气敏薄膜及气体传感器阵列的制备及特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
利用具有不同选择性的多个气敏元件组成气体传感器阵列,可充分利用传感器阵列所提供的交叉敏,并运用人工神经网络的模式识别技术对其响应输出谱进行分析,就可以实现传感器的高选择性,并提高气体传感器的测量精度。军事和工程上有着广泛应用的电子鼻就是在此基础上发展起来的,它由气体传感器阵列、数据采集卡及模式识别算法三部分组成,它在食品、化工、环保、医疗诊断、毒品检验等方面有很重要的应用,其关键技术就是气体传感器阵列。
     本论文以气敏薄膜及气体传感器阵列为研究对象,首先对气敏薄膜体系进行了系统研究:采用真空热蒸发工艺制备了WO_3薄膜、通过真空蒸发法和旋涂法制备了TCNQ薄膜和SnPc薄膜及它们与PMMA的复合薄膜、通过掺杂诱导自组装工艺制备了纳米金基底,并进一步制备了聚苯胺/聚苯乙烯磺酸掺杂自组装复合膜。其次,率先设计了电子聚合物化学场效应管型气体传感器阵列结构,并针对基于聚苯胺/聚苯乙烯磺酸掺杂自组装复合膜的气体传感器阵列的敏感特性进行系统的研究及分析。最后对气体传感器阵列测试算法进行了初期研究。所得到的主要结论及创新性结果可归纳如下:
     1.采用真空热蒸发工艺及合适的热处理工艺,在微晶玻璃基片上得到了六方结构并且在<100>方向上择优取向的WO_3薄膜,得到了最佳成膜工艺条件。结果表明,WO_3薄膜是可以通过热处理晶化。研究表明,在退火处理温度为600℃,可以得到六方结构并且在<100>方向上择优取向的WO_3薄膜。对WO_3薄膜传感器NO_2敏感特性研究表明,其敏感特性很大程度上由蒸发时的工艺条件、热处理温度及工作温度决定。得到的最优条件为:热处理温度600℃、工作温度200℃。
     2.采用掺杂诱导自组装与静电力自组装工艺相结合的方法制备了纳米金膜,在此基膜上进一步制备了聚苯胺/聚苯乙烯磺酸掺杂自组装复合膜。研究表明,在胶体金的合成过程中,还原剂量越多,金纳米粒子的粒径越小且粒子为球形,粒度较均一,单分散性好;随着还原剂用量的减少,金纳米粒子的粒径变大,但其形状呈较明显的椭圆形。同时发现,与其他三种溶胶比较,使用乙醇溶剂胶体的自组装膜沉积粒子的分布比较均匀,平整度最好,达到纳米量级。XPS分析表明聚苯胺只在表面被部分掺杂,所制各自组装膜均匀、致密。研究表明,自组装的聚苯胺薄膜均匀牢固,与衬底的附着性较好。红外吸收谱分析表明,制备的聚苯胺薄膜在1683cm~(-1)处出现了一个新的峰值。气敏测试表明,聚苯胺薄膜对NO_2气体的灵敏度随膜层增加而增加,。
     3.创新性地将TCNQ和SnPc小分子掺入PMMA中形成复合薄膜,并对掺杂前后薄膜的性能进行了系统研究。研究发现,真空蒸发制备的SnPc薄膜对于NO_2具有良好的敏感特性,但对NH_3敏感型很弱。同时发现,薄膜厚度控制在1200(?)敏感特性最好。研究发现,在PMMA/TCNQ的旋涂复合薄膜中,TCNQ晶体颗粒明显变小,分布比较均匀。旋涂制备的TCNQ薄膜对NH_3敏感性很好,但是响应和恢复随NH_3浓度的增加迅速增大,而TCNQ掺杂的PMMA旋涂薄膜的响应不稳定。旋涂制备的SnPc与PMMA复合薄膜对NO_2具有良好的敏感性,同时响应时间较快,达到10秒左右,具有实用价值,但恢复时间随NO_2浓度的增加而变长。纯SnPc的旋涂薄膜虽然有较好的灵敏度,但是响应时间相对较慢,而且恢复时间很长。
     4.率先设计并研制出了化学场效应管型气体传感器阵列,并对其主要工艺参数进行了优化。气敏测试表明,本文设计的无栅结构气体传感器阵列器件的在一定浓度的气氛中重复性和响应时间(开关特性)均优于课题组初期设计的槽栅型化学场效应管器件。研究还表明,表明栅极绝缘层厚度对器件的灵敏度有很大影响,而增加金基底对NO_2气体响应输出灵敏度的提高有一定的改善。对阵列的气敏测试表明,低浓度下输出电流与气体浓度呈对数变化关系,且随膜层增大,器件输出响应在低浓度时灵敏度降低,在高浓度时灵敏度增加。气敏输出响应随气体浓度增大而指数增大,到一定浓度达到最大值,随后出现“中毒”现象。实验测试结果还发现,宽度相同的器件,一般情况下宽长比越大灵敏度越高。研究表明,气体传感器阵列对温湿度的响应成线性关系,因此,从本论文研制的气体传感器阵列中提取不同敏感量的特征响应向量,就可以实现环境介质如温度、湿度及气体浓度的检测,从而为研制检测温度、湿度及气体浓度的一体化环境介质传感器奠定了基础,这对国民生产和军事国防都有重要意义。
     5.运用MATLAB设计了适用于线性系统与非线性系统的BP神经网络,得到了具有较大工程应用价值的阶段性成果。本论文运用BP算法与“提前停止”法相结合来处理非线性问题,加快了网络的训练速度,使网络的推广能力大大提高,为气体传感器阵列的实用化奠定了基础。研究表明,本论文设计的系统具有良好的非线性近似处理能力及很高的模式识别能力;
In the 21~(st) IT era, sensor plays a important role in our life, and more and more attention has been paid on this research topic. In order to detect more components using small and compact sensor unit, sensor array is one of the best choices to be realized. As each sensor responds to a class of gases rather than to a specific one (which is also called as over-lapping sensitivity), gas sensor arrays can make use of such over-lapping sensitivity. To process such a partial overlapping response, pattern recognition techniques are generally employed. Based on this principle, an electronic nose has been developed, which is conventionally made up of gas sensor array, data collecting card and pattern recognition, and has been widely used in many areas such as food, aerospace, environment, etc.
     This dissertation mainly focused on gas sensing thin films and gas sensor array. Firstly, a few gas sensing thin films such as WO_3 thin films, TCNQ and SnPc thin films and their composite films with PMMA, and PANi/PSSA thin films were studied. Then, ChemFET gas sensor array was designed and investigated. Finally, testing algorithms were designed and simulated. The main conclusions and original results are summarized as follows.
     1. WO_3 thin films were deposited on glass ceramics substrates with a pair of interdigitated Au-film electrodes by vacuum thermal evaporation, and then annealed at temperature between 300-600℃. It shows that crystallite phase and mean grain size varied significantly with the change of annealing temperature. As the annealing temperature increased, the general crystallite size considerably increased, and WO3 amorphous thin films began to crystallize. And finally we got WO3 thin films with hexagonal structure, which grew preferentially on the direction <100>. Annealing conditions and working temperatures play an important role in its sensitive characteristics to NO_2 The optimum conditions are as follows: annealing temperature 600℃and working temperature 200℃.
     2. Gold nanoparticulate thin films were built up using the electrostatic self-assembly method. And self-assembled polyaniline (PANi) composite films with poly (styrenesulfonic acid) were fabricated based on doping-induced deposition effect above aurum. The gold colloid was a monodispersive suspension and had more uniform micro-particle with more sodium citrate or NaBH_4. The colloid synthesized using NaBH_4 with ethanol has the highest performance and has a micro-particle diameter of 1.7 nm. The self-assembled PAN films above the aurum were uniform and highly adhesive to the substrates. And there was a new infrared absorbance spectrum at 1683cm~(-1). It was also found out that the sensitivity of PANi/PSSA thin films increased with the number of film layer.
     3. TCNQ and SnPc thin films were prepared by thermal vacuum evaporation. The effects of substrate temperature on the surface morphology and the conductance of the thin film have been investigated. The results show that TCNQ is sensitive to both NO_2 and NH_3, but the response and recovery rate are not fast. SnPc is sensitive to NO_2 but insensitive to NH_3.Then, TCNQ and SnPc films as well as their composite films with poly(metheyl methacrylate) (PMMA) were prepared by spin coating method. And we found that the crystalline grain of TCNQ in TCNQ/PMMA composite film became smaller than that of the pure TCNQ thin film. Results show that TCNQ film is highly sensitive to NH_3. The SnPc/PMMA composite film is also highly sensitive to NO_2 with fast response rate, but the recovery time becomes longer with the increase of gas concentration. The results show that TCNQ particles in TCNQ/PMMA composite film become smaller and disperse more uniform, but the response to NH_3 is unstable. TCNQ film is highly sensitive to NH_3 whereas the response and recovery time are much longer.
