巨噬细胞及GM-CSF对大鼠DIEP皮瓣成活影响的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
腹壁下动脉穿支(DIEP)皮瓣作为穿支皮瓣的代表,在最近的十几年中得到了广泛的临床应用。目前,DIEP皮瓣已经超过TRAM皮瓣成为自体组织乳房再造的首选术式。DIEP皮瓣再造乳房的优点是拥有充足的组织量,腹壁皮肤的色泽、质地与受区十分相似,再造的乳房外观、颜色与手感均较满意;皮瓣血管蒂较长,十分有利于皮瓣塑形,且腹壁下动脉的口径与胸廓内动脉及胸背动脉的口径相当,利于血管吻合;DIEP皮瓣乳房再造的最大优势体现在供区的并发症发生率下降,该技术保留了腹直肌前鞘及大部分腹直肌,减少了术后腹壁疼痛、薄弱、腹壁膨出和腹壁疝的发生率,最大程度地保护了供区,使患者获得外形美观效果的同时保留了供区的功能,此外手术恢复时间亦缩短。但DIEP皮瓣乳房再造仍然存在并发症,人们享有其优势的代价是不仅增加了手术的复杂性,而且因为人为减少了腹直肌肌皮穿支的数量,从而减少了皮瓣的血供,理论上增加了皮瓣部分坏死和脂肪液化的几率。如何提高乳房再造中DIEP皮瓣的成活率,是整形外科和肿瘤外科面临的一道难题。
     当前促进皮瓣成活的研究聚集在以血管内皮生长因子(VEGF)为代表的各种细胞因子的研究上。目前普遍认为VEGF是一种最重要的血管生成因子,在治疗性血管生成中具有重要意义。但是,以VEGF为代表的多种生长因子在病理性血管生成中同样发挥着重要作用。肿瘤学研究表明VEGF是目前所知作用最强、选择性最高的内皮细胞丝裂原,是肿瘤血管生成中的重要调节因子,在许多实体肿瘤的生长、转移中起着极为重要的作用。我们认为,通过基因治疗的方法将具有潜在的促进肿瘤生长与转移的VGEF用于乳癌术后乳房再造的患者以促进再造乳房皮瓣成活是不合适的。
     重组人粒细胞巨噬细胞集落刺激因子(rhGM-CSF)已应用于临床多年,是乳腺癌病人辅助化疗时的常规用药。在乳腺癌治疗的临床工作中我们发现,因化疗造成的白细胞低于正常的患者在接受rhGM-CSF治疗后术区原本愈合不良的创面会很快愈合,所以我们设想是否单核/巨噬细胞抑或GM-CSF存在促进皮瓣血管生成的作用?文献显示:近几年研究GM-CSF促进创面愈合的报道比较多,而且绝大部分获得了积极的结果。但将GM-CSF直接应用于皮瓣,观察其对皮瓣成活影响的研究很少。因此我们将GM-CSF及过继巨噬细胞用于乳房再造常规应用的DIEP皮瓣模型中,研究其对皮瓣成活的影响,具有特殊的临床意义。
     本实验的第一部分研究了大鼠腹部皮瓣的结构特点,并改进了rat-DIEP皮瓣的制作过程,不解剖腹直肌,仅在腹直肌前鞘层面选择穿支血管并切断其它血供,形成DIEP皮瓣,在手术时间缩短的同时,使模型具有更好的稳定性和可重复性。第一部分实验中我们成功建立了稳定的rat-DIEP模型,并形成了相对简单、容易推广的操作流程。使rat-DIEP可以作为常规模型进行皮瓣成活的实验研究。模型形成后,我们通过大体观察及HE染色后的组织学检查记录了皮瓣成活的进程。通过免疫组化以VWF作为血管内皮的识别标志,检测皮瓣各个时点的微血管密度(MVD)的变化,应用苦味酸天狼猩红染色及偏振光显微图像定量分析技术检测皮瓣内胶原含量,并描绘出在无干预情况下rat-DIEP皮瓣形成过程中MVD及胶原含量与各时点之间的变化关系。
     第二部分实验的目的是研究GM-CSF以及巨噬细胞(Mφ))对大鼠皮瓣成活的影响。我们应用大鼠腹腔直接灌洗的方法,经过分离、纯化获得大鼠Mφ。实验中将模型动物分为四组,分别于皮瓣皮下应用重组大鼠GM-CSF,GM-CSF联合过继大鼠Mφ,过继大鼠Mφ及生理盐水。术后第7天取皮瓣标本,进行皮瓣成活面积的测定,以及免疫组化MVD检测,Masson染色检测皮瓣组织内胶原含量。活化的Mφ可分泌100多种物质,其中包括大量细胞因子,可直接诱导新生血管生长。从理论上来说,Mφ应该具有促进皮瓣成活的治疗作用,但是,我们的实验结果显示过继的Mφ没有增加大鼠皮瓣的成活比率。在皮瓣内MVD检测中,单纯应用Mφ干预皮瓣成活的T组皮瓣MVD高于对照组,但无统计学意义。在皮瓣胶原含量检测中我们发现,单纯应用Mφ干预组胶原含量明显低于对照组(p<0.05),这可能因为Mφ过量激活金属蛋白酶导致胶原分解过程延长的结果。与其相反,应用GM-CSF组及其联合应用Mφ组皮瓣成活率高于对照组(p<0.05),其皮瓣MVD和胶原含量均明显高于对照组(p<0.001)。
     第二部分实验得到的结论是:重组大鼠GM-CSF及其联合过继的大鼠Mφ皮下注射能够提高大鼠DIEP皮瓣的成活率;并且能够明显提高术后第7天大鼠DIEP皮瓣的MVD及胶原含量。过继大鼠Mφ单独应用不能明显提高大鼠DIEP皮瓣的成活率。
     第三部分实验的目的是探讨重组大鼠GM-CSF及其与过继大鼠Mφ联合应用促进大鼠DIEP皮瓣成活的分子机制。本实验中,我们利用RT-PCR技术检测第二部分实验中各组动物皮瓣内的多项基因表达,包括EMMPRIN、MMP2、TIMP1、CollagenⅠ、CollagenⅢ、EGF、TGF-β1、VEGF、EGFR及VEGFR等。比较它们在各组皮瓣中的表达情况,从基因水平探讨GM-CSF及其联合Mφ促进皮瓣成活的机理。实验结果显示,应用GM-CSF组皮瓣EMMPRIN、MMP2、CollagenⅠ、EGF和EGFR基因表达高于对照组;联合应用GM-CSF+Mφ组皮瓣EMMPRIN、MMP2、TIMP 1、CollagenⅠ、CollagenⅢ、EGF、TGF-β1和EGFR基因表达高于对照组;应用Mφ组皮瓣EMMPRIN、MMP2、TGF-β1和EGF基因表达高于对照组。这些基因的上调从分子水平解释了实验组大鼠皮瓣成活率提高的原因。
     综上所述,本实验研究的结论认为大鼠DIEP模型是一个稳定可靠的皮瓣研究模型;重组大鼠GM-CSF及其联合应用过继Mφ可以提高大鼠DIEP皮瓣的成活率;我们通过更进一步的研究认为,重组大鼠GM-CSF及其联合应用过继Mφ上调了皮瓣内部分基因表达的水平,有利于皮瓣血管生成和胶原重塑,最终促进了皮瓣的成活。
DIEP flap has been widely used in clinical as a representation of perforator flaps in recent decades.With the merit of no rectus abdominis muscle sacrifice,DIEP flap has become the first choice of therapy for autogenous tissue breast reconstruction over TRAM flap.The other merits of DIEP flap for breast reconstruction are ample tissue quantity,similar skin color and texture to the recipient area,satisfaction about the appearance,color and handle of the reconstructed breast.It is easy for the flap plasticity by long flap vessel pedicle.The caliber of the inferior epigastric artery is similar to the thoracodorsal artery and internal thoracic artery which makes it easy for vessel anastomose.The biggest advantage of DIEP breast reconstruction is the decrease of donor site