奥氏体不锈钢螺栓断裂失效机理及防护措施研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文针对上海市某石化企业检修时发现大量的不锈钢螺栓开裂现象,对不锈钢螺栓进行失效原因分析。分析结果表明不锈钢螺栓断裂的主要原因是由于螺栓含碳量偏高,过饱和的碳以化合物形式沿奥氏体晶界析出,降低了材料的耐腐蚀性;同时由于螺栓所处的大气环境中富含氯、硫等元素,长期使用中有害元素在材料表面不断富集,造成材料表面产生晶间腐蚀裂纹,在应力作用下裂纹不断扩展最终导致螺栓断裂。
     通过对螺栓断裂失效机理的研究,提出固溶处理、表面化学钝化和表面涂层三种防应力腐蚀的对策。在实验室条件下对螺栓材料进行固溶处理、表面化学钝化和表面涂层处理,并通过金相分析、断口形貌分析、电化学塔菲尔曲线分析、恒载荷试验和慢应变速度拉伸试验对不同处理方法的防应力腐蚀效果进行研究。试验结果表明三种方法都起到了防护效果,不同程度的降低了材料的应力腐蚀敏感性。
     本文最后对三种防应力腐蚀对策进行了比较,研究分析了不同处理方法的适用条件,为沿海地区石化企业不锈钢设备的腐蚀防护提供参考。
The paper mainly analyzed the failure cause of austenitic stainless bolts which were founded during the overhaul of certain petrochemical company in shanghai. The results showed that stainless steel bolts fracture was primarily due to higher C content. The supersaturated carbon precipitated along the austenitic grain boundaries in the form of carbon compounds, lowering the material corrosion resistance. At the same time there was a high content of chlorine, sulfur and other elements in atmospheric environment where bolts worked, so the harmful elements enriched on the material surface during the long-term using, which resulted in intergranular corrosion cracks on surface of the material. The cracks expand continuously under the stress and lead to bolt fracture finally.
     According to the analysis and research of the fractured bolts failure mechanism the paper put forward three kinds of bolt SCC prevention measures such as solution treatment, surface chemical passivation disposal and surface coating disposal and studied the bolt SCC prevention results of three different kinds of measures under the laboratory conditions by ways of metallographic analysis, fracture morphology analysis, electrochemical tafel curve analysis, constant loading test and slow strain rate tensile test. The test results show that three methods have played a protective effect and lowered the SCC sensitivity with different levels of the stainless steel material.
     The paper finally compared with three kinds of SCC prevention measures, researched the applicable conditions of stainless steel material deal with in different ways, and offered references for the protection of stainless steel equipments in the petrochemical enterprise.
引文
[1]陈世英,王欣增,李丕钟,王洁.不锈钢应力腐蚀事故分析与耐应力腐蚀不锈钢[M].原子能出版社.1985
    [2]小若止伦.金属的腐蚀破坏与防蚀技术[M].北京:化学工业出版社.1988
    [3]张振杰.奥氏体不锈钢应力腐蚀破裂探讨[J].石油化工腐蚀与防护.2006,23(2):48-50
    [4]中国腐蚀与防护学会.腐蚀与防护全书,自然环境的腐蚀防护——大气海水土壤[M].北京:化学工业出版社.1997
    [5]侯保荣等.海洋腐蚀与防护[M].北京科学出版社.1997
    [6]王一建,黄本元,王余高,张康夫.金属大气腐蚀与暂时性保护[M].北京:化学工业出版社.2007
    [7]中国腐蚀与防护学会《金属防腐蚀手册》编写组.金属防腐蚀手册[M].上海:上海科学技术出版社.1989
    [8]肖纪美.不锈钢的金属学问题[M].北京:冶金工业出版社.2006(2)
    [9]ASMT-ATME,Symposium on Stress-Corrosion Cracking of Metals[C].1994
    [10]褚武扬,乔利杰,陈奇志,高克伟.断裂与环境断裂[M].北京:科学出版社.2000
    [11]ASM Metals handbook. Failure analysis and prevention [M].1985
    [12]H.H.瓦西连科等著,陈石卿等译.钢的应力腐蚀开裂[M].北京:国防工业出版社.1983
    [13]李炯辉,施友方,高汉文.钢铁材料金相图谱[M].上海:上海科学技术出版社.1981
    [14]张德康.不锈钢局部腐蚀[M].北京:科学出版社.1982
    [15]Kazuki Takashima, Akira Ishida. Metals and Alloys [M].2008
    [16]王正樵,吴幼林等.不锈钢[M].北京:化学工业出版社.1991
    [17]H.H. Uhlig.Origin of Delay Time in Stress Corrosion Cracking of Austenitic Stainless Steel [J].Corrosion Sci,1965,5:291-299
    [18]M.G Fontana.Cast Chromium Nickel Stainless Steel of Superior Resistancet to Stress [J].Corrosion Metal Progress.1961,80:99-102
    [19]乔利杰,王燕斌,褚武扬.应力腐蚀机理[M].北京:科学出版社.1993
    [20]Osama M. Alyousif, Rokuro Nishimura.On the stress corrosion cracking and hydrogen embrittlement of sensitized austenitic stainless steels in boiling saturated magnesium chloride solutions:Effect of applied stress[J]. Corrosion Science.2008 (50)2919-2926
    [21]P. Muraleedharan. J. B. Gnanamoorthy and P. Rodriguez.The Effect of ageing at 973K on Stress Corrosion Cracking of type 304 Stainless Steel[J]. Corrosion Science.1996. 38(7):1187-1201.
