几种多孔材料的合成、组装及其传感性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文主要以几种多孔材料(介孔氧化硅SBA-15、介孔碳CMK-3和碳纳米管)为基础,研究了介孔复合金属氧化物的模板合成,通过对几种多孔材料进行掺杂及功能材料组装成功制备了几种性能优越的功能材料,并研究了其在传感器方面的应用。绪论部分简要介绍了多孔材料的合成机理、合成方法及作为主体材料在各个领域的应用价值,并对传感器方面的背景知识作了简要介绍;第二章以介孔碳CMK-3为硬模板合成了具有介孔结构的MgO-ZnO复合金属氧化物并研究了其发光性质。研究表明发光性质随着复合物中组分比的变化而变化。近带边发射随着MgO含量的增加先红移后蓝移。分析表明:介孔结构的形成是造成这种现象的重要原因之一;第三章主要研究了介孔氧化硅作为主体材料在湿度传感领域的应用。导电聚合物聚吡咯被成功组装进介孔氧化硅SBA-15的孔道中形成主客体复合材料。对其湿敏性质的研究表明这种主客体复合材料比相应的客体材料表现出更好的湿度敏感性。本工作将介孔材料引入到湿敏领域,拓展了介孔材料的实际应用范围。同时,我们还探索了提高聚吡咯湿敏性质的其他方法。研究发现通过延长聚吡咯聚合反应时间或者掺杂亚铁离子均能明显地提高其湿敏性质,并对其湿敏机理做了详细的分析;基于在第三章中发现SBA-15能显著提高聚吡咯湿敏性质的这种现象,在第四章中,我们进一步研究了无机盐LiCl在SBA-15中的组装后的湿敏性质。研究发现在合适的LiCl组装量下,得到的材料在全湿度量程内表现出很好的湿敏特性并且具有较短的响应恢复时间。从而为构筑新型的湿敏传感器提供了良好的材料;第五章主要研究了碳纳米管在大分子生物酶(二甲基亚砜还原酶)电化学性质中的促进作用。研究表明,在碳纳米管的促进下,二甲基亚砜还原酶对底物的催化活性提高。催化电流随着底物浓度的增加而增加。该研究为构筑用于检测二甲基亚砜的生物传感器提供了实验基础。
Porous materials, especially mesoporous materials, have attracted researchers’more and more attention due to their high surface area, ordered pore structure and narrow pore size distribution. Various porous materials with different composite, different pore structure and different pore size have been obtained by using different synthesis methods. However, in recent years, the application study for porous materials has been paid more attention in stead of the synthesis work. Many works about the application of porous materials in different fields such as optical device, biochemical sensors and environment detect and so on have been reported. In this thesis work, firstly, we synthesized mesoporous metal oxide by a hard- template method and study their optical properties. Secondly, several functional materials were encapsulated into different porous materials and their application property in humidity sensors or biosensor has been studied.
     Mesoporous metal oxides have potential application values in catalyze field, optical-electronics, electronic-magnetic and separation field and so on due to their some special properties such as high order, high surface area and well crystalline wall structure. Compared with single mesoporous metal oxides, double mesoporous metal oxides possess more better properties: 1) higher surface area; 2) pore size can be tailored in a certain range by adjusting the molar ratio of different metal oxides precursors and 3) the stability of double mesoporous metal oxides is obviously higher than that of single. In this work, we synthesized double metal oxides of MgO-ZnO and studied their optical propertied using mesoporous carbon CMK-3 as hard-template and metal nitrate as precursor. The study results demonstrated that mesoporous structure was formed only after the content of MgO was beyond 25%, and the pore size decreased with the increase of MgO content. Their photo luminescence property results indicated that the band-edge emission have a red shift then blue shift with the increase of MgO content. And the turning point is just at the MgO content of 25% which is a milestone these materials begin to form mesoporous structure. These entire phenomenons displayed that their optical property was affected by the pore structure.
     Besides of the important application in catalysis, adsorption and separation, another important application of mesoporous materials is that they can be used as host materials to encapsulate some functional materials to form host-guest materials. These host-guest materials are expected to have potential application value at nano-catalyze, electronic-sensing and biomedical and so on. At our work, conducting polymer poly-pyrrole was encapsulated into the channel of mesoporous silica SBA-15. The characterization of XRD, IR and N2-adsorption isotherm confirmed the formation of polypyrrole/SBA-15 host-guest materials. The study of humidity sensitive property indicated that the humidity sensing property of polypyrrole was improved after it was encapsulated into the pore of SBA-15. Namely, the impedance change range at the same humidity range for polypyrrole/SBA-15 was larger than that for pure polyprrrole. The main reasons are as follows: 1) the insulation nature of SBA-15 make the impedance value of Polypyrrole/SBA-15 at low relative humidity become larger. 2) Protons dissociated from water molecular interact with the imine center of pyrrole ring and transfer through the polypyrrole chains. 3) The formation of serial water layers at high relative humidity accelerated the transfer rate of H+ and H3O+, so the impedance value was decreased dramatically and the Polypyrrole/SBA-15 materials displayed better humidity sensitive property. In addition, based on this work, we also explored another two methods which can improve the humidity sensitive property of polypyrrole. The first one is to extend the polymerization time of polypyrrole. The study results demonstrated that the particle size of polypyrrole increased with the polymerization time. The increase of particle size make their surface area decreased and resulted that the interact chance between polypyrrole chains and water molecular also decreased which make the corresponding impedance increased. At high relative humidity, the appearance of large voids among polypyrrole particles and the formation of serial water layers make their impedance fall dramatically and so the polypyrrole with longer polymerization time displayed better humidity sensitive property. Dope method is also proved to be an effective method to improve the humidity sensitive property of polypyrrole. In our work, we found that Fe2+-doped polypyrrole displayed better humidity sensitive property than pure polypyrrole. The study of complex impedance spectrum demonstrated that the conduction of free Fe2+ at high relative humidity is the main contribution to the improvement of humidity sensitive property.