     4. Based on conventional MOSFET, a novel kind of chemical field-effect transistor (ChemFET) gas sensor array have been designed and fabricated. The sensor consists of self-assembled PAN composite films with polymeric acids deposited on the gate area of MOSFET replacing metallic material. The gas-sensing property and mechanism of the ChemFET array was investigated. And the effect of temperature and humidity on the gas sensors array was also studied. The results show that the output of the array also changes with the temperature and humidity, which suggests that one-bodied sensor detecting temperature, humidity, and gas concentrations based on this kind of sensor array can be got.
     5. BP algorithms in ANN used in linear and nolinear systems were designed to process gas sensor array signal. The simulation of gas sensor array has been made using computer simulation method, and BP artificial neural network has been designed by using MATLAB neural network toolbox to process and verify the simulation data. By combining BP algorithms with "early stopping" method, we found that the drilling time of this new method becomes shorter than common BP algorithm. The results also show that the algorithms designed in this work have good non-linear, approximation ability and high discrimination ratio.
     In summary, the work in this dissertation is helpful for the development of gas sensor array, and high performance device can be anticipated based on this study.
引文
[1]高大启,杨根兴.电子鼻技术新进展及其应用前景.传感器技术,2001.20(9):1-5
    [2]李啸,闫卫平,郝应光.气体传感器阵列信号处理的混合神经网络.传感器技术,2000,19(4):20-25
    [3]于梅芳,王士卿.气体传感器阵列.传感器技术,1995,2(2):6-16
    [4]Gardner Julian W.;Bartlett Philip N.Brief history of electronic noses.Sensors and Actuators,B:Chemical.1994,18(1-3):211-220
    [5]Cleland TA,Linster C.Concentration tuning mediated by spare receptor capacity in olfactory sensory neurons:a theoretical study.Neural Computation,1999,11(7):1673-1690
    [6]Gopel W.Chemical imaging Ⅰ:concepts and visions for electrome and bioelectronic noses.Sensors and Actuators B,1998,52:125-142
    [7]Wemar U,Gopel W.Chemical imaging Ⅱ:Trends in practical multiparameter sensor systems.Sensors and Actuators B,1998,52:143-461
    [8]Rella R,Sicihano P,Capone S,et al.Air quality monitoring by means of sol-gel integrated tin oxide thin films.Sensors and Actuators B,1999,58:283-288
    [9]Heiko Ulmer,Jan Mitrovics,Gerd Noetzel,et al.Odours and flavours identified with hybrid modular.sensor systems,Sensors and Actuators B,1997,43:24-33
    [10]Sayago,M.C.Horrillo,J.Getino,et al.Discrimination of grape juice and fermented wine using a tin oxide multisensor.Sensors and Actuators B,1999,57:249-254
    [11]C.Di Natale,A.Macagnano,F.Davide,et al.An electronic nose for food analysis.Sensors and Actuators B,1997,44:521-526
    [12]-C.Romain,J.Nicolas,V.Wiertz,et al.Use of a simple tin oxide sensor array to identify five malodours collected in the field.Sensors and Actuators B,2000,62:73-79
    [13]S.V.Ryabtsev,A.V.Shaposhnick,A.N.Lukin,et al.Application of semiconductor gas sensors for medical diagnostics.Sensors and Actuators B,1999,59:26-29
    [14]T.D.Gibson,O.Prosser,J.N.Hulbert,et al.Detection and simultaneous identification of microorganisms from headspace samples using an electronic nose.Sensors and Actuators B,1997,44:413-422
    [15]David E.Williams.Semiconducting oxides as gas-sensitive resistors.Sensors and Actuators B, 1999,57:1-16
    [16]Jorge Orts,Eduard Llobet,Xavier Vilanova,et al.Selective methane detection under varying moisture conditions using static and dynamic sensor signals.Sensors and Actuators B,1999,60:106-117
    [17]Martin Holmberg,Fredrik Winquist,Ingemar Lundstrom,et al.Drift counteraction for an electronic nose.Sensors and Actuators B,1996,36:528-535
    [18]Denise M.Wilson,Stephen P.DeWeerth.Signal processing for improving gas sensor response time.Sensors and Actuators B,1997,41:63-70
    [19]T.Nakamoto,N.Okazaki,T.Mornzumi.High speed active gas/odor sensing system using adaptive control theory.Sensors and Actuators B,1997,41:183-188
    [20]Heilig,N.Barsan,U.Weimar,et al.Selectivity enhancement of SnO_2 gas sensors:simultaneous monitoring of resistances and temperatures.Sensors and Actuators B,1999,58:302-309
    [21]Frey Urs,Graf Markus,Taschini Stefano,et al.A digital CMOS architecture for a micro-hotplate array.IEEE Journal of Solid-State Circuits,2007,42(2):441-45
    [22]Patrick Mielle,Florence Marquis.An alternative way to improve the sensitivity of electronic olfactometers.Sensors and Actuators B,1999,58:526-535
    [23]Choi Nak-Jin,Kwak Jun-Hyuk,Lira Yeon-Tae,Classification of chemical warfare agents using thick film gas sensor array.Sensors and Actuators,B:Chemical,2005,108(1-2):298-304
    [24]lobet Eduard,Brezmes Jesus,Vilanova Xavier,et al.Quantitative vapor analysis using the transient response of non-selective thick-film tin oxide gas sensors.International Conference on Solid-State Sensors and Actuators,Proceedings,1997,2:971-974
    [25]Roncaglia Alberto,Elmi Ivan,Dori Leonello,et al.Adaptive K-NN for the Detection of Air Pollutants With a Sensor Array.IEEE Sensors Journal,2004,4(2):248-256
    [26]李松,Martin Jaegle,Harald Boettner.金属氧化物气体传感器阵列的制备.传感技术学报,2005,18(1):36-38
    [27]张覃轶,谢长生,黄永彬.气体传感器阵列常用模式识别算法.传感器技术,2005,24(5):1-4
    [28]Huang Xingjiu,Sun Yufeng,Meng Fanli,et al.New approach for the detection of organophosphorus pesticide in cabbage using SPME/SnO_2 gas sensor:Principle and preliminary experiment.Sensors and Actuators,B:Chemical,2004,102(2):235-240
    [29]Zhang Wei-Ming,Hu Jin-Song,Song Wei-Guo,et al.Detection of VOCs and their concentrations by a single SnO_2 sensor using kinetic information.Sensors and Actuators,B: Chemical, 2007, 123(1): 454-460
    [30] Frank Zee, Jack W. Judy. Micromachined polymer-based chemical gas sensor array. Sensors and Actuators B: Chemical, 2001, 72(2): 120-128
    [31] Yong Shin Kim. Microheater-integrated single gas sensor array chip fabricated on flexible polyimide substrate. Sensors and Actuators B: Chemical, 2006, 114(1): 410-417
    [32] Bo Li, Suresh Santhanam, Lawrence Schultz, Malika Jeffries-EL, et al. Inkjet printed chemical sensor array based on polythiophene conductive polymers. Sensors and Actuators B: Chemical,2007, 123(2): 651-660
    