    [22]Mathis,R Jnitiation and early growth mechanisms of corrosion fatigue cracks in stainless steels[J].Jounral of Materials Science.1987,22 (3):907-914
    [23]Colin R. Gagg, Peter R Lewis.Environmentally assisted product failure-Synopsis and case study compendium[J]. Engineering Failure Analysis.2008 (15):505-520
    [24]Zheng Wenyue, Newman R.C., Procter R.P.M., Enviroment Induced Cracking of Metals[J].Houston,T X,NACE,1990
    [25]P.R.Rhodes, Machanism of chloride Stress Corrosion Cracking of Austenitic Stainless Steels [J]. Corrosion. 1969,25:462-472
    [26]黄彦良,曹楚南,林海潮,吕明.321不锈钢在酸性氯离子溶液中的应力腐蚀开裂机理[J].金属学报.1993,29(5):212-216
    [27]J.E. Tr uman, The influence of chloride content,pH and temperature of test solution on the occurrence of stress corrosion cracking with austenitic stainlesssteel [J].UL Corrosion Science.1977,17(9):737-746
    [28]Osama M. Alyousif, Rokuro Nishimura.The effect of test temperature on SCC behavior of austenitic stainless steels in boiling saturated magnesium chloride solution[J]. Corrosion Science.2006 (48):4283-4293
    [29]Z.Szklarska-Smialowka and N.Lukomoski:Corrosion,1978,34:177
    [30]黄寒.海滨大气中不锈钢拉杆提前失效的分析与研究[D].西北工业大学硕士学位论文2004.6
    [31]梁成浩.现代腐蚀科学与防护技术[M].上海:华东理工大学出版社.2007
    [32]肖纪美.应力作用下的金属腐蚀[M].北京:化学工业出版社.1990
    [33]同部幸福(日).防止不锈钢应力腐蚀破裂的对策[J].中国设备管理.1996:36-37
    [34]李金桂,赵闺彦.腐蚀和腐蚀控制手册[M].北京:国防工业出版社.1988
    [35]曹福想,张启礼.奥氏体不锈钢应力腐蚀裂纹失效分析及对策[J].南方金属.2008,(162):9-11
    [36]任凌波,任晓蕾.压力容器腐蚀与控制[M].北京:化学工业出版社.2003
    [37]胡方.化工设备中奥氏体不锈钢的应力腐蚀和防护[J].化工设备与管道.2002,39(3):61-54
    [38]B.Poulson.Stress Corrosion Cracking of Type 316 Stainless Steel in Caustic Solution [J].Corrosion.1992,33(10):1541-1556
    [39]林海潮.缓蚀剂研究的进展[J].腐蚀科学与防护技术.1997.9(4);308-313
    [40]Sergei A. Shipilov.Solving some key failure analysis problems using advanced methods for materials testing[J]. Engineering Failure Analysis.2007(14):1550-1573
    [41]余存烨.防止奥氏体不锈钢应力腐蚀破裂的实用对策[J].化工设备与防腐蚀.1998(2)47-53
    [42]赖国伟,谢晓君,武自修,庄焱,邢淑萍.金属喷涂长效复合防护涂层在海洋大气环境中的应用[J].材料开发与应用2002,17(4):29-31
    [43]左景伊,应力腐蚀破裂[M].西安交通大学出版社.1985
    [44]GB/T3098.6-2000,紧固件机械性能不锈钢螺栓、螺钉和螺柱[S]
    [45]GB/T1220-2007,不锈钢棒[S]
    [46]高宗仁.简明不锈钢手册[M].太原:山西科学技术出版社.2003
    [47]王勤生.固溶处理对形变奥氏体不锈钢显微组织及其抗应力腐蚀性能的影响[J].特种设备安全技术.2009(1):34-36
    [48]钟群鹏,赵子华编著.断口学[M].北京,高等教育出版社.2006
    [49]金相图谱编写组.金相图谱[M].北京.水利电力出版社.1986
    [50]陈桂兰.敏化处理对0Cr19Ni9钢晶间腐蚀性能影响的研究[J].太钢科技.1992(1):59-64
    [51]J.G Gonzalez-Rodriguez, G. Bahena-Martinez,V.M. Salinas-Bravo.Effect of heat treatment on the stress corrosion cracking behaviour of 403 stainless steel in NaCl at 95℃[J]. Materials Letters.2000(43):208-214
    [52]Raghuvir Singh.Influence of cold rolling on sensitization and intergranular stress corrosion cracking of AISI 304 aged at 500℃[J]. journal of materials processing technology.2008 (206) 286-293
