中国及邻区模拟大地水准面的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
论文主要讨论了利用实际的地球物理资料,模拟正演了大地水准面的短波部分,并利用了地球重力场模型的低阶项计算出中长波部分,叠加得到模拟大地水准面。利用实际数据讨论了各种资料对大地水准面的影响,分析了它们的影响范围,确定了计算时的积分半径。利用GPS水准对模拟大地水准面进行约束,采用“移去——恢复”技术和多面函数法进行拟合内插,得到转换后的大地水准面。
     大地水准面是地球内部密度分布的直接反映,其频谱结构是长波占优,反映地球深部或地幔的密度异常分布,而大地水准面起伏的中短波部分与岩石圈内部负荷及地形有很强的相关性。因此,如果知道了地球内部结构和动力学过程,我们可以唯一准确地确定大地水准面。理论上,大地水准面的模拟除去考虑地形、地壳内密度分布不均匀的影响外,还应考虑地幔的影响,通常可用地幔的波速异常转换为密度异常,再根据内部负荷的响应理论推算出地表的大地水准面。但是,不同的地幔粘滞度结构将对结果的不确定性带来较大的影响,并且还要考虑在地幔对流环境中内部负荷的动力学效应,同时涉及理论复杂,计算量大。利用现有的全球重力场模型(如EGM96)的长中波长部分来顾及地幔部分的影响,而用地形、界面起伏及横向密度不均匀等实际资料来模拟重力场短波部分的局部影响,最后迭加得到理论模拟大地水准面。
     由于各物质界面处于不同的深度,考虑它们对大地水准面的影响不能采用同样的积分范围,而且由于本文直接使用位函数,其收敛速度很慢,就影响的绝对值而言,必须考虑全球积分。这一方面要求顾及地球弯曲的影响,另一方面对资料的要求也比较高,而且计算工作量也很大。论文中提出了利用柱体积分时采用移动坐标系来顾及地球弯曲的影响,并利用差分的概念,设想离计算区域到一定距离后,流动点对计算区域内的中心点和边缘点的影响之差为一常数,并用试验的方法,统计分析了它们对大地水准面的有效积分拓展范围。
     由于模拟大地水准面得到的只是各点之间的差值关系,与实际大地水准面之间可能存在系统差,由于GPS水准能够提供高精度的大地水准面起伏,为此我们利用GPS水准资料对其进行约束。在转换过程中,为了提高精度,采用了“移去——恢复”技术和多面函数法进行拟合内插,并用模拟大地水准面对某地区的高程进行了拟合,与已知数据相比,比以往的结果有一定程度的改善。
In this thesis, the short waves of the geoid are calculated by observed geophysical data, and the middle- and long-waves of geoid are calculated by low orders of the earth gravity model (such as EGM96), then their superposition is the simulated geoid obtained. The effects on the determination of geoid of individual geophysical data are discussed and the reasonable integration ranges are proposed. The GPS-levelling is used to add constraints on the simulated geoid, and the "remove-restore" method and the multi-quadric function method are used to interpolation, so as to obtain the refined geoid.
    The geoid undulations are the direct reflection of the earth internal density distributions. The long-wave parts are prominent in frequency domain of the geoid undulations. They reflect the abnormal density distribution in the deep earth or the mantle. The short waves of the geoid are strong related with the lithosphere loading and ground topography. So if we know the earth internal structures and its geodynamic processes, we can determine a unique geoid. Theoretically, in the simulation of the geoid, not only the effects of topography and the density distribution in the crust, but also the effects of the mantle abnormal density should be taken into consideration. The density of the mantle can be calculated by the velocities of seismic waves, and then their effects on the geoid can be calculated by internal loading theory. But the viscosity structures of the mantle bring a large uncertainty of the geoid, in addition, the dynamical effects of the mantle convection are also need to be considered. However
    , the relevant theoretical problems are complex and the computation loading is very heavy. By using the middle- and long-wave parts of the recent earth gravity model (such as EGM96), the effects of the mantle are calculated. And the topographical data, the interface undulation data, and the lateral heterogeneous density distribution data, are then used to simulate the short-wave parts of the earth gravity model. The superposition of the two parts gives the theoretical simulated geoid.
    As the interface in the earth located in different depth, so when their effects on the geoid are calculated, different integration range should be used. However, as we use potential functions directly in our study, the convergent speed of the calculation is very slow, the global integration must be taken. So we need consider the effects of the earth curvature. In global integration, the requirement of the data coverage and the computation are comparative high. In this thesis, a moving coordinate system is used to overcome the effects of the earth curvature. And a differential calculation concept is proposed that assumes the difference of geoid calculated between the central point and its marginal point is constant when the integration area is far away from the central point. An experimental method is developed to statistic the efficient
    
    
    integration range for geoid calculation.
