高铁锌硫化矿的细菌浸出基础及其工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高铁锌硫化矿在选矿分离上存在药耗大、成本高和回收率低的缺点,并且选别出的高铁锌精矿在传统湿法炼锌的焙烧—浸出工序中由于形成铁酸锌,降低了锌的浸出率,增大了冶炼难度。针对高铁锌硫化矿难选难冶的问题,本论文以取自广西大厂矿区的铁闪锌矿为研究对象,开展了高铁锌硫化矿的细菌浸出基础及其工艺研究。
     研究应用的浸矿细菌是分离自广西大厂矿区锌硫化矿矿坑水的一组混合菌,其主要菌种组成是氧化亚铁硫杆菌、氧化硫硫杆菌和氧化亚铁钩端螺旋菌。论文研究了金属离子和非金属离子、表面活性剂以及能源基质对细菌的铁硫氧化活性及其浸矿过程的影响,通过浸矿试验、SEM、EDXA、XRD和电化学测试等研究方法和手段探讨了铁闪锌矿的细菌浸出机理和锌铁的浸出行为,在此基础上开展了含铁闪锌矿矿石和铁闪锌矿浮选精矿的细菌浸出研究,并进行了含锌细菌浸出液的溶剂萃取纯化研究和探讨,提出了锌硫化矿细菌浸出—萃取—电积工艺的基本流程。
     离子和表面活性剂对细菌的铁硫氧化活性有影响,进而影响到细菌的浸矿过程。一定浓度的铜离子和表面活性剂OPD由于促进了细菌氧化元素硫,降低了浸出pH值,因此提高了铁闪锌矿的浸出速率。铜离子由于晶格取代形成的CuS或CuS_2对铁闪锌矿的浸出还具有电化学催化作用。
     以不同能源基质培养得到的细菌表现出强弱不同的铁硫氧化活性,同时具备强氧化铁活性和强氧化硫活性的细菌具有较好的浸矿性能。以磁黄铁矿为能源基质培养得到的一组细菌具有良好的铁氧化活性和吸附特性,并且其硫氧化活性也未减弱,该细菌具有良好的浸矿性能。
     铁闪锌矿的细菌浸出遵循收缩未反应核模型,浸出渣SEM、EDXA和XRD分析表明,未反应核界面的固体产物层是FeS、S和铁矾的混合物。当固体产物层比较致密或不断长大时,通过固体产物层的内扩散成为浸出反应速率的控制步骤,铁闪锌矿的浸出速率
The processing of zinc sulfide ore bearing high content of iron involves high unit cost and low metal recoveries. Zinc ferrite(ZnO · Fe_2O_3) is formed when the concentrate of Zn bearing high content of iron is submitted to the roast-leach electrolysis process, which decreases the leaching rate of Zn and makes it difficult treated. One alternative for the treatment of the refractory zinc sulfide ore or zinc concentrate is bioleaching. The bioleaching of the marmatite sample, which was obtained from Dachang mine in Guangxi province, was carried out to investigate the bioleaching process for the refractory zinc sulfide ore or flotation concentrate.The bacteria applied in this research are a mixed culture isolated from the mine water of Dachang mine. Characterization of this culture showed that the main bacterial strains were Thiobacillus ferrooxidans, Thiobacillus thiooxidans and Leptospirillum ferrooxidans. The influences of various ions, surfactants and various cultures on the oxidation activities of the bacteria and the bioleaching of marmatite were studied. The mechanism of bioleaching of marmatite and the leaching behavior of Zn and Fe were discussed. On the bases of these researches, the bioleaching of marmatite ores and the flotation concentrate was conducted. The solvent extraction of zinc from the bioleaching solution was also studied. A basic technical process of bioleaching-solvent extraction-electrowinning for zinc sulfide was proposed.The ions and surfactants have influences on the oxidation activities and leaching capacity of bacteria. A certain concentration of copper ions or OPD can accelerate the S oxidation rate during bioleaching while the Fe oxidation activities of bacteria were hardly influenced. As a result, the bioleaching rate of marmatite was enhanced. The copper ions replace the zinc ions in the crystal lattice of marmatite as CuS or CuS_2, which also has electrochemical catalysis on the bioleaching of marmatite.
