含风电场的电力系统频率稳定分析研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
风能是一种清洁的可再生能源能源,在绿色能源与可持续发展的大力推进和倡导之下,风力发电是我们的必然选择。但风力发电不同于传统的发电方式,由于风能的高度随机性与波动性,导致风电并网对电力系统产生很大的影响。
     本论文基于DIgSILENT/PowerFactory(DPF)仿真软件,以频率稳定作为对象,研究分析了风电与电力系统之间的相互影响。首先,研究分析了风电机组运行的机理,并详细推导了仿真使用的恒速异步风机与双馈感应风机的数学模型;其次,在新疆电网的基础上,研究了电网侧发生扰动与风电场发生扰动后的系统频率响应,及风电接入后对频率的时空特性分布的影响;第三,采用减少系统发电容量与增加负荷容量等两种方式来适应风电注入功率大小,分析了风电场注入功率对系统频率稳定性的影响;最后,建立了自动发电控制的ACE模型,仿真分析了风电场输出功率波动后频率的二次调整。
     由本论文的研究结果可知,不同类型的风电机组的频率响应特性不同,当频率发生变化时,恒速异步风机对频率可提供支持作用,而双馈感应风机的解耦控制使其对频率变化的影响较小;并且风电接入后改变了频率的时空分布特性,使频率控制装置出现“非选择性”动作情况。随着风电注入功率的增加,若采用减小发电容量的方式来适应风电容量,当频率发生跌落或增加时,频率的变化值较大;与之相比,若采用增加相同容量的系统负荷来适应风电容量,则频率发生跌落或增加时,频率的变化值较小,而且恒速异步风机对频率的变化值影响较大。如果风电场的输出功率变化引起系统频率波动时,可采用自动发电控制来抑制频率波动,实现频率的二次调整,使频率恢复到额定值。
Wind power is a kind of clean and renewable energy. Under the promotion and avocation of green energy and sustainable development, wind power is the first choice for generation. But wind power different from the traditional way of generating, because of its highly volatility. So wind power injection has a significant influence on the stability of electrical network.
     In this paper, the frequency stability of power system after wind power injection is studied and analyzed based on DPF software. Firstly, the operation mechanism of wind power unit is analyzed, and the mathematical model of FSG and DFIG are detailedly deduced. Secondly, the equivalent model of wind farm is established based on DPF, the system frequency response is studied after the disruptions occurred on the grid and wind farm based on the network of Xinjiang, and then the influence on the frequency space-time characteristics after the wind power access to the grid is analyzed. Thirdly, the effect on the stability of the system frequency with the changes of wind power injection capacity is analyzed based on a test system. Finally, the SFR is simulated, based on an other test system, resulted from the output power fluctuations of wind farm.
     The results, in this paper, show that the frequency response is different from wind turbine type to type. The FSG can provide support to frequency, instead the DFIG has little influence on the frequency under its decoupling control. The frequency time-space characteristic is changed after wind power access, and the nonselective of frequency control device will appear. If the way of generating decommittment was used to adapt to the wind power injection, when the frequency drop or increase, the change value of frequency is larger than the way of loading increasing. The AGC can be used to restrain the frequency fluctuations caused by the change of wind farm output power, and make it restored to normal value.
引文
[1]王承煦,张源.风力发电[M].北京:中国电力出版社,2003.
    [2]华智明,杨期余.电力系统[M].重庆:重庆大学出版社,2005.
    [3]贾涛,张文,楮晓东.AGC平抑风电场输出功率波动的仿真分析.第24届高校电力系统自动化年会论文集[C].北京:第24届高校电力系统自动化年会组委会,2008,95-98.
    [4]邢文琦.新疆局部电网频率约束下风电最大注入功率研究[D].新疆:新疆大学,2009.
    [5]伍济开.含风电场的电力系统频率稳定的同伦函数分析法[D].湖南:湖南大学,2008.
    [6]林霞.大型风电场并网对系统影响分析及其应用研究[D].山西:太原理工大学,2006.
    [7]世界风能协会(WWEA).2009年世界风能报告[J].风能设备,2010,(4):17-25.
    [8]王旭东,曹燕燕.海上风力发电技术现状及发展趋势[J].科技创新导报,2010,5:92.
    [9]王金柱,宫玉龙.大型风电发展的最新动向[J].电气技术,2007,2:10-13.
    [10]王徽,黄成力.海上风力发电技术[J].上海节能,2007,1:23-26.
    [11]李静,孙亚胜.海上风力发电机组的基础形式[J].上海电力,2008,(3):314-317.
    [12] Lei Yazhou.Studies on wind farm integration in to power systems[J].Automation of Electric Power Systems,2003,27(8):84-89(in Chinese).
    [13] Slootweg J G.Wind power modeling and impact on power system dynamics[D].Delft Netherlands:Techniche University Delft,2003.
    [14] Akhmatov V.Analysis of dynamic behavior of electric power systems with large amount of wind power[D].Copenhagen,Denmark:Technical University of Denmark,2003.
    [15]张锋,晁勤,刘洪.不同控制策略下风电场接入地区电网的稳态分析[J].电网技术,2008,32(19):89-92.