    Because the simulated geoid only reflects the differences of the real geoid, their values may have a systematic error, so GPS-levelling data are used to constrain the geoid interpolations. For improving the accuracy of the geoid conversion, the "remove-restore" method and the multi-quadric function method are used to geoid interpolation. Through comparing with the geoid values of known points, our method has some significant improvements on the geoid determination method used before.
引文
长春地质学院,物探数据处理的数学方法,地质出版社,1981。
    陈俊勇、李建成,推算我国高精度和高分辨率似大地水准面的若干技术问题,武汉测绘科技大学学报,1998,第23卷第2期。
    陈俊勇,高精度局域大地水准面对布测GPS水准和重力的要求,测绘学报,2001,第30卷第3期。
    陈俊勇、李建成、宁津生等,中国新一代高精度、高分辨率大地水准面的研究和实施,武汉大学学报(信息科学版),2001,第26卷第4期。
    党诵诗,物理大地测量的数学基础,测绘出版社,1988。
    董鸿闻、顾旦生等,中国大陆现今地壳垂直运动研究。测绘学报,2002,第32卷第2期。
    E.O.布赖姆,快速傅里叶变换,上海科技出版社,1981。
    方剑,中国及邻区岩石圈密度异常及其大地构造学意义,中国科学院测量与地球物理研究所博士论文,1999。
    冯锐,三维物性分布的位场计算,地球物理学报,1986,29(4),399-406。
    冯锐、严惠芬、张基水,三维位场的快速反演方法及程序设计,地质学报,1986,vol.60,No.4,390-403。
    傅容珊、黄建华、刘文忠,地震层析地球内部密度分布横向不均匀研究,地球物理学报,1994,36(4),740-751。
    管泽霖、宁津生,地球形状及其外部重力场,测绘出版社,1982。
    郭春喜、王惠民,多面函数和格网重力异常的拟合计算,测绘通报,1995,第3期。
    哈尔滨工业大学数学系组编,数学物理方程,科学出版社,2001。
    哈尔滨工业大学数学系组编,计算方法,科学出版社,2002。
    H.Denker和H.-G Wenzel,局部大地水准面的确定与GPS结果的比较,测绘译丛,1989,6。
    H.莫里斯,高等物理大地测量学,测绘出版社,1984。
    黄立人、陶本藻、赵承坤,多面函数在地壳垂直运动研究中的应用,测绘学报,1993,第22卷第1期。
    J.F.克利尔波特,地球物理数据处理基础,石油化学工业出版社,1979。
    K.E.阿特金森,数值分析引论,上海科学技术出版社,1986。
    孔祥元、郭际明、刘宗泉,大地测量学基础,武汉大学出版社,2001。
    李建成、陈俊勇、宁津生、晁定波,地球重力场逼近理论与中国2000似大地水准面的确定,武汉大学出版社,2003。
    李西林,大地水准面机制与地球内部侧向非均匀性研究——地球内部质量异常模型的建立与检测,中国科学院测量与地球物理研究所博士论文,1995。
    
    
    沈云中,应用CHAMP卫星星历精化地球重力场模型的研究,中国科学院测量与地球物理研究所博士论文,2000。
    沈云中,削弱不可建模系统差影响的高程异常拟合方法,工程勘察,1998年第2期。
    沈云中、高达凯,GPS水准点优化选择法,两岸重力及水准面研讨会,台湾,2003。
    同济大学应用数学系,高等数学(第三版),高等教育出版社,1986。
    许厚泽,陆仲连等著,中国地球重力场与大地水准面,解放军出版社,1997。
    许厚泽等著,青藏高原的大地测量研究,湖北科学技术出版社,2000。
    王文利、陈士银等,利用多面函数拟合中国陆地垂直运动速率图,测绘通报,2002年第8期。
    王勇,亚洲中部地区重力场的地球物理和动力学意义,中国科学院测量与地球物理研究所博士论文,1995。
    吴庆鹏,重力学与固体潮,地震出版社,1997。
    《重力勘探资料解释手册》编写组,重力勘探资料解释手册。北京:地质出版社,1983。
    张克非,几种地形校正方法的研究,武汉测绘科技大学学报,1990,第15卷第4期。
    赵承坤、黄立人,速率面拟合中核函数中心点的选择,地壳形变与地震,1991,第11卷第2期。
    周光文、黄筱蓉,一种改进的多面函数法,测绘通报,1996年第6期。
    周惠兰,地球内部物理,地震出版社,1990。
    朱长青,计算方法及其在测绘中的应用,测绘出版社,1997。
    朱介寿、曹家敏等,中国及其邻区地球三维结构初始模型的建立,地球物理学报,1997,vol.40,No 5,636-648。
    Adam M. Dziewonski and Don L. Anderson, Preliminary reference Earth model, Physics of the Earth and Planetary Interiors, 1981, 25,297-356.