    The bacteria cultured on various mediums have different distributing of strains and show different oxidation activities of Fe and S accordingly. The bacteria that both have strong oxidation activities of Fe and S showed high leaching capacity. The bacteria cultured on the magnetic pyrrhotite, which were characterized by strong iron and sulfur oxidation activities and adsorption activities, and the oxidation activities of S were not weakened, showed high leaching capacity.The bioleaching of marmatite follows the shrinking core product layer model. SEM and EDXA analysis of the leaching residue indicated that the components of the product layer is a mixture of FeS, S and jarosite. When the product layer increased and became insoluble, the leaching rate is controlled by the diffusion through the product layer. In the case of being leached by bacteria with strong oxidation activities of Fe and S, the product layer was oxidized and decreased or became a porous layer, then the leaching rate was controlled by chemical reaction. The electrochemical aspects on bioleaching of marmatite were studied. In the case of low potential, a passivation film was formed on the surface of marmatite electrode. The presence of bacteria decreased the passivation and increased the leaching rate.According the energy band model for the leaching of marmatite, marmatite can be leached by Fe3+ ions and FT protons, and the reaction products were Fe ions and elemental S. Therefore, the marmatite can be leached by the bacteria with the only oxidizing ability of Fe or S. The role of the bacteria was to oxidize ferrous ions to ferric ions and oxidize elemental sulfur to sulfuric acid. The adsorbed bacteria on the marmatite surface firstly obtain the growth medium and grow well, and the metabolizing substances of the adsorbed bacteria accelerate the leaching rate of marmatite.The crystal structures of ZnS and FeS in marmatite are similar, but the crystal field stable energy of Fe in octahedral sites is greater than that of Zn in tetrahedral sites, so Zn is more likely to be leached than Fe. Bioleaching of marmatite ores and flotation concentrate with the bacteria cultured on pyrrhotite were carried out in shaking experiments.
    In the optimized conditions, the leaching rate of zinc reached above 96%, while the leaching rate of iron was only about 18%. The zinc in marmatie was selectively extracted.D2EHPA (di (2-ethylhexyl) phosphoric acid) was used as zinc extractant diluted in 260 # kerosene to extract zinc from the bioleaching solutions. A purified zinc sulfate solution was obtained through the process of solvent extraction, washing and stripping. A basic technical process of bioleaching-solvent extraction-electrowinning for zinc sulfide was proposed. The process is feasible on technique for zinc sulfide ores or the flotation concentrates.
引文
[1] 《浸矿技术》编委会.浸矿技术[M].北京:原子能出版社,1994.417-506.
    [2] 杨显万,邱定蕃著.湿法冶金[M].北京:冶金工业出版社,1998.282-366.
    [3] 魏以和,钟康年,王军.生物技术在矿物工程中的应用[J].国外金属选矿.1996(1):1-13.
    [4] 刘汉钊,张永奎.微生物在矿物工程上应用新进展[J].国外金属选矿.1999(12):9-12.
    [5] C. Solisio, A. Lodi, F. Veglio. Bioleaching of zinc and aluminum from industrial waste sludges by means of Thiobacillus ferrooxidans[J]. Waste Managenment. 2002, 22 (6): 667-675.
    [6] AE. Torma. The role of Thiobacillusferrooxidans in hydrometallurgical process[J]. Adv. Biochem. Eng, 1977(6): 1-37.
    [7] A. R. Clomer and M. E Hinkle. The role of microorganisms in acid mine drainage: a preliminary report [J]. Science, 1947, 106: 253-256.
    [8] Bosecker. Bioleaching: metal solubilization by microorganisms [J]. FEMS Microbiol Rev, 1997, 20: 591-604.
    [9] P. C. Miller, M. K. Rhodes, R. winby, A. Pinches & P. J. van Staden. Commercialization of bioleaching for base-metal extraction [J]. Minerals & Metallurgical Processing. 1999, 16 (4): 42-50.
    [10] 李样人.德兴铜矿堆浸厂萃取工艺生产现状与展望[J].湿法冶金,1998(4):24-28.
    [11] J. A. Briedey, C. L. Brierley. Present and future commercial applications of biohydrometallurgy Hydrometallurgy [J], 2001, 59 (2-3): 233-239.
    [12] C. L. Briedey. Bacterial succession in bioheap leaching [J]. Hydrometallurgy, 2001, 59(2-3): 249-255.
    [13] M. Amores, A. G. Coedo & F. J. Alguacil. Extraction of copper from sulfate solutions by MOC 45: Application to Cu separation from leachates of copper flue dust [J]. Hydrometallurgy, 1997, 47(1): 99-112.
    [14] Kei R. Suttill. SX copper bums bright [J]. E & MJ, 1993(Dec): 24-28.
    [15] 方金渭,黎维中,溶浸提铜技术发展概况及前景分析[J].湿法冶金,1998(4):15-19.
    [16] 兰兴华.金和基本金属生物浸出的新进展[J].世界有色金属,2002(5):28-31.
    [17] M. Rhodes, V. Deeplaul. Bacterial oxidation of Mt. Lyell concentrates [C]. Proceedings of the A1TA 1998 Copper Sulfides Simposium, Brishbane, Australia, 19 October 1998.
    [18] F. Barriga Mateos, J. Pereda, Matin & I. Palencia perez. Bacterial leaching of a bulk flotation concentrate of chalcopyrite-sphalerite [J]. Biorecovery, 1993(2): 195-218.
    [19] I. Palencia, F. Carranza & M. J. Gaicia. Leaching of a copper-zinc sulfide concentrate using an aqueous ferric sulfate diluent solution in a semi continuous system: Kinetics of dissolution of zinc [J]. Hydrometallurgy, 1990(23): 191-202.
    [20] F. Carranza, M. J. Garcia, I. Palencia et al. Selective cyclic bioleaching of copper-zinc sulfide concentrate [J]. Hydrometallurgy, 1990, 24(1): 67-76.