     As described above, the polypyrrole/SBA-15 host-guest materials get better humidity sensitive property. The encapsulation method provides a new way to explore new humidity sensor materials. LiCl, as a water-sensitive inorganic salt, is one of the earliest humidity sensor materials. However, it was easy to be disable at high humidity environment due to its high hygroscopic property. Therefore, in our work, we encapsulated it into the channel of as-synthesized mesoporous SBA-15 to form a host-guest composite material and study its humidity sensitive property. It was found that samples with different LiCl content displayed different humidity sensitive property. At optimized LiCl content, the sample with best humidity sensitive property was obtained. According to the analysis of humidity sensitive mechanism, the proton is the main conductive carrier at low relative humidity, and the free Li ion dominated the main conductive mode at high relative humidity. In addition, we also studied the humidity sensitive property of Li+ or K+- doped mesoporous silica SBA-15. Research results demonstrated that after doping with these ions, better humidity sensitive property was obtained.
     As a typical kind of biological larger molecular and special catalyst, enzyme plays an important role in human being life. The study of electrochemical property of enzyme plays an important role both in theory and in application. For the academic, the electron transfer process between enzyme and electrode surface share a similar mechanism with the redox reaction in human being body. For the application, the study of electrochemical property of enzyme play an instructive role in construct a biosensor. In our work, the electrochemical property of DMSO reductase in the presence of mediator was studied on the carbon nanotube- modified GC electrode. DMSO reductase is a Molybdenum-containing enzyme which can catalyze the reduce reaction from DMSO to DMS. During the reaction process, the oxygen atom of DMSO is transferred to molybdenum, and then is subsequently removed from molybdenum as water. So, DMSO reductase is to be considered as an ideal enzyme to construct a biosensor. Two different electrodes of DMSOR-CNT/GC and DMSOR/GC were prepared and their electrochemical response to the substrate of DMSO in the presence of mediator. The study results demonstrated that the catalytic current for both electrodes increased with the substrate concentration. However, at the same substrate concentration, the catalytic current of electrode DMSOR-CNT/GC is larger than that of DMSOR/GC, indicating that carbon nanotube can provide a beneficial microenvironment for the electron transfer between DMSO reductase and the glassy carbon electrode surface. This electrode is expected to be applicable in biosensor.
引文
1.徐如人,庞文琴.分子筛与多孔材料化学[M]:科学出版社2004.
    2. IUPAC Manual of Symbols and Terminology [M]. Pure Appl. Chem. 1972; 31: 578 p.
    3. Kresge CT, Leonowicz ME, Roth WJ. Ordered Mesoporous Molecular Sieves Synthesized by a Liquid-crystal Template Mechanism [J]. Nature 1992; 359:710-712.
    4. Beck JS, Vartuli JC, Roth WJ, Leonowicz ME, Kresge CT, Schmitt KD, Chu CTW, Olson DH, Sheppard EW, McCullen SB and others. A New Family of Mesoporous Molecular-Sieves Prepared with Liquid-Crystal Templates [J].J Am Chem. Soc 1992; 114:10834-10843.
    5. DiRenzo F, Cambon H, Dutartre R. A 28-year-old synthesis of micelle-templated mesoporous silica [J]. Microporous Mater 1997; 10:283-286.
    6. Yanagisawa T, Shimizu T, Kuroda K, Kato C. The Preparation of Alkyltrimethylammonium-Kanemite Complexes and Their Conversion to Microporous Materials [J]. Bull Chem Soc Jpn 1990; 63:988-992.
    7. Zhao D, Feng J, Huo Q, Melosh N, Fredrickson GH, Chmelka BF, Stucky GD. Triblock Copolymer Syntheses of Mesoporous Silica with Periodic 50 to 300 Angstrom Pores [J]. Science 1998; 279:548-552.
    8. Li WC, Lu AH, Weidenthaler C, Schuth F. Hard-templating pathway to create mesoporous magnesium oxide [J]. Chem. Mater 2004; 16: 5676-5681
    9. Roggenbuck J, Tiemann M. Ordered Mesoporous Magnesium Oxide with High Thermal Stability Synthesized by Exotemplating Using CMK-3 Carbon [J]. J. Am. Chem. Soc 2005; 127: 1096-1097
    10. Roggenbuck J, Koch G, Tiemann M. Synthesis of Mesoporous Magnesium Oxide by CMK-3 Carbon Structure Replication [J]. Chem. Mater. 2006; 18:4151-4156.
    11. Lai XY, Li XT, Geng WC, Tu JC, Li JX, Qiu SL. Ordered Mesoporous Copper Oxide with Crystalline Walls [J]. Angew. Chem. Int. Ed. 2007; 46:738–741.
    12. Wu CW, Ohsuna T, Kuwabara M, Kuroda K. Formation of Highly Ordered Mesoporous Titania Films Consisting of Crystalline Nanopillars with Inverse Mesospaceby Structural Transformation [J]. J. Am. Chem. Soc. 2006; 128:4544-4545.
    13. Perkas N. Palchik O, Brukental I et al. A Mesoporous Iron-Titanium Oxide Composite Prepared Sonochemically [J]. J. Phys. Chem. B 2003; 107:8772-8778.
    14. Pavasupreea S, Suzukia Y, Pivsa-Artb S, Yoshikawa S. Preparation and characterization of mesoporous TiO2–CeO2 nanopowders respond to visible wavelength [J]. Journal of Solid State Chemistry 2005; 178:128–134.
    15. Park KH, Sung IK, Kim DP. A facile route to prepare high surface area mesoporous SiC from SiO2 sphere templates [J]. J. Mater. Chem. 2004; 1 4:3436-3439.
    16. Lu A-H, Li W-C, Schmidt W, Kiefer W, Schu¨th F. Easy synthesis of an ordered mesoporous carbon with a hexagonally packed tubular structure [J]. Carbon 2004;42:2939–2948.