    Adam M. Dziewonski, Mapping the Lower Mantle: Determination of Lateral Heterogeneity in P Velocity up to Degree and Order 6, Journal of geophysical research, 1984, Vol. 89, No. B7, pp 5929-5952.
    A. M. Forte and W. R. Peltier, Plate Tectonics and Aspherical Earth Structure: The Importance of Poloidal-Toroidal Coupling, Journal of geophysical research, 1987, Vol. 92, No. B6, pp 3645-3679.
    A. Morelli and A.M. Dziewonski, Topography of The Core-mantle Boundary and Lateral Homogentity of The Liquid Core, Nature, 1987, 325, 678-683.
    Apel JR, Principles of ocean physics, Int Geophysical Series, 1999, vol. 38, Academic Press, San Diego, CA.
    Bassin, C., Laske, G. and Masters, G., The Current Limits of Resolution for Surface Wave Tomography in North America, EOS Trans AGU, 2000, 81, F897.
    
    
    Bian, S.F. and Zhang, K.F., Remarks on the determination of China's Accurate Geoid Undulation, Progress in geophysics, 6(4), 1991, 64-74.
    Bradford H. Hager and Richard J. O'Connell, A simple Global Model of Plate Dynamics and Mantle Convection, Journal of geophysical research, 1981, Vol. 86, No. B6, pp 4843-4867.
    Bradford H. Hager, Subducted Slabs and the Geoid: Constraints on Montle Rheology and Flow, Journal of geophysical research, Vol. 89, No. B7, pp 6003-6015, 1984.
    B. H. Hager and M. A. Richards, Long-wavelength variations in Earth's geoid: physical models and dynamical implications, Phil. Trans. R. Soc. Lond, 1989, A328, 309-327.
    Creager, K. C. and T. H. Jordan, Aspherical structure of the core-mantle boundary from PKP travel times, Geophys. Res. Lett.,1986, 13, 1497-1500.
    C. Bowin, Depth of principal mass anomalies contributing to earth's geoid undulations and gravity anomalies, Marine Geodesy, 1983, 7, 61-101.
    D. A. Smith and D. G. Milbert, The GEOID96 high resolution geoid height model for the United States, J Geod., 1999, 73: 219-236.
    D.J. Doornbos and T. Hilton, Models of the Core-Mantle Boundary and the Travel Times of Internally Reflected Core Phase, J. Geophys. Res., 1989, 94(11), 15741-15751.
    D. Nagy, G. Papp, J. Benedek, The gravitational potential and its derivatives for the prism, Journal of Geodesy, 2000, 74:552-560.
    Dru A. Smith, The Use of High Resolution Height Data in the Computation of High Precision Geoid Undulation on the Island of Maui, Report No.424, Department of Geodetic Science and Surveying, The Ohio State University, Columbus, Ohio, 1992.
    Ekstrm, G. and A. M. Dziewonski, Higher resolution upper mantle S velocity structure, Eos. Trans. AGU, Fall Meeting Suppl., 1994, 75, 475.
    Ekstrm, G., J. Tromp, and E. W. Larson, Measurements and models of global surface wave propagation, Eos. Trans. AGU, 1993, 74, 438.
    Fang Jian and Hsu Houtze, A Study of the Depth of Geoid Anomaly Sources in China and its Adjacent Regions, Chinese Journal of Geophysics, 2001, 45(1): 42-48.
    G. Hein, K.L. Darmstadt, Zur Genauigkeit und Wirtschaftlichkeit verschiedner Interpolations und Pradiktions Methoden, ZFV, 1979, 11,492-504.
    Gu, YJ , AM Dziewonski, Su W.-J., and G. Ekstrm, Models of the mantle shear velocity and discontinuities in the pattern of lateral heterogeneities, J. Geophys. Res., 2001,106,11169-11199.
    Grüniger W., Zur topographisch-isostatischen Reduktion der Schwere, Dissertation an der Universitt Karlsruhe, 1990.
    
    
    H. A. Abd-Elmotaal and N. Kühtreiber, Geoid determination using adapted reference field, seismic Moho depths and variable density contrast, Journal of Geodesy, 2003, 77: 77-85.
    Heiner Denker, GPS Control of the 1989 Gravimetric Quasigeoid for the Federal Republic of Germany, Determination of the Geoid Present and Future, Springer-Verlag New York, Inc. 1991.