    [21] F. Carranza, N. Iglesias, R. Romero & I. Palencia. Kinetics improvement of high-grade sulfides bioleaching by effects separation [J]. FEMS Microbiol. Rev., 1993(11): 129-138.
    [22] F. Carranza, I. Palencia, R. Romero. Silver catalyzed IBES process: application to a Spanish copper-zinc sulfide concentrate [J]. Hydrometallurgy, 1997, 44(1-2): 29-42.
    [23] P. C. van Aswegen & H. J. Marails. Advances in the application of the BIOX~(?) Process for refractory gold ores [J]. Minerals & Metallurgical Processing, 1999, 16(4): 61-68.
    [24] C. L. Brierley. Mining biotechnology: research to commercial development and beyond, in: D. E. Rawlings Ed., Biomining: Theory, Microbes and Industrial Processes[M]. Springer, New Yourk, 1997, p. 3.
    [25] R. G. L. McCready & W. D. Gould. (1990) Bioleaching of uranium. In: Microbial Mineral Recovery[M] (Ehrlich, H. L. & Brierley, C. L. Eds), pp. 107-125. McGraw-Hill, New Yourk.
    [26] A. P. Briggs, M. Millard. Cobalt recovery using bacterial leaching at the Kasese Project[C], Uganda. IBS Biomine'97 Conference Processing, Australian Mineral Fotmdation, Adelaide, 1997, Chap. M2. 4. 1.
    [27] P. d'Hugues, P. Cezac, F. Battaglia, D. Morin, Bioleaching of a cobaltiferrous pyrite at 20% solids: a continuous laboratory-scale study. In: R. Amils, A. Ballester Eds., Biohydrometallurgy and the Environment Toward the Mining of the 21 st Century [M], Elsevier, Amsterdam, 1999, P. 167.
    [28] 钟点益摘译.镍精矿生物浸出工艺及中间工厂试验结果[J].有色冶炼,2000,29(1):27-31.
    [29] D. W. Dew, D. M. Miller. The BioNIC process [C]. IBS Biomine'97 Conference Proceedings, Australian Mineral Foundation, Adelaide, 1997, Chap, M7. 1. 1.
    [30] Abha Kumari, K. A. Natarajan. Development of a clean bioeleetrochemical process for leaching of ocean manganese nodules [J]. Minerals Engineering, 2002, 15(1-2): 103-106.
    [31] A. Kumari & K. A. Natarajan. Electroleachign of polymetallic ocean nodules to recover copper, nickel and cobalt [J]. Minerals Engineering, 2001, 14(8): 877-886.
    [32] A. Kumari, K. A. Natarajan. Electrochemical aspects of leaching of ocean nodules in the presence and absence of microorganisms [J]. Int. J. Miner. Process. 2002, 66(1-4): 29-47.
    [33] Wolfgang Sand, Tilman Gehrke, Peter-Georg Jozsa et al. (Bio) chemistry of bacterial leaching-direct vs. indirect bioleaching [J]. Hydrometallurgy, 2001, 59(2-3): 159-175.
    [34] Helmut Tributsch. Direct versus indirect bioleaching [J]. Hydrometallurgy, 2001, 59(2-3): 177-185.
    [35] Isamu Suzuki. Microbial leaching of metals from sulfide minerals [J]. Biotechology Advances, 2001, 19(2): 119-132.
    [36] GS. Hansford, T. Vargas. Chemical and electrochemical basis of bioleaching processes [J]. Hydrometallurgy, 2001, 59(2-3): 135-145.
    [37] A. Schippers, W. Sand. Bacterial leaching of metal sulfides proceeds by two indirect mechanisms via thiosulfate or via polysulfides and sulfur [J]. Appl. Environ. Microbiol. 1999, 65(1): 319-321.
    [38] T. Gehrke, J Telegdi, D. Thierry, W. Sand. Appl. Environ. Microbiol. 1998, 64: 2743.
    [39] N. May, D.E Ralph, G. S. Hansford. Dynamic redox potential measurement for determining the ferric leach kinetics of pyrite. Min. Eng. 1997, 10(11): 1279-1290
    [40] C. O. Moses, J. S. Herman. Geochim. Cosmochim. Acta. 1991, 55: 471.
    [41] W. Sand, T. Gehrke, R. Hallmann et al. Appl. Microbiol. Biotechnol. 1995, 43: 961.
    [42] A. Schippers, P.-G. Jozsa, W. Sand. Appl. Environ. Microbiol. 1996, 62: 3424.
    [43] C. O Moses, D. K. Nordstrom, J. S. Herman et al. Geochim. Cosmochim. Acta. 1987, 51: 1561.
    [44] W. Sand, K. Rohde, B. Sobotke et al. Appl. Environ. Microbiol. 1992, 58: 85.
    [45] M. Boon, J.J. Heijnen. Chemical oxidation kinetics of pyrite in bioleaching processes [J]. Hydrometallurgy. 1998, 48(1): 27-41.
    [46] T. Rohwerder, A Schippers, W. Sand. Determination of reaction energy values for biological pyrite oxidation by calorimetry [J]. Thermochim. Acta, 1998, 309(1): 79.