    17. Shi YF, Wan Y, Zhai YP et al. Ordered Mesoporous SiOC and SiCN Ceramics from Atmosphere-Assisted in Situ Transformation [J]. Chem. Mater. 2007; 19: 1761–1771.
    18.刘超,成国祥.模板法制备介孔材料的研究进展[J].离子交换与吸附2003;19(4):374-384.
    19. Wan Y, Hai HF, Zhao DY.“Host-Guest”Chemistry in the Synthesis of Ordered Nonsiliceous Mesoporous Materials [J]. Accounts Of Chemical Research 2006;39(7):423-432.
    20. Lu A-H, Schüth F. Nanocasting: AVersatile Strategy for Creating Nanostructured Porous Materials [J]. Adv. Mater. 2006;18:1793–1805.
    21. Schuth F. Non-siliceous Mesostructured and Mesoporous Materials [J]. Chem. Mater. 2001;13:3184-3195.
    22. Huo QS, Margolese DI, Ciesla U, Feng PY, Gier TE, Sieger P, Leon R, Petroff PM, Schuth F, Stucky GD. Generalized Synthesis of Periodic Surfactant Inorganic Composite Materials [J]. Nature 1994;368:317-321.
    23. Ryoo R, Joo SH, Jun S. [J]. J. Phys. Chem. B 1999;103:7743.
    24. Park KH, Sung IK, Kim DP. A facile route to prepare high surface area mesoporous SiC from SiO2 sphere templates [J]. J. Mater. Chem.2004;14:3436-3439.
    25. Xu X, Tian B, Kong J, Zhang S, Liu B, Zhao D. Ordered Mesoporous Niobium Oxide Film: A Novel Matrix for Assembling Functional Proteins for Bioelectrochemical Applications [J]. Adv.Mater. 2003;15(22):1932-1936.
    26. Tian B, Liu X, Solovyov LA, Z. Liu HY, Zhang Z, Xie S, Zhang F, Tu B, YuC, Terasaki O and others [J]. J. Am. Chem. Soc. 2004;126:865.
    27. Monnier A, Schuth F, Huo Q, Kumar D, Margolese D, Maxwell RS, Stucky GD, Krishnamurty M, Petroff P, Firouzi A and others. Cooperative Formation of Inorganic-Organic Interfaces in the Synthesis of Silicate Mesostructures [J].Science 1993;261:1299-1303.
    28. Inagaki S, Fukushima Y, Kuroda K. Synthesis of Highly Ordered Mesoporous Materials from a Layered Polysilicate [J]. J Chem Soc-Chem Commun 1993:680-682.
    29. Huo QS, Margolese DI, Ciesla U, Demuth DG, Feng PY, Gier TE, Sieger P, Firouzi A, Chmelka BF, Schuth F and others. Organization of Organic-Molecules with Inorganic Molecular- Species into Nanocomposite Biphase Arrays. [J].Chem Mat 1994;6:1176-1191.
    30. Vartuli JC, Shih SS, Kresge CT, Beck JS. Potential applications for M41S type mesoporous molecular sieves [J]. Mesoporous Molecular Sieves 1998 1998;117:13-21.
    31. Firouzi A, Atef F, Oertli AG, Stucky GD, Chmelka BF. Alkaline lyotropic silicate-surfactant liquid crystals [J]. J Am.Chem Soc 1997;119:3596-3610.
    32. Chen XY, Ding GZ, Chen HY, Li QZ. Formation at low surfactant concentrations and characterization of mesoporous MCM-41 [J]. Sci China Ser B-Chem 1997;40:278-285.
    33. Huo QS, Margolese DI, Stucky GD. Surfactant control of phases in the synthesis of mesoporous silica-based materials [J]. Chem Mat 1996;8:1147-1160.
    34. Chen CY, Burkette SL, Li HX, Davis ME. Studies on mesoporous materials. II. Synthesis mechanism of MCM -41 [J]. Microporous Mater 1993;2:27–34.
    35. Chen CY, Li HX, Davis ME. Studies on mesoporous materials. I. Synthesis and characterization of MCM-41[J]. Microporous Mater 1993;2:17-26.
    36. Stucky GD, Huo QS, Firouzi A, Chmelka BF, Schacht S, VoigtMartin IG, Schuth F. Directed synthesis of organic/inorganic composite structures [J]. Progress in Zeolite and Microporous Materials 1997:3-28.
    37. Corma A, Martinez-Soria V, Schoneveld E. [J]. J.Cata. 2000;192:163-173.
    38. Kloestra KR, Van-Beckkum HJ. [J].J.Chem.Res. 1995:26-27.
    39. Kloestra KR, Van-Beckkum HJ. [J].Chem.Commun. 1995:1005-1006.
    40. Maschmeyer T, Rey F, Sankar G. [J]. Nature 1994;378:159-162.
    41.杨秀健,施朝淑,陈永虎,陈航榕.纳米介孔ZrO2及其表面修饰的发光性质[J].发光学报2003;24(4):407-411.
    42. Yamashita H, Nishimura M, Koyano K, Tatsumi T, Anpo M. [J]. Stud. Surf. Sci. Catal. 1998;117:551-558.
    43. Wirnsberger G, Yang PD, Huang HC, Scott B, Deng T, Whitesides GM, Chmelka BF, Stucky GD. Patterned block-copolymer-silica mesostructures as host media for the laser dye rhodamine 6G [J]. Journal of Physical Chemistry B 2001;105(27):6307-6313.
    44. Xu Q, Zhu JJ, Hu XY. Ordered mesoporous polyaniline film as a new matrix for enzyme immobilization and biosensor construction [J]. Analytica Chimica Acta 2007;597(1):151-156.
    45. Tao SY, Li GT. Porphyrin-doped mesoporous silica films for rapid TNT detection [J]. Colloid and Polymer Science 2007;285:721-728.