complications.This technique preserves the rectus abdominis anterior sheath,reduces the incidence of postoperational abdomen wall pain, weakness,abdomen wall bulge and hernia and protect the donor site farthest.It can gain function recovery and cosmetic results and reduce the recovery time.Yet there are still complications with DIEP breast reconstruction.Choosing DIEP will increase the complexity of the operation and decrease the blood supply of the flap by cutting down the quantity of the rectus abdominis muscle perforator.It will increase the rate of flap partial necrosis and fat liquefaction in theory.It is still a puzzle in plastic surgery and oncologic surgery how to increase the survival rate of DIEP flap in breast reconstruction.
     Now the focus on the research about promoting flap survival is the study around VEGF and other growth factor such as bFGF、PDGF、TGF-β.It has been considered that VEGF is the most important vessel growth factor and significant in therapeutic vessel formation.But VEGF also plays important role in pathological vessel formation.The study of oncology indicates that VEGF is known as endothelium mitogen with most effectivity and high selectivity at present and the important regulatory factor in tomor vessel formation.It is important in growth and metastasis of many solid tumor.We think it is not appropriate to promote the flap survival of patients received breast reconstruction with breast cancer by gene therapy which conducts VEGF with potential ability of tumor growth and metastasis promotion. Recombined human Granulocyte-macrophage colony-stimulating factor has been used in clinic for years,it is routine therapy for breast cancer assistant chemotherapy. In clinical works,we found that the wound of poor healing in the patients whose leucocyte is lower than normal caused by chemotherapy would heal quickly after receiving rhGM-CSF therapy.So we assume whether monocyte or macrophage or GM-CSF can promote vessel formation of flap.Literatures indicate that more and more research is about GM-CSF promoting wound healing recently and most of them show positive results.But there are few research about applying GM-CSF directly on flap and observing its effect on flap survival.So we design DIEP model with GM-CSF macrophage and research its influence on flap survival.It has special significance in clinic.
     In th first part of these experiment,we investigate the structure character of rat abdominal flap and improve the havesting process of rat-DIEP flap.We choose the perforator on the layer of rectus abdominis anterior sheath and cut down other blood supply without anatomy of rectus abdominis muscle,and it can shorten the operation time and process more operation in one day.And this will help us degrade the operation,makes the model stable and reproducible.In the first part of the experiment we succeed building a stable rat-DIEP model and form a relatively easy and easy handled process.So rat-DIEP can be a routine model for flap survival research. After model formation,we can record the flap survival progress through general observation and histological examination with HE staining and measure the MVD variety of different time point through immunohistochemistry identified by VWF.We also can analyse the collagen quantity of flap with method of picric-sirius red polarized light.We can trace out the relationship between MVD and collagen quantity in different time during the rat-DIEP flap formation without intervention.