    [33] Y. Li, C. Vancura, D. Barrettino, et al. Monolithic CMOS multi-transducer gas sensor microsystem for organic and inorganic analytes. Sensors and Actuators B: Chemical (In Press,Available online 9 April 2007)
    
    [34] Christopher A. Mills, James Beeley, Cathy Wyse, et al. Polymer-based micro-sensor paired arrays for the determination of primary alcohol vapors. Sensors and Actuators B: Chemical (In Press, Available online 2 February 2007)
    [35] Saverio De Vito, Anna Castaldo, Fausta Loffredo, et al. Gas concentration estimation in ternary mixtures with room temperature operating sensor array using tapped delay architectures. Sensors and Actuators B: Chemical (In Press)
    [36] K. Arshak and I. Gaidan. Development of an array of polymer/MnO_2/Fe_2O_3 mixtures for use in gas sensing applications. Sensors and Actuators B: Chemical, 2006, 118(1-2): 386-392
    [37] Srinath Satyanarayana, Daniel T. McCormick, Arun Majumdar. Parylene micro membrane capacitive sensor array for chemical and biological sensing. Sensors and Actuators B: Chemical,2006, 115(1): 494-502
    [38] Haifen Xie, Qiudong Yang, Xiaoxiang Sun, et al. Gas sensor arrays based on polymer-carbon black to detect organic vapors at low concentration. Sensors and Actuators B: Chemical, 2006,113(2): 887-891
    [39] S. Hamilton, M.J. Hepher, J. Sommerville. Detection of Serpula lacrymans infestation with a polypyrrole sensor array. Sensors and Actuators B: Chemical, 2006, 113(2): 989-997
    [40] Seung-Chul Ha, Yoonseok Yang, Yong Shin Kim, et al. Environmental temperature-independent gas sensor array based on polymer composite. Sensors and Actuators B: Chemical, 2005,108(1-2): 258-264
    [41] Yong Shin Kim, Seung-Chul Ha, Yoonseok Yang, et al. Portable electronic nose system based on the carbon black-polymer composite sensor array. Sensors and Actuators B: Chemical, 2005, 108(1-2): 285-291
    