    46. Slowing II, Trewyn BG, Giri S, Lin VSY. Mesoporous silica nanoparticles for drug delivery and biosensing applications [J]. Advanced Functional Materials 2007;17(8):1225-1236.
    47. Rossinyol E, Prim A, Pellicer E, Arbiol J, Hernandez -Ramirez F, Peiro F, Cornet A, Morante JR, Solovyov LA, Tian BZ and others. Synthesis and characterization of chromium-doped mesoporous tungsten oxide for gas-sensing applications [J]. Advanced Functional Materials 2007;17(11):1801-1806.
    48. Mohammadi MR, Fray DJ. Semiconductor TiO2-Ga2O3 thin film gas sensors derived from particulate sol-gel route [J]. Acta Materialia 2007;55(13):4455-4466.
    49. Yuliarto B, Honma I, Katsumura Y, Zhou HS. Preparation of room temperature NO2 gas sensors based on W- and V-modified mesoporous MCM-41 thin films employing surface photovoltage technique [J]. Sensors and Actuators B-Chemical 2006;114(1):109-119.
    50. Wagner T, Kohl CD, Froba M, Tiemann M. Gas sensing properties of ordered mesoporous SnO2 [J]. Sensors 2006;6(4):318-323.
    51. Ramgir NS, Hwang YK, Jhung SH, Kim HK, Hwang JS, Mulla IS, Chang JS. CO sensor derived from mesostructured Au-doped SnO2 thin film [J]. Applied Surface Science 2006;252(12):4298-4305.
    52. Palaniappan A, Su XD, Tay FEH. Functionalized mesoporous silica films for gas sensing applications [J]. Journal of Electroceramics 2006;16(4):503-505.
    53. Hyodo T, Murayama K, Shimizu Y, Egashira M. Large mesoporous tin dioxide powders for gas sensor materials-effects of various additives on the mesostructure and the H-2 sensing properties [J]. Rare Metal Materials andEngineering 2006;35:455-458.
    54. Dickey EC, Varghese OK, Ong KG, Gong DW, Paulose M, Grimes CA. Room temperature ammonia and humidity sensing using highly ordered nanoporous alumina films [J]. Sensors 2002;2(3):91-110.
    55. Bearzotti A, Bertolo JM, Innocenzi P, Falcaro P, Traversa E. Relative humidity and alcohol sensors based on mesoporous silica thin films synthesised from block copolymers [J]. Sensors and Actuators B-Chemical 2003;95(1-3):107-110.
    56. Innocenzi P, Falcaro P, Schergna S, Maggini M, Menna E, Amenitsch H, Soler-Illia JAA, Grosso D, Sanchez C. One-pot self-assembly of mesostructured silica films and membranes functionalised with fullerene derivatives [J]. Journal of Materials Chemistry 2004;14(12):1838-1842.
    57. Cho JH, Yu JB, Kim JS, Sohn SO, Lee DD, Huh JS. Sensing behaviors of polypyrrole sensor under humidity condition [J]. Sens. Actuators B 2005;108:389-392.
    58. Gong QX, Wang SL, Huang MJ, Gan FX. A humidity-resistant highly sensitive holographic photopolymerizable dry film [J]. Materials Letters 2005;59(23):2969-2972.
    59. Su PG, Sun YL, Wang CS, Lin CC. Humidity sensing and electrical properties of hybrid films prepared from [3-(methacrylamino)propyl] trimethyl ammonium chloride, aqueous monodispersed colloidal silica and methyl methacrylate [J]. Sensors and Actuators B-Chemical 2006;119(2):483-489.
    60. Geng WC, Li XT, Li N, Zhang T, Wang W, Qiu SL. [J]. J. Appl. Polym. Sci 2006;102:3301.
    61. Yang J, Daehler A, Stevens GW. Adsorption of lysozyme and trypsin onto mesoporous silica materials [J].Nanotechnology in Mesostructured Materials 2003; 146:775-778.
    62. Miyahara M, Vinu A, Hossain KZ, Nakanishi T, Ariga K. Adsorption study of heme proteins on SBA-15 mesoporous silica with pore-filling models [J]. Thin Solid Films 2006;499:13-18.
    63. Rosales-Hernandez MC, Mendieta-Wejebea JE, Correa-Basurto J, Vazquez-Alcantara JI, Terres-Rojas E, Trujillo-Ferrara J. Catalytic activity of acetylcholinesterase immobilized on mesoporous molecular sieves [J]. International Journal of Biological Macromolecules 2007;40(5):444-448.
    64. Lu YJ, Lu GZ, Wang YQ, Guo YL, Guo Y, Zhang ZG, Wang YS, Liu XH.Functionalization of cubic Ia3d mesoporous silica for immobilization of penicillin G acylase [J]. Advanced Functional Materials 2007;17(13):2160-2166.
    65. Cheng QL, Pavlinek V, Lengalov A, Li CZ, He Y, Saha P. Conducting polypyrrole confined in ordered mesoporous silica SBA-15 channels: Preparation and its electrorheology [J]. Microporous and Mesoporous Materials 2006;93:263–269.
    66. Park Y, Kang T, Kim P, Yi J. Encapsulation method for the dispersion of NiO onto ordered mesoporous silica, SBA-15, using polyethylene oxide (PEO) [J]. Journal of Colloid and Interface Science 2006;295:464-471.
    67. Meng YD, Chen DR, Jiao XL. Fabrication and Characterization of Mesoporous Co3O4 Core/Mesoporous Silica Shell Nanocomposites [J]. J. Phys. Chem. B 2006;110:15212-15217.
    68. Tang GQ, Xiong Y, Zhang LZ, Zhang GL. Novel long-lifetime photoluminescence of nanosized ZnO included in the mesoporous MCM-41 [J]. Chemical Physics Letters 2004;395:97-102.
    69. Burova LI, Petukhov DI, Eliseev AA, Lukashin AV, Tretyakov YD. Preparation and properties of ZnO nanoparticles in the mesoporous silica matrix [J]. Superlattices and Microstructures 2006;39(1-4):257-266.