    [53]曹楚南.腐蚀电化学原理[M].北京科学出版社.2004
    [54]林玉华,杜荣归,胡融刚,林昌健.不锈钢钝化膜耐蚀性与半导体特性的关联研究[J].物理化学学报,2005,21(7):740-74
    [55]周金保.不锈钢钝化工艺的发展[J].电镀与涂饰.1995.14(3):56-61
    [56]顾国成,吴文森.钢铁材料的防腐涂层[M].北京:科学出版社.1987
    [57]胡志鹏.国内防腐涂料发展简况[J].涂料与应用.1999:10-14
    [58]江旭,柳伟,路民旭.钢铁海洋大气腐蚀试验方法的研究进展[J].腐蚀科学与防护技术.2007,19(4)
    [59]Y.Y. Chen, Y.M. Liou, H.C. Shih.Stress corrosion cracking of type 321 stainless steels in simulated petrochemical process environments containing hydrogen sulfide and chloride[J]. Materials Science and Engineering A.2005 (407):114-126
    [60]M.Puiggliardins,L. Ajana.A Critial Study of Stress Corrosion Cracking Testing Methods for Stainless Steel in Hot Chloride Magnesium [J]. Corrosion Science.1987:585-594
    [61]H.S. da Costa-Mattos, I.N. Bastos, J.A.C.P. Gomes. A simple model for slow strain rate and constant load corrosion tests of austenitic stainless steel in acid aqueous solution containing sodium chloride[J]. Corrosion Science 2008,502858-2866
    [62]董绍平,袁军国,方德明,高增梁,张庆,刘富胜.316L钢在含H2S、Cl水溶液中的慢应变速率腐蚀试验研究[J].化工机械.2001,28(2):79-81
    [63]雷明凯,朱雪梅.奥氏体不锈钢表面改性层耐蚀性实验研究[J].金属学报.1999,35(10)
    [64]贾铮,戴长松,陈玲.电化学测量方法[M].北京:化学工业出版社.2006
    [65]张宝宏,丛文博,杨萍.金属电化学腐蚀与防护[M].北京:化学工业出版社.2005
    [66]Damian A. Lopez, Nataly C. Rosero-Navarro, Josefina Ballarre, Alicia Duran,Mario Aparicio Silvia Cere. Multilayer silica-methacrylate hybrid coatings prepared by sol-gel on stainless steel 316L[J]. Electrochemical evaluation. Surface & Coatings Technology.2008 (202) 2194-2201
    [67]Xiaoxia Sheng, Yen-Peng Ting,Simo Olavi Pehkonen.The influence of sulphate-reducing bacteria biofilm on the corrosion of stainless steel AISI 316[J]. Corrosion Science.2007 (49)2159-2176
    [68]GB/T228-2002,金属材料室温拉伸试验[S]
    [69]GB/T15970.1-1995,试验方法总则[S]
    [70]Xin Gao, Xinqiang Wu, Zhaoen Zhang, Hui Guan, En-hou Han.Characterization of oxide films grown on 316L stainless steel exposed to H2O2containing supercritical water[J]. Supercritical Fluids.2007 (42):157-163
    [71]汪轩义,吴荫顺,张琳,于正阳.316L不锈钢钝化膜在CΓ介质中的耐蚀机制[J].腐蚀科学与防护技术.2000,12(6).311-314
    [72]汪轩义,吴荫顺,张琳,曹备.不锈钢钝化膜研究进展[J].材料导报.1999,13(3):13-14
    [73]费敬银,秦熊浦,严卫东,马宗耀.不锈钢表面处理技术的研究[J].材料保护.2000,33(11):45-46
    [74]陈天玉.不锈钢表面处理技术[M].北京:化学工业出版社.2004.
    [75]李异等.金属表面转化膜技术[M].北京:化学工业出版社.2009.
    [76]李鑫庆,陈迪勤,余静琴.化学转化膜技术与应用[M].北京:机械工业出版社.2005.
    [77]GB/T15970.4-2000,单轴加载拉伸试样的制备和应用[S]
    [78]GB/T17898-1999,不锈钢在沸腾氯化镁溶液中应力腐蚀试验方法[S]
    [79]GB/T15970.7-2000,金属和合金的腐蚀应力腐蚀试验第7部分:慢应变速率试验[S]
    [80]李桂林.环氧树脂与环氧涂料[M].北京:化学工业出版社.2003
    [81]HG/T3668-2000,富锌底漆[S]
    [82]GB/T 5210-2006,色漆和清漆拉开法附着力试验[S]

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700