    [42] Joon-Boo Yu, Hyung-Gi Byun, Myung-Suk So, et al. Analysis of diabetic patient's breath with conducting polymer sensor array. Sensors and Actuators B: Chemical, 2005, 108(1-2): 305-308
    [43] Seung-Chul Ha, Yong Shin Kim, Yoonseok Yang, et al. Integrated and microheater embedded gas sensor array based on the polymer composites dispensed in micromachined wells, Sensors and Actuators B: Chemical, 2005, 105(2): 549-555
    
    [44] V. Casey, J. Cleary, G. D'Arcy, et al. Calorimetric combustible gas sensor based on a planar thermopile array: fabrication, characterisation, and gas response. Sensors and Actuators B:Chemical, 2003, 96(1-2): 114-123
    
    [45] Yoshiaki Sakurai, Ho-Sup Jung, Toshinori Shimanouchi, et al. Novel array-type gas sensors using conducting polymers, and their performance for gas identification. Sensors and Actuators B: Chemical, 2002, 83(1-3): 270-275
    
    [46] M. Cole, J. W. Gardner, A. W. Y Lim, et al. Polymeric resistive bridge gas sensor array driven by a standard cell CMOS current drive chip. Sensors and Actuators B: Chemical, 1999, 58(1-3):518-525
    
    [47] K. Buhlmann, B. Schlatt, K. Cammann, et al. Plasticised polymeric electrolytes: new extremely versatile receptor materials for gas sensors (VOC monitoring) and electronic noses (odour identification/discrimination). Sensors and Actuators B: Chemical, 1998,49(1-2): 156-165
    [48] Markus Schweizer-Berberich, Josef Goppert, Andreas Hierlemann, et al. Application of neural-network systems to the dynamic response of polymer-based sensor arrays. Sensors and Actuators B: Chemical, 1995, 27(1-3): 232-236
    
    [49] Hierlemann, U. Weimar, G. Kraus, et al. Polymer-based sensor arrays and multicomponent analysis for the detection of hazardous organic vapours in the environment. Sensors and Actuators B: Chemical, 1995, 26(1-3): 126-134
    