    70. Gao F, Chino N, Naik SP, Sasaki Y, Okubo T. Photoelectric properties of nano-ZnO fabricated in mesoporous silica film [J]. Materials Letters 2007;61(14-15):3179-3184.
    71. Yang H, Shi Q, Tian B, Lu Q, Gao F, Xie S, Fan J, Yu C, Tu B, Zhao D. [J].J. Am. Chem. Soc. 2003;125:4724.
    72. Gao FF, Naik SP, Sasaki Y. Preparation and optical property of nanosized ZnO electrochemically deposited in mesoporous silica films. [J]. Thin Solid Films. 2006;495:68-72.
    73. Jiang Q, Wu ZY, Wang YM et al. Fabrication of photoluminescent ZnO/SBA-15 through directly dispersing zinc nitrate into the as-prepared mesoporous silica occluded with template [J]. Journal of Materials Chemistry 2006;16(16):1536-1542.
    74.高志贤,李小强.纳米生物医药[M]:化学工业出版社; 2007.
    75. Sakai Y, Sadaoka Y, Matsuguchi M. Humidity sensors based on polymer thin films. Sens [J]. Actuators B: Chem. 1996;35–36:85-90.
    76. Lee CW, Kim Y, Joo SW, Gong MS. Resistive humidity sensor using polyelectrolytes based on new-type mutually cross-linkable copolymers[J].Sens. Actuators B: Chem. 2003; 88:21-29.
    77. Casalbore MG, Yang MJ, Li Y et al. A polyelectrolyte as humidity sensing material: Influence of the preparation parameters on its sensing property [J]. Sensors and Actuators B-Chemical 2006;114:584-590.
    78. Li Y, Hong LJ, Chen YS, Wang HC, Lu X, Yang MJ. Poly (4-vinylpyridine)/carbon black composite as a humidity sensor [J]. Sensors and Actuators B-Chemical 2007;123(1):554-559.
    79. Lee DG, Lim TH, Jeon YM, Gong MS. Resistive humidity sensor from copolymers containing quaternary ammonium salt (II): Four component copolymers [J]. Polymer-Korea 2007;31(4):302-307.
    80. Lee DG, Lim TH, Jeon YM, Gong MS. Resistive humidity sensor from copolymers containing quaternary ammonium salt (I): Three component copolymers [J]. Polymer-Korea 2007;31(3):194-200.
    81. Gong MS, Joo SW, Choi BK. Humidity-sensitive properties of a cross-linked polyelectrolyte prepared from mutually reactive copolymers [J]. Journal of Materials Chemistry 2002;12(4):902-906.
    82. Gong MS, Joo SW, Choi BK. Humidity sensor using mutually reactive copolymers containing quaternary ammonium salt and reactive function [J]. Sensors and Actuators B-Chemical 2002;86(1):81-87.
    83. Gong MS, Lee MH, Rhee HW. Humidity sensor using cross-linked copolymers containing viologen moiety [J]. Sensors and Actuators B-Chemical 2001;73(2-3):185-191.
    84. Chen YS, Li Y, Yang MJ. A fast response resistive thin film humidity sensor based on poly(4-vinylpyridine) and poly(glycidyl methacrylate)[J]. Journal of Applied Polymer Science 2007;105:3470-3475.
    85. Yao ZW, Yang MJ. A fast response resistance-type humidity sensor based on organic silicon containing cross-linked copolymer [J]. Sensors and Actuators B-Chemical 2006;117(1):93-98.
    86. Hsu SC, Lee CF, Chiu WY. [J].J. Appl. Polym. Sci 1999;71:47.
    87. Lee CW, Kim O, Gong MS. Humidity-sensitive properties of new polyelectrolytes based on the copolymers containing phosphonium salt and phosphine function [J]. J. Appl. Polym. Sci. 2003; 89:1062-1070.
    88. Gong MS, Joo SW, Choi BK. Humidity-sensitive properties of a crosslinked polyelectrolyte prepared from mutually reactive copolymers [J]. J.Mater. Chem. 2002;12:902-906.
    89. Gong MS, Park JS, Lee MH, Rhee HW. Humidity sensor using cross-linkedpolyelectrolyte prepared from mutually reactive copolymers containing phosphonium salt [J]. Sens. Actuators B: Chem. 2002;86:160-167.
    90. Li Y, Chen Y, Zhang C, Xue TX, Yang MJ. [J]. Sens. Actuators B 2007;125:131.
    91. Geng WC, Li N, Li XT, Wang R, Tu JC, Zhang T. [J].Sens. Actuators B 2007;125:114.
    92. Li Y, Chen YS, Zhang C, Xue TX, Yang MJ. A humidity sensor based on interpenetrating polymer network prepared from poly(dimethylaminoethyl methacrylate) and poly(glycidyl methacrylate) [J]. Sensors and Actuators B-Chemical 2007;125(1):131-137.
    93. Pokhrel S, Jeyaraj B, Nagaraja KS. Humidity-sensing properties of ZnCr2O4-ZnO composites [J]. Materials Letters 2003;57(22-23):3543-3548.
    94. Pokhrel S, Nagaraja KS. Electrical and humidity sensing properties of Chromium(III) oxide-tungsten(VI) oxide composites [J]. Sensors and Actuators B-Chemical 2003;92(1-2):144-150.
    95. Pokhrel S, Nagaraja KS. Electrical and humidity sensing properties of composites prepared from MnO2 and MnCr2O4 [J]. Transactions of the Indian Institute of Metals 2003;56(4):351-355.
    96. Pokhrel S, Nagaraja KS. Electrical and humidity sensing properties of Chromium (Ⅲ) oxide-tungsten (Ⅳ) oxide composites [J]. Sens. Actuators B 2003;92:144-150.
    97. Pokhrel S, Nagaraja KS. Solid state electrical conductivity and humidity sensing properties of Cr2O3-MoO3 composites [J]. Physica Status Solidi a-Applied Research 2002;194(1):140-146.