    [47] C. G. Friedrich. Adv. Microb. Physiol. 1998, 39: 235.
    [48] G. A. H. de Jong, W. Hazeu, P. Bos et al. Microbiology, 1997, 143: 499.
    [49] F. K Crundwell. Influence of the electronic structure of solids on the anodic dissolution and leaching of semiconducting sulphide minerals [J]. Hydrometallurgy, 1988, 21(2): 155-190.
    [50] R. Steudel. Mechanism for the formation of elemental sulfur from aqueous sulfide in chemical and microbiological desulfurization processes [J]. Ind. Eng. Chem. Res. 1996, 35(4): 1417-1423.
    [51] W. Sand, R. Hallmann, K. Rohde et al. Appl. Microbiol. Biotechnol. 1993, 40: 421.
    [52] G. G. Geesey, L. Jang. Metal Ions and Bacteria [M]. In: T. J. Bevenridge, R. J. Doyle(Eds.), Wiley, New York, 1999.
    [53] E. Wasserman, A. R. Felmy. Computation of the electrical double layer properties of semipermeable membranes in multicomponent electrolytes [J]. Apli. Environ. Microbiol. 1998, 64(6): 2295-2300.
    [54] 江西铜业公司编.溶浸-萃取-电积资料汇编[C].1991.
    [55] Bacterial Leaching Metals from Ores, International Seminar on Dump and Underground. In: G. I. Karavaiko, G. Rossi and A.A. Avakyan Eds. Center for Environmental Projection [M]. Moscow: 1990.
    [56] F. Battaglia-Brunet, P. d'Hugues, T. Cabral et al. The mutual effect of mixed Thiobacilli and Leptospirill populations on pyrite bioleaching [J]. Min. Eng. 1998, 11(2): 195-205.
    [57] E. Donati, G. Curutchet, C. Pogliani et al. Bioleaching of covellite using pure and mixed cultures of Thiobacillus ferrooxidans and Thiobacillus thiooxidans [J]. Process Biochemistry, 1996, 31(2): 129-134.
    [58] K. Nowaczyk, F. Domka. Kinetic model of CuS oxidation by Thiobacillus ferrooxidans and Thiobacillus thiooxidans bacteria [J]. Pol. J. Environ. Stud. 2000, 9(3): 195-201.
    [59] A. Das, J. M. Modak, K. A. Natarajan. Studies on multi-metal ion tolerance of Thiobacillus ferrooxidans [J]. Min. Eng. 1997, 10(7): 743-749.
    [60] G. I. Karavaiko, T. F. Kondrat'eva, V. P. Piskunov et al. Selection of a thiobacillus ferrooxidans strain highly resistant to ions and the characteristic of its chromosomal DNA studied by pulsed-field gel electrophoresis [J]. Mirobiology, 1994, 63(2): 132-136.
    [61] Butcher, G. Bronwyn, Deane, M. Shelly, Rawlings, E. Douglas. The chromosomal arsenic resistance genes of Thiobacillus ferrooxidans have an unusual arrangement and confer increased arsenic and antimony resistance to Escherichia coli [J]. Appl. Environ. Microbiol. 2000, 66(5): 1826-1833.
    [62] 林建群,彭基斌,颜望明.氧化亚铁硫杆菌基因转移系统研究进展[J].应用与环境微生物学报,2001,7(2):193-196.
    [63] J. V. Beck. The role of bacteria in copper mining opration[J]. Bitechnol. Bioeng. 1967, 9: 487-497.
    [64] L. E Murr, J. A Brierley. The use of large-scale test facilities on studies of the role of microganisms in eommercial leaching operations, in: L. E. Murr, A. E. Torma, J. A. Brierley(Eds.), Metallurgical Applications of Bacterial and Related Miereobiological Phenomena, Academic Process [M], New York, 1978: 491-520.
    [65] E. Gomez, A. Ballester, F. Gonzalez et al. Leaching capacity of a new extremely thermophilic microorganism, sulfolobus rivotincti [J]. Hydrometallurgy, 1999, 52(3): 349-366.
    [66] Yasuhiro Konishi, Kouji Kogasaki, Satoru Asai. Bioleaching of pyrite by Acidianus brierleyi in a continuous-flow stirred-tank reactor [J]. Chem. Eng. Scien. 1997, 52(24): 4525-4532.
    [67] Jayant M. Modak, K. A. Natarajan, Sanghamitra Mukhopadhyay. Deveopment of temperature-tolerant strains of Thiobacillus ferrooxidans to improve bioleaching kinetics [J]. Hydrometallurgy, 1996, 42(1): 51-61.
    [68] Yasuhiro Konishi, Hirotugu Nishimura, Satoru Asai. Bioleaching of sphalerite by the acidophilic thermophile Acidianus brieleyi [J]. Hydrometallurgy, 1998, 47(2-3): 339-352.
    [69] J. J. Plumb, B. Gibbs, M. B. Stott et al. Enrichment and characterization of thermophilic acido-philes for the bioleaching of mineral sulphides [J]. Miner. Eng. 2002, 15(11): 787-794.