    [16]张锋,晁勤,刘洪.稳态约束下的风电场最优控制策略选择[J].可再生能源,2008,26(5):83-89.
    [17]韩肖清,胡月星,张伟,等.基于MATLAB的并网风电场动态仿真[J].太阳能学报,2008,29(2):175-179.
    [18]严干贵,王茂春,穆钢,等.双馈异步风力发电机组联网运行建模及其无功静态调节能力研究[J].电工技术学报,2008,23(7):98-104.
    [19] Zhang Yibin,Wang Weisheng,Dai Huizhu.P-V curve based static analysis for integration of wind farm into power system[J].Power System Technology,2004,28(23):61-65.
    [20]苑国锋,柴建云,李永东.新型转子电流混合控制的变速恒频异步风力发电系统[J].电网技术,2005,25(15):76-80.
    [20]叶运骅.并网风电转换系统中特定消谐PWM技术和控制方法[J].合肥工业大学学报,2005,28(6):628-630.
    [22]赵清声,王志新.双馈风力发电机组系统接入与稳定运行仿真[J].电网技术,2007,31(22):69-74.
    [23]刘其辉,贺家康,卞松江.变速恒频风力发电机空载并网控制[J].中国电机工程学报,2004,24(3):6-11.
    [24] RHO D,KITA H,NISHIYA K.Voltage regulation methods based on an extended approach and neural networks for distribution systems[J].IEEE Trans on Power and Energy,1997,117(3):117-122.
    [25] THIRINGER T.Integration of large seat based wind parks-how much power electronic devices are needed in order to avoid power quality problems on the grid?[J].IEEE Trans onPower Delivery,2000,15(6):1277-1279.
    [26]王志群,朱守真,周双喜,等.分布式发电对配电网电压分布的影响[J].电力系统自动化,2004,28(16):56-60.
    [27]梁有伟,胡志坚,陈允平.分布式发电及其在电力系统中的应用研究综述[J].电网技术,2003,27(12):71-75.
    [28]韩民晓,崔军立,姚蜀军,等.大量风电引入电网时的频率控制特性[J].电力系统自动化,2008,32(1):29-33.
    [29]张红光,张粒子,陈树勇,等.大容量风电场接入电网的暂态稳定特性和调度对策研究[J].中国电机工程学报,2007,27(31):45-51.
    [30]伍济开,江辉,彭建春.基于同伦函数的风电系统频率稳定特征值分析[J].中国电机工程学报,2007,27(31):103-107.
    [31] RUBIRA S,MCCULLOCH M.Control method comparison of doubly-fed wind generators connected to the grid by asymmetric transmission lines[J].IEEE Trans on Industry Applications,2000,36(4):986-991.
    [32] EKANA YA KE J,J EN KINS N.Comparison of t he response of doubly-fed and fixed-speed induction generator wind turbines to changes in network frequency[J].IEEE Trans on Energy Conversion,2004,19(4):800-802.
    [33]关宏亮,迟永宁,王伟胜,等.双馈变速风电机组频率控制的仿真研究[J].电力系统自动化,2007,31(7):61-65.
    [34]《电力系统调频与自动发电控制》编委会.电力系统调频与自动发电控制[M].北京:中国电力出版社,2006.
    [35] Schlueter R A,Park G L,Reddoch T W,et al.A modified unit commitment and generation control for utilities with large wind generation penetrations[J].IEEE Transaction on Power Apparatus and Systems,2004,104(7):1630-1636.
    [36] JoséLuis Rodríguez-Amenedo,Santiago Arnalte,Juan Carlos Burgos.Automatic Generation Control of a Wind Farm With Variable Speed Wind Turbines[J].IEEE Transactions on Energy Conversion,2002,17(2):279-284.
    [37]袁铁江,晁勤,吐尔逊·伊不拉音,童菲.电力市场环境下含风电机组的环境经济调度模型及其仿真[J].电网技术,2009,33(6):67-71.
    [38] Siegfried Heier.Grid Integration of Wind Energy Conversion Systems,John Wiley&Sons,1998.
    [39]叶杭冶.风力发电机组的控制技术[M].北京:机械工业出版社,2002.
    [40] Akhmatov V.Analysis of Dynamic Behavior of Electric Power Systems with Large Amount of Wind Power.PhD. Thesis.Copenhagen,Denmark:Electric Power Engineering,Technical University of Denmark,2003.
    [41]迟永宁.大型风电场接入电网的稳定性问题研究[D].北京:中国电力科学研究院,2006.
    [42]潘文霞,陈允平.风电系统及其电压特性研究[J].河海大学学报,2001,29(1):88-92.
    [43]孙建锋.风电场建模和仿真研究[D].北京:清华大学,2004.
    [44]吴俊玲.大型风电场并网运行的若干技术问题研究[D].北京:清华大学,2004.
    [45]张锋,晁勤.STATCOM改善风电场暂态电压稳定性的研究[J].电网技术,2008,32(9):70-73.
    [46]张俊,晁勤,段晓田,等.动态约束下的风电场最大可接入容量研究[J].电力系统保护与控制,2011,39(3):62-66,73.