    98. Raj AMES, Magdalane CM, Nagaraja KS. Zinc(II) Oxide-Yttrium(III) oxide composite humidity sensor [J]. Physica Status Solidi a-Applied Research 2002;191(1):230-234.
    99. Raj AMES, Mallika C, Sreedharan OM, Nagaraja KS. Electrical and humidity sensing properties of tin(IV) oxide-tin(II) molybdate composites [J]. Materials Research Bulletin 2001;36(5-6):837-845.
    100. Raj AMES, Mallika C, Sreedharan OM, Nagaraja KS. Manganese oxide-manganese tungstate composite humidity sensors [J]. Materials Letters 2002;53(4-5):316-320.
    101. Raj AMES, Mallika C, Swaminathan K, Sreedharan OM, Nagaraja KS. Zinc(II) oxide-zinc(II) molybdate composite humidity sensor [J]. Sensors and Actuators B-Chemical 2002;81(2-3):229-236.
    102. Fu G, Chen H, Chen ZX et al. Humidity sensitive characteristics ofZn2SnO4-LiZnVO4 thick films prepared by the sol-gel method [J]. Sensors and Actuators B-Chemical 2002; 81:308-312.
    103. Doroftei C, Rezlescu E, Rezlescu N, Popa PD. Microstructure and humidity sensitive properties of MgFe2O4 ferrite with Sn and Mo substitutions prepared by selfcombustion method [J]. Journal of Optoelectronics and Advanced Materials 2006;8(3):1012-1015.
    104. Mineiro SL, Nono MCA, Kuranaga C, Silva MD. Humidity sensitive characteristics of ZnO-TiO2-Ta2O5 ceramic [J]. Advanced Powder Technology Iv 2005;498-499:293-298.
    105. Mo MS, Ao ZH, Wang H, Shen YS. Structure and humidity-sensitive properties of TiO2-doped alpha-Fe2O3-K2O nanometer-sized ceramics [J]. Journal of Inorganic Materials 2000;15(3):521-526.
    106. B.M.Novak. Hybrid nanocomposite materials—between inorganic glasses and organic polymers [J]. Adv. Mater. 1993; 5:422-433.
    107. Su PG, Huang LN. [J].Sens.Actuators B 2007;123:501.
    108. Su PG, Tsai WY. Humidity sensing and electrical properties of a composite nano-sized SiO2 and poly(2-acrylamido-2-methylpropane sulfonate) [J]. Sensors and Actuators B-Chemical 2004;100(3):417-422.
    109. Shan FK, Kim BI, Liu GX. Blueshift of near band edge emission in Mg doped ZnO thin films and aging [J]. J. Appl. Phys 2004; 95(9):4772-4776.
    110. Park WI, Yi GC, Jang HM. Metalorganic vapor-phase epitaxial growth and photoluminescent properties of Zn1-xMgxO(0≤x≤0.49) thin films [J]. Appl. Phys. Lett 2001;79(13):2022-2024.
    111. Sun HD, Makino T, Ohtomo A. Biexciton emission from ZnO/Zn0.74Mg0.26O mutiquantum wells [J]. Appl. Phys. Lett 2001;78(22):3385-3387.
    112. Takashi W, Takayuki N, Nishiwaki S. Preparation of Zn1-xMgxO films by radio frequency magnetron sputtering [J]. Thin Solid Films 2000;372:173-176.
    113. Jin YB, Zhang B, Yang SM. Room temperature UV emission of MgxZn1-xO films [J]. Solid state commun 2001;119:409-413.
    114. Zhao DX, Liu YC, Shen DZ. Photoluminescence properties of MgxZn1-xO alloy thin films fabricated by the sol-gel deposition method [J]. J. Appl. Phys 2001;90(11):5561-5563.
    115. Bergman L, Morrison JL, Chen XB. Ultraviolet photoluminescence and raman properties of MgZnO nanopowders [J]. Appl. Phys. Lett 2006;88:023103-1~023103-3.
    116. Jun S, Joo SH, Ryoo R. Synthesis of new , nanoporous carbon with hexagonallyordered mesostructure [J]. J. Am. Chem. Soc 2000;122:10712-10713.
    117. Sarver JF, Katnack FL, Hummel FA. [J].J. Electrochem. Soc 1959;106: 960.
    118. Ohtomo A, Kawasaki M, Koida T. MgxZn1-xO as aⅡ-Ⅵwidegap semiconductor alloy [J]. Appl. Phys. Lett 1998;72(19):2466-2468.
    119. Sharma AK, Narayan J, Muth JF. Optical and structural properties of epitaxial MgxZn1–xO alloys [J]. Appl. Phys. Lett 1999;75(21):3327-3329.
    120. Yan CH, J. Y, D SL. Synthesis of Y2O3:Eu nanocrystalline by complex precursors [J]. Chin. J. Lumin (in Chinese) 1999;20(3):254-257.
    121. Ma JG, Liu YC, Shao CL. Formation and luminescence of ZnO nanaoparticles embedded in MgO films [J]. Phys. Rev. B 2005;71:125430-1~125430-6.
    122. Kang J, Park S. [J].Mechatronics 1998;8:459.
    123. Park S, Kang J, Park J, Mun S. One-bodied humidity and temperature sensor having advanced linearity at low and high relative humidity range [J]. Sensors and Actuators B 2001;76:322-326.
    124. Connolly EJ, Pham HTM, Groeneweg J et al. Relative humidity sensors using porous SiC membranes and Al electrodes [J]. Sens. Actuators B 2004; 100:216-220.
    125. Hassen MA, Clarke AG, Swetnam MA, Kumar RV, Fray DJ. High temperature humidity monitoring using doped strontium cerate sensors [J]. Sensors and Actuators B 2000; 69:138-143.