     The objective of the second part of experiment is to study the influence of GM-CSF and Mψto the survival rate of rat flap.We directly lavaged the rat's abdomen and gained macrophage after separation and purification.The model rats were divided into 4 groups,which were subcutaneous injection recombined rat GM-CSF group,GM-CSF combining adoptive rat Mψgroup,adoptive rat Mψgroup and saline group.The samples were collected the 7th day after operation,the flap survival area were measured,immunohistochemistry MVD were detected and collagen quantity were examined by Masson staining.Activated Mψcan excrete more than 100 kinds of substance including massive cellular factor which can induce vessel growth directly.In theory,Mψshould promote flap survival,yet in our experiment it shows no increase of flap survival ratio in adoptive rat Mψgroup.In the examination of flap MVD,it has no statistical significance between MψT group and control group. In the collagen quantity examination,we found it was lower in the Mψgroup than the control group(p<0.05).The reason may be Mψover activate metalloproteinase to lead to prolong the collagen decomposition.On the contrary,the flap survival rate is higher in GM-CSF combining adoptive rat Mψgroup than the control group(p<0.05) and its MVD and collagen quantity is higher than the control group(p<0.001).
     The conclusion from the second part of the experiment is subcutaneous injection recombined rat GM-CSF and GM-CSF combining adoptive rat Mψcan elevate the survival rate of rat DIEP flap.adoptive rat Mψcannot elevate the survival rate of rat DIEP flap.Recombined rat GM-CSF and GM-CSF combining adoptive rat Mψcan distinctively elevate the MVD and collagen quantity of rat DIEP flap the 7th day after operation.
     The objective of the third part of the experiment is to explore the molecular mechanism of recombined rat GM-CSF and GM-CSF combining adoptive rat Mψpromoting rat DIEP flap survival.In the experiment,we test multiple gene expression in the flap we used in the second part with the technique of RT-PCR,including EMMPRIN、MMP2、TIMP1、CollagenⅠ、CollagenⅢ、EGF、TGF-β1、VEGF、EGFR and VEGFR et al.We compared their expression in the flap and discuss the mechanism of promoting flap survival by GM-CSF and GM-CSF combining adoptive rat Mψin gene level.The result showed EMMPRIN、MMP2、CollagenⅠ、EGF和EGFR expression was higher in GM-CSF group than the control group.EMMPRIN、MMP2、TIMP1、CollagenⅠ、CollagenⅢ、EGF、TGF-β1 and EGFR expression in combining GM-CSF+Mψgroup was higher than the control group.EMMPRIN、MMP2、TGF-β1 and EGF expression was high in Mψgroup than the control group. The upregulation the expression of these gene on the molecular level can explain why the flap survival rate was higher in the experiment group.
     In conclusion,we find rat DIEP model is a stable and reliable flap study model and recombined rat GM-CSF and GM-CSF combining adoptive rat Mψcan elevate the survival rate of rat DIEP flap.In further research,we find it can upregulate the some gene expression of the flap to promote vessel formation and collagen modeling, it lead to promote flap survival eventually.
引文
1 Hartrampf CR, Scheffan M, Black PW. Breast reconstruction with a transverse abdominal island flap. Plast Reconstr Surg. 1982;69:216-225.
    