    [70] P. d'Hugues, S. Foucher, P. Galle'-Cavalloni et al. Continuous bioleaching of chalcopyfite using a novel extremely thermophilic mixed culture [J]. Int. J. Miner. Process. 2002, 66(1-4): 107-119.
    [71] A. Rubio, F. J. Garcia Frutos. Bioleaching capacity of an extremely thermophilic culture for chalcopyritic materials [J]. Miner. Eng. 2002, 15(9): 689-694
    [72] J. A. Briedey. Acidophilic thermophilic archaebacteria: Potential application for metal recovery [J]. FEMS Microbiol. Rev. 1990, 75: 287-292.
    [73] 刘晓荣,李宏煦,胡岳华等.生物浸矿的电化学催化[J].湿法冶金,2000,19(3):22-27.
    [74] A. P. Mebta. Kinetic study of sulfide leaching by galvanic interaction between chalcopyrite, pyrite and sphalerite in the presence of T. ferrooxidans(30℃) and thermophilic microorganism(55℃) [J]. Biotech. Bioeng, 1982, 24(4): 919-940.
    [75] 邱冠周,王军,钟康年等.银催化铜矿石的细菌浸出[J].矿冶工程,1998,18(3):22-26.
    [76] Hayato Sato, Hiroshi Nakazawa, Yasuo Kudo. Effect of silver chloride on the bioleaching of chalcopyrite concentrate [J]. Int. J. Miner. Process, 2000, 59(1): 17-24.
    [77] A. Ballester, F. Gonzalez, M.L. Blazquez et al. The use of catalytic ions in bioleaching [J]. Hydrometallurgy, 1992, 29: 145-160.
    [78] T. L. Deng, M. X. Liao, M. H. Wang et al. Investigations of accelerating parameters for the biooxidation of low-grade refractory gold ores [J]. Miner. Eng. 2000, 13(14-15): 1543-1553.
    [79] Hiroshi Nakazawa, Hisashi Fujisawa, Hayato Sato. Effect of activated carbon on the bioleaching of chalcopyrite concentrate [J]. Int. J. Miner. Process, 1998, 55(2): 87-94.
    [80] George Owusu, David B. Dreisinger, Ernest Peters. Effect of surfactants on zinc dissolution rates during oxidative leaching of sphalerite [J]. Hydrometallurgy, 1995, 38: 315-324.
    [81] K. A. Natarajan. Bioleaching of sulfides under applied potentials [J]. Hydrometallurgy, 1992, 29: 161-172.
    [82] K. A. Natarajan. Effect of applied potentials on the activity and growth of thiobaciIlus ferrooxidans [J]. Biotech. Bioeng. 1992, 39(9): 907-913.
    [83] Satoshi Nnakasono, Norio Matsumoto, Hiroshi Saiki. Electrochemical cultivation of thiobacillus ferrooxidans by potential control [J]. Bioelectrochemistry and Bioenergetics. 1997, 43(1): 61-66.
    [84] K. A. Natarajan. Electrochemical aspects of bioleaching multisulphide minerals [J]. Minerals and Metalrg. Proc., 1988, 5(2): 61-65.
    [85] S. C. Selvi, J. M. Modak, K. A. Natarajan. Electrobioleaching of sphalefite flotation concentrate [J]. Miner. Eng. 1998, 11(8): 783-788.
    [86] S. C. Selvi, J. M. Modak, K. A. Natarajan. Electrobioleaching of sphalefite flotation concentrate [J]. Miner. Eng. 1998, 11(8): 783-788.
    [87] Abba Kumari, K. A. Natarajan. Development of a clean bioelectrochemical process for leaching of ocean manganese nodiles [J]. Miner. Eng., 2002, 15(1-2): 103-106.
    [88] A. E. Torma, R. Guay. Effects of particle size on the biodegradation of a sphalefite concentrate [J]. Nat. Can., 1976, 103: 133-138.
    [89] S. N. Groudev. Oxidation of zinc sulfides by thiobacillusferrooxidans [J]. C. R. Acad. Bulgar Sci., 1983, 36: 105-108.
    [90] Sanmugasunderam, Visvanathakurukal. Kinetic studies on the biological leaching of a zinc sulfide concentrate in two stage continuous stirred tank reactors. PhD Dissertation, 1981, The University of British Columbia(Canada).
    [91] M. Pistorio, G. Curutchet, E. Donati et al. Direct zinc sulfide bioleaching by Thiobacillus ferrooxidans and Thiobacillus thiooxidans [J]. Biotechnology Letter, 1994, 16(4): 419-424.
    [92] Oswaldo Garcia Jr., Jerry M. Bigham, Olli H. Tuovien. Sphalerite oxidation by Thiobacillus ferrooxidans and Thiobacillus thiooxidans [J]. Can. J. Microbiol., 1995, 41: 578-584.