    126. Wu SZ, Zhu YL, Li FX, Shen JR. [J].J. Appl. Polym. Sci 1999;74:1992.
    127. Tandon RP, Tripathy MR, Arora AK, Hotchandani S. Gas and humidity response of iron oxide-polypyrrole nanocomposites [J]. Sens. Actuators B 2006;114:768-773.
    128. Zhao D, Huo Q, Feng J, Chmelka BF, Stucky GD. Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered,hydrothermally stable, mesoporous silica structures [J].J.Am.Chem.Soc 1998; 120:6024-6036.
    129. Zhang WX, Wen XG, Yang SH. [J].Langmuir 2003;19: 4420.
    130. Qu LT, Shi GQ, Chen FE, Zhang JX. Electrochemical growth of polypyrrole microcontainers [J]. Macromolecules 2003;36:1063-1067.
    131. Khalili NR, Jain H, Arastoopour H. Synthesis and characterization of catalysts produced from paper mill sludge I. Determination of NOx removal capability [J]. Journal of Hazardous Materials 2000;80(1-3):207-221.
    132. Ernsberger FM. The nonconformist ion [J]. J. Am. Ceram. Soc 1983;11:747-750.
    133. Bidan G, Billon M, Livache T, Mathis G, Roget A, Torres-Rodriguez LM.Conducting polymers as a link between biomolecules and microelectronics [J]. Synth. Met 1999;102:1363-1365.
    134. Gardnera JW, Bartlettb PN. Application of conducting polymer technology in Microsystems [J]. Sens. Actuator A 1995;51:57-66.
    135. Bennett B, Benson N, McEwan AG, Bray RC. Multiple states of the molybdenum centre of dimethyl sulphoxide reductase from Rhodocacter capsulatus revealed by EPR spectroscopy [J]. Eur J Biochem 1994;225:321-331.
    136. Radhakrishnan S, Somani P. Sensitization of photocurrents in solid-state electrochemical cells using conducting polypyrrole [J]. Mater. Lett. 1998;37:192-196.
    137. Trojanowicz M, O.Geschke, Krawczyk TKv, Cammann K. Biosensors based on oxidases immobilized in various conducting polymers [J]. Sens. Actuators B 1995;28:191-199.
    138. Marcos S, Hortigüela R, J.Galbán, Castillo JR, Wolfbeis OS. Characterization of a urea optical sensor based on polypyrrole [J]. Mikrochim. Acta 1999;130:267-272.
    139. Pringsheim E, Terpetschnig E, Piletsky SA, Wolfbeis OS. A polyaniine with near-infrared optical response to saccharides [J]. Adv. Mater 1999;11:865-868.
    140. Han GY, Shi GQ. Conducting polymer electrochemical actuator made of high-strength three-layered composite films of polythiophene and polypyrrole [J]. Sens. Actuators B 2004;99:525-531.
    141. Chen W, Wan XB, Xu N, Xue G. Ordered conducting polypyrrole doped with sulfopropyl ether ofβ-cyclodextrin [J]. Macromolecules 2003;36:276-278.
    142. Chakrabarti S, Banerjee D, Bhattacharyya R. Enhancement of room temperature electrical conductivity of polypyrrole by chemical modification [J]. J. Phys. Chem. B 2002;106:3061-3064.
    143. Cai Y, Ge ZH, Chen YF, Chai ZL. The studies on humidity sensitivity of nano SnO2 and zeolite entrapped nano SnO2 clusters [J]. Mate. Sci. Eng (in Chinese) 1998;16:60-63.
    144. Sundaram R, Nagaraja KS. [J].Sens. Actuators B 2004;101:353-360.
    145. Sundaram R, Nagaraja KS. Solid state electrical conductivity and humidity sensing properties of WO3-Y2O3 composites [J]. Phys. Stat. Sol. (a) 2004;201:529-535.
    146. Parvatikar N, Jain S, Khasim S, Revansiddappa M, Bhoraskar SV, Prasad MVNA. Electrical and humidity sensing properties of polyaniline/WO3 composites[J]. Sens. Actuators B 2006;114: 599-603.
    147. Nohria R, Khillan RK, Su Y, Dikshit R, Lvov Y, Varahramyan K. Humidity sensor based on ultrathin polyaniline film deposited using layer-by-layer nano-assembly [J]. Sens. Actuators B 2006;114:218-222.
    148. Kirchner CN, Szunerits S, Wittstock G. Scanning electrochemical microscopy (SECM) based detection of oligonucleotide hybridization and simultaneous determination of the surface concentration of immobilized oligonucleotides on gold [J]. Electroanalysis 2007;19(12):1258-1267.
    149. Chen QL, Pablinek V, Li CZ et al. Synthesis and Structural properties of polypyrrole/nano-Y2O3 conducting composite. [J]. Applied Surface Science 2006;253:1736-1740.
    150. Mathys GI, Trunog VT. [J]. Synthetic Metals 1997;89:103.
    151. Parvatikar N, Jain S, Kanamadi CM et al. Humidity sensing and electrical properties of polyaniline/cobalt oxide composites [J]. J. Appl. Polym. Sci 2007; 103:653-658.
    152. Maeda S, Armes SP. Preparation and characterization of polypyrrole-Tin (IV) oxide nanocomposite colloids [J].Chem. Mater 1995;7:171-178.
    153. Lukaszewicz JP, Skompska M. A novel carbon-based ionic conductor for humidity sensors [J]. Sens.Actuators B 2006;113:970-977.
    154. Cosentino IC, Muccillo ENS, Muccillo R.The influence of Fe2O3 in the humidity sensor performance of ZrO2:TiO2-based porous ceramics [J]. Materials Chemistry and Physics 2007; 103:407-414.
    155. Pokhrel S, Jeyaraj B, Nagaraja KS. Humidity-sensing properties of ZnCr2O4-ZnO composites [J]. Mater.Lett 2003;57:3543-3548.
    156. Feng CD, S. L. Sun HW, Segre CU, Stetter JR. Humidity sensing properties of Nafion and sol–gel derived SiO2/Nafion composite thin films [J]. Sens. Actuators B 1997;40:217–222.