    H. Moritz, Geodetic reference system 1980, Bull. Geod., 1988, 62, 348-358. http://mahi.ucsd.edu/Gabi/crust2.html
    Jercen Ritserna and Hendrik-Jan van heijst, Seismic imaging of structural heterogeneity in earth's mantle: Evidence for large-scale mantle flow, Sci. Progr., 2000, 83, 243-259.
    John H. Woodhouse and Adam M. Dziewonski, Mapping the Upper Mantle: Three-Dimensional Modeling of Earth Structure by Inversion of Seismic Waveforms, Journal of geophysical research, 1984, Vol. 89, No. B7, pp 5953-5986.
    Mark A. Richards and Bradford H. Hager, Geoid Anomalies in a Dynamic Earth, Journal of geophysical research, 1984, Vol. 89, No. B7, pp 5987-6002.
    Mark A. Richards and Bradford H. Hager, Effects of lateral viscosity variations on long wavelength geoid anomalies and topography, Journal of geophysical research, 1989, Vol. 94, 10299-10313.
    M. Kuhn, Geoidbestimmung unter Verwendung verschiedner Dichtehypothesen, Deutsche Geodtische Kommission, Reihe C, Nr. 520, München, 2000.
    M. Kuhn, Geoid determination with density hypotheses from isostatic models and geological information, Journal of Geodesy, 2003, 77: 50-65.
    M. Kuhn and W.E. Featherstone: On the construction of a synthetic Earth gravity model. Proceedings of the 3rd Meeting of the International Gravity and Geoid Commission, Thessaloniki, Greece, August 2002.
    Mooney, Laske and Masters, Crust 5.1: a global crustal model at 5x5 degrees, JGR, 1998, 103,727-747.
    N. Kühtreiber, G. Kraiger and B. Meurers, Precise geoid determination using a density variation model, Phys Chem Earth, 1998, 23(1): 59-63.
    O. Cadek and Z. Martinec, Spherical Harmonic Expansion of the Earth's Crustal Thickness up to degree and Order 30, Studia Geoph., 1991, 35, 151-165.
    Peltier, W.R., A.M. Forte, J.X. Mitrovica and A.M. Dziewonski, Earth's gravitational field: Seismic tomography resolves the enigma of the Laurentian anomaly, Geophys. Res. Lett., 1992, 19, 1555-1558.
    Rene Forsberg and C. C. Tscherning, The Use of Height Data in Gravity Field Approximation by Collocation, Journal of geophysical research, 1981, Vol. 86,
    
    No. B9, pp 7843-7854.
    Rene Forsberg, A study of terrain reductions, density anomalies and geophysical inversion methods in gravity field modeling. Rep 355, Department of Geodetic Science, The Ohio State University, Columbus, 1984.
    R.L. Hardy, Multi-quadric equations of topography and other irregular surfaces, Journal of Geographysical Research, 1971, 76(8), 1905-1915.
    Sideris M.G., A Fast Fourier Transform Method of Computing Terrain Correction, Manuscripta Geodaetica, 1985, 10(1): 4-6.
    Su, W. -J., R. L. Woodward and A. M. Dziewonski, Degree-12 Model of Shear Velocity Heterogeneity in the Mantle, J. Geophys. Res., 1994, 99(4): 4945-4980.
    Su, W.-J.and Dziewonski A. M., Simultaneous inversions for 3-D variations in shear and bulk. velocity in the Mantle. Phys. Earth. Planet.Inter., 1997, 100, 135-156.
    Svetlana V. Panasyuk and Bradford H. Hager, Models of isostatic and dynamic topography, geoid anomalies, and their uncertainties, Journal of geophysical research, 2000, Vol. 105, No. B 12, pp 28199-28209.
    Sz. Rózsa, The Estimation of Lateral Density Variations Using Gravity and Elevation Data - Its Application for Geoid Determination in Hungary. Proceedings of the 3rd Meeting of the International Gravity and Geoid Commission, Thessaloniki, Greece, August 2002.
    Tanimoto, T., Long-wavelength S-wave velocity structure throughout the mantle, Geophys. J. Int., 1990, 100, 327-336.
    W. A. Heiskanen and H. Moritz, Physical geodesy. Freeman, San Francisco, 1967.
    Wang, Y.M. and Richard H. Rapp, Terrain effects on geoid undulation computations, manuscripta geodaetica, 1990, vol. 15, No. 1, 23-29.
    W.M. Kaula, Global gravity and mantle convection, Tectonphsics, 1972, 13, 341-359.
    W. Torge, Geodesy, 3rd edn, Walter de Gruyter, Berlin, 2001.
    Zhang Y. And T. Tanimoto, Global love wave phase velocity variation and its significance toplate tectonics, Phys. Earth Planet. Inter., 1991, 66, 160-202.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700