    2 Tayor G, Corlett R, Boyd J. The versatile deep inferior epigastric(inferior rectus abdominis) flap. Br J Plast Surg, 1984;37:330-350.
    
    3 Allen R, Treece P. Deep inferior epigastric perforator flap for breast reconstruction. Ann Plast Surg, 1994; 32: 32-38.
    
    4 Gill,P.S.,Hunt,J.P.,Guerra,A.B.,et al.A 10-year retrospective review of 758 DIEP flaps for breast reconstruction. Plast. Reconstr.Surg. 2004; 113: 1153-1160.
    
    5 Patrick B.G.,Edward W.B.,Barbara A.P.,et al. DIEP and pedicled TRAM flaps: a comparison of outcomes. Plast. Reconstr.Surg. 2006;117: 1711-1719.
    
    6 Ferra N. Vascular endothelial growth factor: molecular and biological aspects [J] Curr Top Microbiol Immunol,1999;237:1~30.
    
    7 Hung C, Ginzinger D, Zameger R, et al. Expression of vascular endothelial growth factor-C in benign and malignant thyroid tumors [ J] Clin Endocrinol Meta,2003;88(8):3694-3699.
    
    8 Onogawa S, Kitadai Y, Tanaks S, et al. Expression of VEGF-C and VEGF-D at the invasive edge correlates with lymph nodemetastasis and prognosis of patients with colorectal carcinoma [J] Cancer Sci,2004;95(1):32-39.
    
    9 Koyama Y, Kaneko K, Akazawa K, et al. Vascular endothelial growth factor-C and Vascular endothelial growth factor-D messenger RNA expression in breast cancer: association with lymph node metastasis [J] Clin Breast Cancer, 2003;4(5):354-360.
    
    10 Jennbacken K, Vallbo C, Wang W, et al. Expression of vascular endothelial growth factor-C and VEGF receptor-3 in human prostate cancer is associated with regional lymph node metastasis [J] .Prostate, 2005; 65(2): 110-116.
    
    11 Polverini,P.J.,Cotran,R.S.,Grmbrone,M.A,et al. Activated macrophage induce vascular proliferation. Nature, 1997;269:804-806.
    
    12 Pettet G, Chaplain MA, Mcelwain DL,et al. On the role of angiogenesis in wound healing. J Proc R Soc Lond B Biol Sci, 1996;263:1487-1493.
    
    13 Hallock GG, Rice DC.Physiologic superiority of the anatomic dominant pedicle of the TRAM flap in a rat model.Plast Reconstr Surg. 1995;96(1):111-118.
    
    14 Ozgentas HE, Shenaq S, Spira M.Development of a TRAM flap model in the rat and study of vascular dominance. Plast Reconstr Surg. 1994;94(7): 1012-1026.
    
