studies on zirconium and hafnium in molten LiCI-KCI eutectic.Journal of the Electrochemical Society,1965,112(12):1221-1224P
    [182]Kawase M,Ito Y.The electroformation of Zr metal,Zr-AI alloy and carbon films on ceramic.Jounal of Applied Electrochemistry,2003,33:785-793P
    [183]Basile F,Chassaing E,Lorthioir G.Electrochemical reduction of ZrCl_4 in molten NaC1,CsC1 and KCl-LiCl and chemical reaductions coupled to the electrodeposition of zirconium.Journal of Applied Electrochemicstry,1981,11:645-651P
    [184]Kipouros G J,Flengas S N.Electrorefining of zirconium metal in alkali chloride and alkali fluoride fused electrolyt.e.Journal of The Electrochemical Society,1985,132(5):1087-1098P
    [185]Sakamura Y.Zirconium behaviour in molten LiCI-KC1 eutectic.Journal of The Electrochemical Society,2004,151(3):C187-C193P
    [186]申泮云,车云霞,罗裕基等.无机化学丛书.第八卷.北京:科学出版社,1998:110-111页

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700