    [50] M.A. Ryan, M.L. Homer, M.G. Buehler, et al. Graf, Monitoring the air quality in a closed chamber using an electronic nose. Proceedings of the 27th International Conference on Environmental Systems, Lake Tahoe, Nevada, USA, July 14-17, 1997: 97ES-84
    [51] M. C. Lonergan, E. J. Severin, B. J. Doleman, et al.Array-based vapor sensing using chemically sensitive carbon black-polymer resistors. Chem. Mater. 1996, 8(9): 2298-2301
    [52] J.W. Gardner, T. C. Pearce, S. Friel, et al. A multisensor system for beer flavor monitoring using an array of conducting polymers and predictive classifiers. Sensors and Actuators B, 1994,18(1-3): 240-243
    [53] B. J. Doleman, M. C. Lonergan, E. J. Severin, et al. Quantitative study of the resolving power of arrays of carbon black-polymer composites in various vapor-sensing tasks. Analytical Chemistry, 1998, 70(19): 4177-4190
    [54] K. Domansky, V. S. Zapf, J. W. Grate, et al. Integrated chemiresistor and work function microsensor array with carbon black-polymer composite materials. Workshop on Solid State Sensor and Actuator, Hilton Head, South Carolina, USA, 1998, 1-5
    [55] J. W. Grate, B. M. Wise, M. H. Abraham. Method for unknown vapor characterization and classification using a multivariate sorption detector. Initial derivation and modeling based on polymer-coated acoustic wave sensor arrays and linear solvation energy relationships. Anal.Chem. 1999, 71(20): 4544-4553
    [56] J. W. Grate, M. H. Abraham. Solubility interactions and the design of chemically selective sorbent coatings for chemical sensors and arrays. Sensors and Actuators B, 1991, B3 (2):85-111
    [57] F. Detraux, P. Ghosez, X. Gonze. Born effective charges in cubic WO_3. Phys. Rev. B, 1997, 56:983-985.
    [58] J. Tamaki, T. Fujii, K. Fujimori, et al. Application of metal tungstate-carbonate composite to nitrogen oxides sensor. Sens. Actuators B, 1995,24-25: 396-399.
    [59] S. Santucci, C. Cantalini, M. Crivellari, et al. X-ray photoemission spectroscopy and scanning tunnelling spectroscopy study on the thermal stability of WO_3 thin films. J. Vac. Sci. Tech. A,2000, 18: 1077-1082.
    
    [60] P. J. Shaver. Activated tungsten oxide gas detectors. Appl. Phys. Lett., 1967, 11: 255-257.
    [61] C. Cantalini, W. Wlodarski, Y. Li, et al. Investigation on the O_3 sensitivity properties of WO_3 thin films prepared by sol-gel. thermal evaporation and r. f. sputtering techniques, Sens.Actuators B, 2000, 64: 182-188.
    [62] K. Galatsis, Y. X. Li, W. Wlodarski, et al. Sol-gel prepared MoO_3-WO_3 thin-films for O_2 gas sensing, Sens. Actuators B, 2001, 77: 478-483.
    [63] D. S. Lee, K. H. Nam, D. D. Lee. Effect of substrate on NO2-sensing properties of WO_3 thin film gas sensors. Thin Solid Films, 2000, 375(1-2): 142-146.
    [64] B. Fruhberger, M. Grunze, D. J. Dwyer. Surface chemistry of H2S-sensitive tungsten oxide films. Sens. Actuators B, 1996, 31: 167-174.
    