    [93] M. Boon, M. Snijder, G. S. Hansford, et al. Oxidation kinetics of zinc sulphide with Thiobacillus ferrooxidans [J]. Hydrometallurgy, 1998, 48(2): 171-186
    [94] F. K. Grundwell. Kinetics and mechanism of the oxidative dissolution of a zinc sulfide concentrate in ferric sulfate solution [J]. Hysrometallurgy, 1987, 19: 227-242.
    [95] P. Massacci, M. Recinella, L. Piga. Factorial experiments for selective leaching of zinc sulfide in ferric sulfate media [J]. Int. J. Miner. Process, 1998, 53(4): 213-224.
    [96] M. Boon, K. C. A. M. Luyben J. J. Heijnen. The use of on-line off-gas analyses and stoichiometry in the bio-oxidation kinetics of sulfide minerals [J]. Hydrometallurgy, 1998, 48(1): 1-26.
    [97] W. K. Choi, A. E. Torma, R. W. Ohline et al. Electrochemical aspects of zinc sulfide leaching by thiobacillus ferrooxidans [J]. Hydrometallurgy, 1993, 33(1-2): 137-152.
    [98] T. A. Flowler, F. K. Crundwell. Leaching of zinc sulfide by thiobacillus ferrooxidans: Experiments with a controlled redox potential indicate no direct bacterial mechanism [J]. Appl. Envir. Microbiol. 1998, 64(10): 3570-3375.
    [99] T. A. Flowler, F. K. Crundwell. Leaching of zinc sulfide by thiobacillus ferrooxidans: Bacterial oxidation of the sulfur product layer increases the rate of zinc sulfide dissolution at high concentrations of ferrous ion [J]. Appl. Envir. Microbiol. 1999, 65(12): 5285-5292.
    [100] T. A. Flowler, F. K. Crundwell. The role of thiobacillus ferrooxidans in the bacterial leaching of zinc sulfide [J]. Presented at IBS 99, Spain. 1999: 273-282.
    [101] Y. P. M. Driessens, T. A. Flowler, F. K. Grundwell. A comparison of the bacterial and chemical leaching of sphalerite at the same solution conditions [C]. Presented at IBS 99, Spain: 201-208.
    [102] 雷云,贾云芝.细菌浸出硫化锌矿氧化动力学研究进展[J].有色金属,1999,51(4):80-82,48
    [103] K. A. Natarajan. In: Indo-US seminar on special topics in mineral processing [C]. 1987-1988.
    [104] Y. A. Attia, M. El-Zeky. Effects of galvanic interactions of sulfides on extraction of precious metals from refractory complex sulfides by bioleaching [J]. Inter. J. Miner. Processing, 1990, 30(1-2): 99-111.
    [105] N. Jyothi, K. N. Sudha, K. A. Natarajan. Electrochemical aspects of selective bioleaching of sphalerite and chalcopyrite from mixed sulphides [J]. Inter. J. Miner. Processing, 1989, 27(3-4): 189-203.
    [106] V. Sanmugasunderam, R. M. R Branion, D. W Duncan. A growth model for the continuous microbiological leaching of a zinc sulfide concentrate by Thiobacillus ferrooxidans [J]. Biotechnology & Bioengineering, 1985, 27: 1173-1184.
    [107] G. Roy Choaudhury, L. B. Sukla, R. P. Das. Kinetics of bio-chemical leaching of sphalerite concentrate [J]. Metallurgical Transtraction B, 1985, 16B: 667-670.
    [108] Yasuhiro Konishi, Hideaki Kubo, Satoru Asai. Bioleaching of zinc sulfide concentrate by Thiobacillus ferrooxidans [J]. Bioteclmology & Bioengineering, 1992, 39(1): 66-74.
    [109] Kai Takami, Suenaga Yo-ich, Migita Atsuko et al. Kinetic model for simultaneous leaching of zinc sulfide and manganese dioxide in the presence of iron-oxidizing bacteria [J]. Chem. Eng. Science, 2000, 55(17): 3429-3436.
    [110] H. M. Lizama, M. J. Fairweather, Z. Dai et al. How dose bioleaching start? [J] Hydrometallurgy, 2003, 69: 109-116.
    [111] M. Carta, M. Ghiani, G. Rossi. Beneficiation of a complex sulfide ore by an interated process of flotation and bioleachoing [C]. In: Procc. Complex Sulfide Ore Conference. Rome. Institution or Mining and Metallurgy. London, 1980.
    [112] C. Gomez, J. L. Limpo, A. De Luis et al. Hydrometallurgy of bulk concentrates of Spanish complex sulphides: chemical and bacterial leaching [J]. Canadian Metallurgical Quarterly, 1997, 36(1): 15-23.
    [113] C. Grmez, M.L. Blazquez, A Ballester. Bioleaching of a Spanish complex sulphide ore bulk concentrate [J]. Miner. Eng., 1999, 12(1): 93-106.
    [114] F. Torres, M. L. Blazquez, F. Gonzalez et al. Bioleaching of different sulfide concentrates using thermophilic bacteria [J]. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 1995, 26(3): 455-465.
    [115] P. Balaz, M. Kusnierova, V. I. Varencova et al. Mineral properties and bacterial leaching of intensively ground sphalerite and sphalerite-pyrite mixture [J]. Inter. J. Miner. Processing, 1993-1994, 40(3-4): 273-285.