    [47]吴学光,张学成,印永华,等.异步风力发电系统动态稳定性分析的数学模型及其应用[J].电网技术,1998,22(6):68-72.
    [48]关宏亮.大规模风电接入电力系统的小干扰稳定性研究[D].河北:华北电力大学,2008.
    [49]范伟,赵书强.考虑风力发电的电力系统小干扰稳定性分析[J].华北电力大学学报,2009,36(2):23-27,32.
    [50]孙建锋,焦连伟,吴俊玲,等.风电场发电机动态等值问题的研究[J].电网技术,2004,28(7):58-61.
    [51]辜承林,陈乔夫,熊永前.电机学[M].武汉:华中科技大学出版社,2005.
    [52] Pena R,Clare J C,Asher G M.Doubly fed induction generator using back-to-back PWM converters and its application to variable speed wind-energy generation[J].IEE proceedings on Electric Power Applications,1996,143(3):231-241.
    [53]林成武,王凤翔,姚兴佳.变速恒频双馈风力发电机励磁控制技术研究[J].中国电机工程学报,2003,23(11):122-125.
    [54]苑国锋,柴建云,李永东.变速恒频风力发电机组励磁变频器的研究[J].中国电机工程学报,2005,25(8):90-94.
    [55]卞松江,吕晓美,相会杰,等.交流励磁变速恒频风力发电系统控制策略的仿真研究[J].中国电机工程学报,2005,25(16):57-62.
    [56] Yazhou Lei,alan mullane,Gordon lightbody,et al.modeling of the wind turbine with a double fed induction generator for grid integration studies[J].IEEE Trans on Energy Conversion.2006,21(1):257-264.
    [57]迟永宁,王伟胜,刘燕华,等.大型风电场对电电力系统暂态稳定性的影响[J].电力系统自动化,2006,30(15):10-14.
    [58]吕涛,韩祯祥.电力系统仿真软件DIgSILENT介绍[J].华东电力,2004,32(12):37-41.
    [59]迟永宁,王伟胜,戴慧珠.改善基于双馈感应发电机的并网风电场暂态电压稳定性研究[J].中国电机工程学报,2007,27(25):25-31.
    [60]张红光,张粒子,陈树勇,等.大容量风电场接入电网的暂态稳定特性和调度对策研究[J].中国电机工程学报,2007,27(31):45-51.
    [61]王海超,鲁宗相,周双喜.风电场发电容量可信度度研究[J].中国电机工程学报,2005,25(10):103-106.
    [62]余贻鑫,王成山.电力系统稳定性理论与方法[M].北京:科学出版社,1999.
    [63]韩祯祥.电力系统稳定[M].北京:中国电力出版社,1995.
    [64]王晓茹,LIU Yilu.大规模电力系统频率动态分析[J].南方电网技术,2010,4(1):13-17.
    [65] Thierry van cutsem,costas vournas.电力系统电压稳定性[M].北京:电子工业出版社,2008,3,1-8.
    [66]程时杰,曹一家,江全元.电力系统次同步振荡的理论与方法[M].北京:科学出版社,2009,4-7.
    [67]中华人民共和国电力行业标准.电力系统安全稳定导则(DL 755-2001).中国电力出版社,2001,6.
    [68]夏道止.电力系统分析[M].北京:中国电力出版社,2004.
    [69]王士政.电力系统控制与高度自动化[M].北京:中国电力出版社,2008.
    [70]蔡邠.电力系统频率[M].北京:中国电力出版社,1998.
    [71]张斌.自动发电控制及一次调频控制系统[M].北京:中国电力出版社,2005.
    [72]张恒旭,李常刚,刘玉田,等.电力系统频率动态分析与应用研究述评[J].中国高等学校电力系统及其自动化专业第二十四届学术年会论文集,2008,382-385.
    [73]袁季修.电力系统安全稳定控制[M].北京:中国电力出版社,1996.
    [74]蔡泽祥,徐志勇,申洪.电力系统频率稳定分析的直接法[J].电力系统及其自动化学报,1999,11(5-6):13-17.
    [75]蒋佳良,晁勤,陈建伟,等.不同风电机组的频率特性仿真分析[J].可再生能源,2010,28(3):24-28.
    [76]钱少锋.大型恒速恒频风电场并入输电网的动态特性研究[D].北京:华北电力大学,2008.
    [77]张恒旭,刘玉田.电力系统动态频率响应时空分布特征量化描述[J].中国电机工程学报,2009,29(7):64-70.
    [78]周海锋,倪腊琴,徐泰山.电力系统功率频率动态特性研究[J].电网技术,2009,33(16):58-62.
    [79]周海锋.电力系统功率频率特性研究[D].南京:国网南京自动化研究院,2008.
    [80] Eknath Vittal,Andrew Keane,Mark O’Malley.Varying Penetration Ratios of Wind Turbine Technologies for Voltage and Frequency Stability[J].Power and Energy Society General Meeting - Conversion and Delivery of Electrical Energy in the 21st Century,2008.
    [81]周京阳,于尔铿.能量管理系统(EMS)[J].电力系统自动化,1997,21(5):75-78.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700