    [65] G. N. Chaudhari, A. M. Bende, A. B. Bodade, et al. Structural and gas sensing properties of nanocrystalline TiO_2: WO_3 -based hydrogen sensors. Sens. Actuators, B, 2006. 115: 297-302.
    [66]Y.Wang,Z.Chen,Y.Li,et al.Electrical and gas-sensing properties of WO_3 semiconductor material,Solid-State Electron,2001,45:639-644.
    [67]W.Qu,W.Wlodarski.A thin-film sensing element for ozone,humidity and temperature.Sens.Actuators B,2000,64:42-48.
    [68]Y.-K.Chung,M.-H.Kim,W.-S.Um,et al.Gas sensing properties of WO_3 thick film for NO_2gas dependent on process condition.Sens.Actuators B,1999,60:49-55
    [69]刘迎春,叶湘滨.传感器原理设计与应用.长沙:国防科技大学出版社,1989,289-306
    [70]叶良修.半导体物理学.北京:高等教育出版社,60-86
    [71]徐毓龙.金属氧化物气体传感器(Ⅱ).传感技术学报,1996,9(1):63-67
    [72]徐毓龙.金属氧化物气体传感器(Ⅲ).传感技术学报,1996,9(2):56-61
    [73]徐毓龙.金属氧化物气体传感器(Ⅳ).传感技术学报,1996,9(3):72-78
    [74]徐毓龙.金属氧化物气体传感器(Ⅴ).传感技术学报,1996,9(4):93-99
    [75]徐毓龙.金属氧化物气体传感器(Ⅵ).传感技术学报,1997,10(1):79-82
    [76]杨传铮.薄膜、多层膜和一维超点阵材料的X射线分析新进展.物理学进展,1999,19(2):184-216
    [77]张立德,牟季美.纳米材料和纳米结构.北京:科学出版社,2001年:147-148
    [78]余道建,沈瑞琪.NO_2气体传感器敏感材料.传感器技术,2001,20(4):1-5
    [79]崔大付.LB膜的物理性能与应用.物理学报,1996,25(1):54-63
    [80]张贵萍,龚克成.聚苯胺的结构与性能.高分子材料科学与工程,1993,3:7-16
    [81]王利祥,王佛松.导电聚合物聚苯胺的研究进展,Ⅰ.合成、链结构和凝聚态结构.应用化学,1990,7(5):1-10
    [82]廖川平,孙世刚,周绍民,姚士冰.苯胺的无电聚合.精细化工,2000,17(10):20-24
    [83]王佛松,王利祥,景遐斌.聚苯胺的掺杂反应.武汉大学学报,1993,6:65-73
    [84]王利祥,王佛松.导电聚合物聚苯胺的研究进展,Ⅱ.电子现象、导电机理、性质和应用.应用化学,1990,7(6):1-8
    [85]张福强,王立新.本征导电聚合物的智能性.功能高分子学报,1996,9:461-467
    [86]李丹.聚苯胺自组装复合膜的制备及功能特性:[博士学位论文].成都:电子科技大学,1999,17-33
    [87]Li Dan,JiangYa-dong,WuZhi-ming,et al.Fabrication of self-assembled polyaniline films by doping-induced deposition.Thin Solid Films,2000,360:24-27
    [88]余海湖,姜德生.金纳米粒子自组装薄膜的光谱学研究.光谱学与光谱分析,2002,22(3):511-514
    [89]Grabar K.C,Freeman F.G,Hommer M.B,et al.Preparation and characterization of Au colloid monolayers.Anal.Chem.,1995,67(4):735-743
    [90]Hayat M.A.Colloidal Gold Principles,Methods,and Application.San Diego CA:Academic Press,198-206
    [91]李家值.半导体化学原理.北京:科学出版社,1980,25-30
    [92]Grabar K.C.,Smith P.C.,Musick M.D.,et al.Kinetic Control of Interparticle Spacing in Au Colloid-Based Surfaces:Rational Nanometer-Scale Architecture.J.Am.Chem.Soc.,1996,118(5):1148-1153
    [93]张红平,罗瑾,黄怀国.电化学组装法制备对-巯基苯胺/聚苯胺纳米有序导电聚合物膜.高等学校化学学报,1999,20(4):624-628
    [94]Kotov N.A.,Dekany I.,Fendler J.H.Layer-by-layer self-assembly of polyelectrolyte-semiconductor nanoparticle composite films.J.Phys.Chem.,1995,99:13065-13069
    [95]Elliot D.J.,Furlong D.N.,Grieser F.,et al.Preparation and Spectral Characteristics of Gold Particles in Langmiur-Blodgett Films.Colloids and Surfaces A:Physicochemical and Engineering Aspects,1997,129-130:141-150
    [96]Cohen R.W.,Cody G.D.,Coutts M.D.,et al.Optical Properties of Granular Silver and Gold Films.Phys.Rev.B,1973,8(8):3689-3701
    [97]Alvarez M.M.,Khoury J.T.,Schaaff T.G.,et al.Optical Absorption of Nan crystal Gold Molecules.J.Phys.Chem.B,1997,101(19):3706-3712
    [98]Turkevich J.,Garton G.,Stevenson P.C.The Color of Colloidal Gold.J.Colloid Sci.,1954,9suppl.:26-35
    [99]齐航,朱淘,刘中范.电解法制备棒状纳米金粒子溶胶.物理化学学报.2000,16(10):957-959
    [100]Venables J.A.表面和薄膜过程导论,第4版.北京:世界图书出版公司,2003,144-181,260-295
    [101]郑忠.胶体化学导论.北京:高等教育出版社,1989,62-65
    [102]余海湖.静电白组装纳米复合薄膜研究:[博士学位论文].武汉:武汉理工大学,2001,60-86
    [103]Thompson D.W.,Collins I.R.Electrical Properties of the Gold-Aqueous Solution Interface.J.Colloid & Interf.Sci.,1992,152(1):197-204
    [104]宁永成.有机化合物结构鉴定与有机波谱学,第二版.北京:科学出版社,2000,78-86
    [105]刘学习,曾幸荣.聚苯乙烯磺酸掺杂聚苯胺的性能.功能高分子,2003,16(3):309-312
    [106]Klug H.P.,Alexander L.E.X-Ray Diffraction Procedures for Polycrystalline and Amorphous materials.John Wiley & Sons,1974,102-110
    [107]吕维刚,力虎林,杨得全,等.纳米颗粒材料表面形貌结构AFM表征中针尖干扰的修正与评价.物理,2000,29(4):237-241