    [116] A. V. Belyi, G. K. Zinenko, B. G. Korrov. Bacterial leaching of a collective copper-zinc concentrate [J]. Tsvetnye Metally, 1987(8): 25-27.
    [117] I. Palencia, R. Romero, F. Carranza. Silver catalyzed IBES process: application to a Spanish copper-zinc sulfide concentrate. Part 2. Biooxidation of the ferrous iron and catalyst recovery [J]. Hydrometallurgy, 1998, 48: 101-112.
    [118] R. Romero, I. Palencia, F. Carranza. Silver catalyzed IBES process: application to a Spanish copper-zinc sulfide concentrate. Part 3. Selection of the operational parameters for a continu-ous pilot plant [J]. Hydrometallurgy, 1998, 49: 75-86.
    [119] G. Roy Chaudhury, R. P. Das. Bacterial leaching-complex sulphide of copper, lead and zinc [J]. Inter. J. Miner. Processing. 1987, 21(1-2): 57-64.
    [120] P. C. Miller. Large-scale bacterial leaching of a copper-zinc ore in sire [C]. Fundamental and Applied Biohydrometallurgy, Proceedings of the Sixth International Symposium on Biohydrometallurgy. 1986: 215-239.
    [121] Lasse Ahonen, Olli H Tuovinen. Bacterial leaching of complex sulfide ore samples in bench-scale column reactors [J]. Hydrometallurgy, 1995, 37(1): 1-21.
    [122] Ake Sandstrom, Stig Petersson. Bioleaching of a complex sulphide ore with moderate thermophilic and extreme thermophilic microorganisms [J]. Hydrometallurgy, 1997, 46(1): 181-190.
    [123] 雷云,杨显万.生物湿法冶金与西部矿产资源开发[J].有色金属,2000,52(4):100-103.
    [124] Lesia Harahuc, Hector M. Lizama, Isamu Suzuki. Effect of anions on selective solubiliza- tion of zinc and copper in bacterial leaching of sulfide ores [J]. Biotech. Bioengin. 2000, 69(2): 196-203.
    [125] A. Ballester, F. Gonzalez, M. L. Blazquez et al. Influence of various ions in the bioleaching of metal sulphides [J]. Hydrometallurgy, 1990, 23(2-3): 221-235.
    [126] T. J. Harvey, W. Van Der Merwe, K. Afewu. The application of the GeoBiotics GEOCOAT~(?) biooxidation technology for the treatment of sphaledte at Kumba resources' Rosh Pinah mine [J]. Miner. Eng. 2002, 15(11): 823-829.
    [127] 雷桂萍,刘中华.锌工业近十年的统计与发展趋势分析[J].上海有色金属,2001,22,(4):175-180.
    [128] 中国地质矿产信息研究院.国外矿产年评[C],1997~1998.
    [129] 董英.高铁硫化锌精矿冶炼工艺探讨[J].云南冶金,2000,29(4):26-29.
    [130] 赵纯禄.铁闪锌矿浮选工艺过程的特性[J].有色金属(选矿部分),1995,(5):4-7.
    [131] 彭容秋主编.有色金属提取冶金手册—锌镉铅铋[M].北京:冶金工业出版社,1992.
    [132] 郎家重.国外锌冶炼工艺发展状况[J].有色矿冶,1999,(4):30-32.
    [133] 石伟,涂桃枝,杨寒林,夏光详.催化氧化酸浸法处理锌精矿的研究[J].有色金属(冶炼部分) 1999(01):8-10.
    [134] 刘峻峰.常压硫酸浸闪锌矿降低硫化合物气体排放量的研究[J].环境污染与防治,1997,19(3):5-45.
    [135] 刘峻峰.常压酸浸闪锌矿的条件对锌浸出的影响[J].中国有色金属学报,2000,10(5):729-731.
    [136] 王德全,姜澜.盐酸浸出硫化锌精矿工艺的研究[J].有色矿冶,1999,(4):19-22.
    [137] 卢立柱,谢惠琴.协同催化氧化体系中锌精矿的直接浸出[J].有色金属,1998,50(1):45-50.
    [138] 何运昭,曾念兰.锌精矿常压酸氧化浸取中硝酸的作用[J].有色金属(冶炼部分) 1997(01):25-27.
    [139] 陈枫,杨佼庸,杨迈之.氯化物介质中黄铜矿和铁闪锌矿的电化学行为[J].有色金属,1995,47(2):60-69.
    [140] P. Massacci, M. Recinella, L. Piga. Factorial experiments for selective leaching of zinc sulfide in ferric sulfate media [J]. Hydrometallurgy, 1998, 53(4): 213-224.
    [141] 李军旗.几种因素对硫化锌精矿、软锰矿同时浸出的影响[J].贵州工业大学学报(自然科学版),2000,29(3):10-14.