    157. Anderson JH, Parks GA. The electrical conductivity of silica gel in the presence of adsorbed water [J]. J. Phys. Chem. B 1968;72:3662-3668.
    158. Wang CT, Wu CL. Electrical sensing properties of silica aerogel thin films to humidity [J]. Thin Solid Films 2006;496:658-664.
    159. Li G, Zhao XS. Characterization and photocatalytic properties of titanium-containing mesoporous SBA-15 [J]. Ind.Eng.Chem.Res 2006;45:3569-3573.
    160. Wu RJ, Sun YL, Lin CC, Chen HW, Chavali M. Composite of TiO2 nanowires and Nafion as humidity sensor material [J]. Sens. Actuators B 2006;115:198-204.
    161. Watkins JJ, Pai RA, Agarwal S, Hess DM. Synthesis of robust mesoporous metal oxide films by the rapid replication of structured organic templates in supercritical carbon dioxide [J]. Abstracts of Papers of the American Chemical Society 2004;227:U478-U478.
    162. Casalbore-Miceli G, Yang MJ, Camaioni N, Mari C-M, Li Y, Sun H, Ling M. Investigations on the ion transport mechanism in conducting polymer films [J]. Solid. State Ionics 2000;131:311–321.
    163. Allen PM, Hill HAO, Walton NJ. Surface modifiers for the promotion of direct electrochemistry of cytochrome c [J]. J.Electroanal.Chem. 1984;178:69-86.
    164. Gleria kD, H.A.O H, Lowe VJ, Page DJ. Direct electrochemistry of horse-heart cytochrome c at amino acid-modified gold electrodes [J]. J.Electroanal.Chem. 1986;213:333-338.
    165. Moghaddam AB, Ganjali MR, Dinarvand R, Saboury AA, Razavi T, Moosavi-Movahedi AA, Norouzi P. Fundamental studies of the cytochrome c immobilization by the potential cycling method on nanometer-scale nickel oxide surfaces [J]. Biophysical Chemistry 2007;129:259–268.
    166. Tabacchi G, Gianotti E, Fois E, Martra G, Marchese L, Coluccia S, Gamba A. Understanding the vibrational and electronic features of Ti(IV) sites in mesoporous silicas by integrated ab initio and spectroscopic investigations [J]. Journal of Physical Chemistry C 2007;111(13):4946-4955.
    167. Bao S-J, Li CM, Zang J-F, Cui X-Q, Qiao Y, Guo J. New Nanostructured TiO2 for Direct Electrochemistry and Glucose Sensor Applications [J]. Adv. Funct. Mater. 2008;18:591–599.
    168. Topoglidis E, Palomares E, Astuti Y, Green A, Campbell CJ, Durrant JR. Immobilization and electrochemistry of negatively charged proteins on modified nanocrystalline metal oxide electrodes [J]. Electroanalysis 2005;17(12):1035-1041.
    169. Topoglidis E, Cass AEG, O’Regan B, Durrant JR. Immobilisation and bioelectrochemistry of proteins on nanoporous TiO2 and ZnO films [J]. Journal of Electroanalytical Chemistry 2001;517:20–27.
    170. Yu J, Ma J, Zhao F, Zeng B. Direct electron-transfer and electrochemical catalysis of hemoglobin immobilized on mesoporous Al2O3 [J]. Electrochimica Acta 2007;53:1995–2001.
    171. Feng J-J, Xu J-J, Chen H-Y. Direct electron transfer and electrocatalysis of hemoglobin adsorbed on mesoporous carbon through layer-by-layer assembly [J]. Biosensors and Bioelectronics 2007;22:1618–1624.
    172. Cai C, Chen J. Direct electron transfer of glucose oxidase promoted by carbon nanotubes [J]. Analytical Biochemistry 2004;332:75–83.
    173. Salimi A, Noorbakhsh A, Ghadermaz M. Direct electrochemistry and electrocatalytic activity of catalase incorporated onto multiwall carbon nanotubes-modiWed glassy carbon electrode [J]. Analytical Biochemistry 2005;344:16–24.
    174. Cai C, Chen J. Direct electron transfer and bioelectrocatalysis of hemoglobin at a carbon nanotube electrode [J]. Analytical Biochemistry 2004;325:285–292.
    175. Ye J, Baldwin RP. Catalytic reduction of myoglobin and hemoglobin at chemically modified electrodes containing methylene blue [J]. Anal. Chem. 1988;60:2263–2268.
    176. Abo M, Ogasawara Y, Tanaka Y, Okubo A, Yamazaki S. Amperometric dimethyl sulfoxide sensor using dimethyl sulfoxide reductase from Rhodobacter sphaeroides [J]. Biosensors and Bioelectronics 2003;18:735-739.
    177. Akle BJ, Bennett MD, Leo DJ, Wiles KB, McGrath JE. Direct assembly process: a novel fabrication technique for large strain ionic polymer transducers [J]. Journal of Materials Science 2007;42(16):7031-7041.
    178. Bernhardt PV, Lawrance GA, Hambley TW. 6,13-Diamino-6,13-Dimethyl-1,4,8,11-Tetra-azacyclotetradecane, L7, A new, potentially sexidentate polyamine ligand - variable coordination to cobalt (III) and crystal-structrure of the complex [CO(L7)]CL2[CLO4] [J]. J Chem Soc Dalton Trans 1989:1059–1065.
    179. Pearson TW, Dawson HJ, Lackey HB. Natural occurring levels of dimethyl sulfoxide in selected fruits, vegetables, grains and beverages [J]. J. Agric. Food Chem.1981; 29:1089-1091.
    180. Niki T, Kunugi M, Kohata K et al. Annual monitoring of DMS-producing bacteria in Tokyo Bay, Japan, in relatioin to DMSP [J]. Mar. Ecol. Prog. Ser 1997; 156:17-24.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700