    [108]Cheung J.H.,Stochton W.B.,Rubner M.F.Molecular-level processing of Conjugated polymers.3.Layer-by-layer manipulation of polyaniline via electrostatic inyeractions.Macromolecules,1997,30:2712-2716
    [109]谢丹.NO_2气敏LB膜及其微结构传感器研究:[博士学位论文].成都,电子科技大学,2001,67-75
    [110]董绍俊,车广礼,谢远武.化学修饰电极(修订版).北京:科学出版社,2003,42-46
    [111]孙柏林.微型机电系统技术及其21世纪应用展望.测控技术,1999,18(1):5-9
    [112]黄春辉,李富友,黄岩谊.光电功能超薄膜.北京:北京大学出版社,2001,1-30
    [113]薛增泉.分子电子学.北京:北京大学出版社,2003,62-66
    [114]Cranny A.W.J.,Atkinson J.K.A comparison of thick- and thin-film gas-sensitive organic semiconductor compounds.Sensors and Actuators:B,1991,4:169-174
    [115]James C.M.Li.Microstructure an Properties of Materials,vol 1.Singapore:World Scientific Publishing Co Pte Ltd,1996:181-245
    [116]王中林,刘义,张泽.纳米相和纳米结构材料-结构和性能表征手册.北京:清华大学出版社,2003,76-82
    [117]周桢来,王毓德,张俊.气体传感元件及其发展和应用.云南大学学报,1998,20:91-94
    [118]蔡可芬.气体传感器今后的研究课题.传感器技术,1990,6:16-18
    [119]Heiland G.Homogeneous semiconducting gas sensors.Sensors and Actuators:B,1982,2:343-362
    [120]Morrison S.R.Semiconductor gas sensor.Sensors and Actuators:B,1982,2:329-342
    [121]Matsuua S.New developments and applications of gas sensors in Japan.Sensors and Actuators:B,1993,13-14:329-342
    [122]Gutman F.,Lyons L E.Organic Semiconductors.New York:Wiley,1967,20-36
    I123]Honeyboume C.L.,Ewen R.J.The electrical conductance of thin films of a new class of organic semiconductor with potenial as a detector of electron acceptor gases.Chemistry and Industry.1983.14:490-491
    [124]方志杰,王文博.余树青.四氮杂轮烯的合成及其气敏响应特点.传感器技术,1992,5: 31-32
    [125]方志杰,董文爱.TAA-NO_2传感器在火炸药安全性自动化检测中的应用传感器技术.1998,17(1):37-39
    [126]Jones T.A.,Bont B.Gas-induced electrical conductivity changes in metal phthalocyanines.Sensors and Actuators:B,1986,9:27-37
    [127]Jones T.A.,Bont B.,Thorpe S.C.Fast response NO_2 sensor based on electrical conductivity changes in phthalocyanine films.Sensors and Actuators:B,1989.17:467-474
    [128]Moriya K.,Enomoto H.,Nakamura Y.Characteristics of the substituted metal phthalocyanine NO_2 sensor.Sensors and Actuators:B,1993,13-14:412-415
    [129]Agbor N.E.,Petty M.C.,Monkman A.P.Polyaniline thin films for gas sensing.Sensors and Actuators:B,1995,28:173-179
    [130]蒋亚东.电子聚合物气、湿敏特性研究:[博士学位论文].成都:电子科技大学,2001,31-52
    [131]叶龙,李焰.有机敏感材料NO_2气体传感器.传感器技术,1994(4):1-6
    [132]Petty M.C.Molecular electronics:prospects for instrumentation and measurement science.Meas.Sci.Technol,1996,7(5):725-735
    [133]Gardner J.W.,Bartlett P.N.Application of conducting polymer technology in Microsystems.Sensors and Actuators:A,1995,51:57-66
    [134]Svetlicic V.,Schmidt A.J.,Miller A.L.Conductometric sensors based on the hypersensitive response of plasticized polyaniline films to organic vapors.Chem.Mater.1998,10:3305-3307
    [135]Dhawan S.K,Kumar D.,Ram M.K.Application of conducting polyaniline as sensor material for ammonia.Sensors and Actuators:B,1997,40:99-103
    [136]顾长治,孙良彦.LB膜气体传感器的发展概况.传感器技术,1992,4:8-11
    [137]雀部博之.导电高分子材料(曹镛,叶成,朱道本译).北京:科学出版社,1989,87-102
    [138]郭纯哮,王德军,江雷.TCNQ光电压气敏特性的量子化研究.高等学校化学学报,1991,12(8):1110-1112
    [139]Hodge-Miller A,Perkins F.K.,Peckerar M.,et al.Gateless Depletion Mode Field Effect Transistor For Macromolecule Sensing.Circuits and Systems.Proceedings-lEEE International Symposium on Circuits and Systems.Bangkok:Institute of Electrical and Electronics Engineers Inc,2003,111918-111921
    [140]Burgmair M.,Eisels I.Contribution of the gate insulator surface to work function measurements with a gas sensitive FET.Proceedings of IEEE Sensors.Orlando:Institute of Electrical and Electronics Engineers Inc, 2002,439-442
    [141] McKennoch S., Wilson D. M. Electronic interface modules for solid-state chemical sensors.Proceedings of IEEE Sensors. Orlando: Institute of Electrical and Electronics Engineers Inc,2002, 344-349
    