    [142] Takami Kai, Yo-ich Suenaga, Atsuko Migita, Takeshige Takahashi. Kinetic model for simultaneous leaching of zinc sulfide and manganese dioxide in the presence of iron-oxidizing bacteria [J]. Hydrometallurgy, 2000, 55(17): 3429-3436.
    [143] N. Kuyucak. Microorganisms, biotechnology and acid rock drainage-emphasis on passive-biological control and treatment methods [J]. Mineral & Metallurgical Processing, 2000, 17(2): 85-95.
    [144] A. Schippers, P. G. Jozsa, Z. M Kovacs et al. Large-scale experiments for microbiological evaluation ofmeasures for safeguarding sul(?)lic mine waste [J]. Waste management, 2001, 21(2): 139-146.
    [145] C. Pogliani, E. Donati. Immobilisation of Thiobacillus ferrooxidans: importance of jarosite precipitation [J]. Process Biochemistry, 2000, 35: 997-1004.
    [146] 陈家镛,于淑秋,伍志春编著.湿法冶金中铁的分离与利用[M].北京:冶金工业出版社,1991.
    [147] 张正阶,林金辉,宋谢炎,王仙,胡天斗.闪锌矿中杂质Fe存在形式的重新认识[J].矿物学报.1997,17(1):1-10.
    [148] 宋谢炎,张正阶,林金辉,王仙.铁闪锌矿中铁占位的物化条件及机制[J].矿物学报.1999,19(2):166-174.
    [149] H. Tributsch, J. A. Rojas-Chapana. Metal sulfide semiconductor electrochemical mechanisms induced by bacterial activity [J]. Electrochimica Acta, 2000, 45(28): 4705-4716.
    [150] Donovan P. Kelly. Thermodynamic aspects of energy conservation by chemolithotrophic sulfur bacteria in relation to the sulfur oxidation pathways [J]. Arch Microbiol, 1999, 171: 219-229.
    [151] Ting, Y. P.; Senthil Kumar, A.; Rahman, M.; Chia, B. K. Innovative use of Thiobacillus ferrooxidans for the biological machining of metals [J]. Acta Biotechnol. 20(2): 87-96(English)
    [152] Daz, M. and Roig, A. Qumica Fsica vol. 2. Alhambra, Madrid. 1980, p. 1159.
    [153] Cheng, Chu Yong. Purification of synthetic laterite leach solution by solvent extraction using D2EHPA [J]. Hydrometallurgy, 2000, 56 (): 369-386.
    [154] C. Lupi and D. Pilon. Use of various extractants in zinc solvent extraction from impure solutions [A]. TMS Annual Meeting [C] Feb 15-19 1998, Sponsored by: TMS Minerals, Metals & Materials Soc(TMS): 167-173.
    [155] 杨佼庸,刘大星.萃取[M].北京:冶金工业出版社,1988.
    [156] 易筱筠,古国榜.生长液滴法L54-100萃铜的动力学[J].化工冶金,1997,21(4):355-358.
    [157] 孙思修,薛梅,杨永会,沈静兰..溶剂萃取动力学研究—恒界面池法[J].化学通报,1996(7):50-52
    [158] 孙国新,杨永会,孙思修,沈静兰.萃取剂HDEHP界面性质研究[J].高等学校化学学报,1995,17(11):1677-1679.
    [159] H. Vazarlis, Eneou-Syngoyan. A study of the leaching of copper and zinc from a Greek copper concentrate: liquid-liquid extraction for the separation of copper, zinc and iron from the leach solutions [J]. Hydrometallurgy, 1984, 12(3): 365-373.
    [160] Gu H., Chang C.-M, Barrera-Godinez J. A. et al. Preliminary design of a solvent extraction process for the galvanic stripping of iron from D2EHPA [J]. Minerals & Metallurgical processing, 2000, 17(1): 16-22.
    [161] Richrnan, Charles Irwin. A study of magnetic behavior and growth kinetics in Thiobacillus ferrooxidans and Aquaspirillum magnetotacticum. MS Thesis, University of Nevada, Reno. 1998.
    [162] Sorbo, B. A colorimetric method for the determination of thiosulfate [J]. Biochim. Biophys. Acta, 1957, 23: 412416.
    [163] A. Dasa A. K. Mishra. Role of Thiobacillus ferrooxidans and sulphur(sulphide)-dependent ferric-ion-reducing activity in the oxidation of sulphide minerals [J]. Appl Microbiol Biotechnol, 1996, 45: 377-382
    [164] T. F Kondrat'eva, T. A. Pivovarova, L. N. Muntyan et al. Structural changes in the chromosomal DNA of Thiobacillus ferrooxidans cultivated on media with various oxidation substrates [J]. Mikrobiologiya, 1996, 65(1): 67-73(Russ).
    [165] P. Davasia, K. A. Natarajan, D. N. Sathyanarayana et al. Surface chemistry of Thiobacillus ferrooxidans relevant to adhesion on mineral surface [J]. Appl. Environ. Microbiol. 1993, 59(12): 4051-4055.
    [166] 李洪玫,柯家骏.营养物对氧化亚铁硫杆菌浸出含镍磁黄铁矿的影响[J].化工学报,2000(51,增刊):151-154.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700