    [142] Vamsi Krishna T, Jessing J. R., Russell D. D., et al. Modeling and design of polythiophene gate electrode ChemFETs for environmental pollutant sensing. Biennial University/Government/Industry Microelectronics Symposium - Proceedings. Boise:Institute of Electrical and Electronics Engineers Inc, 2003, 271-274
    
    [143] ChangZhi Gu, Liangyan Sun, Tong Zhang, et al, The design and characteristics of a porphyrin LB film ChemFET gas sensor. Thin Solid Film, 1996, 284-285: 863-865
    [144] Bright, V. M., Kolesar E. S., Hauschild N. T. Investigation of the sensitivity, selectivity, and reversibility of the chemically-sensitive field-effect transistor (CHEMFET) to detect NO_2,C_3H_9PO_3, and BF)3. Proceedings of the IEEE 1994 National Aerospace and Electronics
    
    Conference. Piscataway: Institute of Electrical and Electronics Engineers Computer Society,Piscataway, United States, 1994, 1: 342-349
    [145] Facci P., Erokhin V., Nicolini C. Formation and characterization of an ultrathin semiconductor polycrystal layer for transducer applications. Biosensors & Bioelectronics, 1997, 12(7):607-611
    [146] Andersson M, Holmberg M., Lundstrom I., et al. Development of a ChemFET sensor with molecular films of porphyrins as sensitive layer. Sensors and Actuators: B, 2001, 77: 567-571
    [147] Polk. B. J. ChemFET arrays for chemical sensing microsystems. Sensors, 2002. Proceedings of IEEE, 1:732-735
    [148] Doll T., Eisele I. Gas detection with work function sensors. Chemical Microsensors and Applications. Proceedings of SPIE-The International Society for Optical Engineering.Bellingham: Society of Photo-Optical Instrumentation Engineers, Bellingham, WA, USA,1998,96-105
    [149] Kinkade B. R., Daly J. T., Johnson E. A. MEMS Device for Mass Market Gas and Chemical Sensors. Proceedings of SPIE-The International Society for Optical Engineering. Bellingham:Society of Photo-Optical Instrumentation Engineers, Bellingham, WA, USA, 2000, 180-187
    [150] Misra S. C. K., Suri A., Chandra. S., et, al. Polymeric Thin film Gas Sensors. Proceedings of SPIE-The International Society for Optical Engineering. Bellingham: Society of Photo-Optical Instrumentation Engineers, Bellingham, WA, USA, 1999, 189-196
    [151]施敏.半导体器件物理,第一版.北京:电子工业出版社,1987.169-353
    [152]林永耀,莫党,龚克成.聚苯胺的吸收光谱和折射率.高分子材料科学与工程,1994,2:57-61
    [153]封伟,韦玮,吴洪才.有机磺酸掺杂聚苯胺的光电性能.半导体光电,1999,20(4):265-268
    [154]刘恩科,朱秉升,罗晋生,等.半导体物理学,第四版.北京:国防工业出版社,1994.149-250
    [155]王阳元,关旭东,马俊如.集成电路工艺基础.北京:高等教育出版社,1991,46-66
    [156]Delpha C.,Siadat M.,Lumbreras M.Humidity effects on a commercially available refrigerant gas sensor TGS 832.Proceedings of SPIE-The International Society for Optical Engineering.Bellingham:SPIE Bellingham,WA,USA,1998,172-179
    [157]谢丹,蒋亚东,姜健壮.基于电荷流动晶体管的新型气体传感器.半导体学报,2001,22(7):933-937
    [158]焦伯恒,戴国瑞,管玉国.气体传感器阵列模式识别简述.云南大学学报,1997,19(2):217-219
    [159]邓俊泳,冯勇建,吴青海.微气体传感器阵列及神经网络的应用.传感器技术,2002,21(8):44-46
    [160]曲建岭,王磊,高峰.运用人工神经网络进行混合气体定量分析的研究.西北工业大学学报,2001,19(3):399-402
    [161]许东,吴铮.基于MATLAB 6.X的系统分析与设计.西安:西安电子科技大学出版社,2002.4-7
    [162]Martin T.Hagan,Howard B.Demuth,等.神经网络设计.北京:机械工业出版社,2002,58-70
    [163]Eva Part-Enander,Anders Sjoberg.MATLAB5手册.北京:机械工业出版社,1999,1-4
    [164]Zaromb S.,Stetter J R.Theoretical basis for identification and measurement of air contaminants using an array of sensors having partly overlapping selectivities.Sensors and Actuators,1984,6(4):255-243
    [165]Gall M,Muller R.Investigation of gas mixtures with different MOS gas sensors with regard to pattern recognition.Sensors and Actuators,1989,17:583-586
    [166]Homer G,Hierold CHR.Gas analysis is by partial model building.Sensors and Actuators, 1983,3:233-282
    [167]Natale C.D.,Davide F.,D'Amico A.Pattern recognition in gas sensing:Well-stated techniques and advances.Sensors and Actuatora B,1995,23(2-3):111-118
    [168]Gardner J W,Hines E L,Tang H C.Detection of vapours and odours from a multisensor array using pattern-recogniton techniques part 2.Artificial neural networks.Sensors and Actuators B,1992,9:9-15
    [169]张立明.人工神经网络的模型及其应用.上海:复旦大学出版社,1994,43-46
    [170]章元,朱尔一,林雍静.气体传感器阵列用于混合气体测量的计算机模拟研究.厦门大学学报,1997,36(5):752-756

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700