    15 Oksar HS, Coskunfirat OK, Ozgentas HE. Perforator-based flap in rats: a new experimental model.Plast Reconstr Surg. 2001;108(1):125-131.
    
    16 Weidner N, Folkman J, Pozza F.Tumor angiogenesis: a new significant and independent prognostic indicator in early-stage breast carcinoma.J Natl Cancer Inst.1992; 16; 84(24): 1875-1887.
    
    17 Maeda K, Chung YS, Ogawa Y. Prognostic value of vascular endothelial growth factor expression in gastric carcinoma. Cancer. 1996 ;1;77(5):858-863.
    
    18 Blondeel PN, Boeckx WD.Refinements in free flap breast reconstruction: the free bilateral deep inferior epigastric perforator flap anastomosed to the internal mammary artery.Br J Plast Surg. 1994;47(7):495-501.
    19 Blondeel PN.One hundred free DIEP flap breast reconstructions: a personal experience.Br J Plast Surg. 1999 ;52(2): 104-111.
    
    20 Hamdi M, Weiler-Mithoff EM, Webster MH.Deep inferior epigastric perforator flap in breast reconstruction: experience with the first 50 flaps.Plast Reconstr Surg. 1999; 103( 1 ):86-95.
    
    21 董佳生 腹壁下动脉穿支皮瓣乳房再造的手术要点 外科理论与实践 2006,11(2):102-103
    
    22 Tutor EG, Auba C, Benito A, Rabago G, Kreutler W.Easy venous superdrainage in DIEP flap breast reconstruction through the intercostal branch.J Reconstr Microsurg. 2002; 18(7):595-598.
    
    23 Kroll SS.Fat necrosis in free transverse rectus abdominis myocutaneous and deep inferior epigastric perforator flaps.Plast Reconstr Surg. 2000;106(3):576-583.
    
    24 Blondeel PN, Arnstein M, Verstraete K, Depuydt K, Van Landuyt KH, Monstrey SJ, Kroll SS.Venous congestion and blood flow in free transverse rectus abdominis myocutaneous and deep inferior epigastric perforator flaps.Plast Reconstr Surg. 2000; 106(6): 1295-1309.
    
    25 Wechselberger G, Schoeller T, Bauer T, Ninkovic M, Otto A, Ninkovic M. Venous superdrainage in deep inferior epigastric perforator flap breast reconstruction.Plast Reconstr Surg.2001;108(1):162-166.
    
    26 Cavadas PC.Unusual intraoperative venous complication in a free DIEP flap.Plast Reconstr Surg. 2001; 15;107(5):1312-1313.
    
    27 Wei FC, Jain V, Suominen S, Chen HC.Confusion among perforator flaps: what is a true perforator flap? Plast Reconstr Surg. 2001;107(3):874-876.
    
    28 Heitmann C, Felmerer G, Durmus C, Matejic B, Ingianni GAnatomical features of perforator blood vessels in the deep inferior epigastric perforator flap.Br J Plast Surg. 2000;53(3):205-208.
    
    29 El-Mrakby HH, Milner RH.The vascular anatomy of the lower anterior abdominal wall: a microdissection study on the deep inferior epigastric vessels and the perforator branches.Plast Reconstr Surg. 2002;109(2):539-547.
    
    30 Nahabedian MY, Momen B, Galdino G, Manson PN.Breast Reconstruction with the free TRAM or DIEP flap: patient selection, choice of flap, and outcome.Plast Reconstr Surg. 2002;110(2):466-477.
    
    31 Hallock GG, Rice DC.Comparison of TRAM and DIEP flap physiology in a rat model. Plast Reconstr Surg. 2004; 114(5): 1179-1184.
    
    32 Horn DB, Baker SR, Graham LM, McClatchey KD.Utilizing angiogenic agents to expedite the neovascularization process in skin flaps.Laryngoscope. 1988;98(5):521-526
    
    33 Asai J, Takenaka H, Ichihashi K, Ueda E, Katoh N, Kishimoto S.Successful treatment of diabetic gangrene with topical application of a mixture of peripheral blood mononuclear cells and basic fibroblast growth factor.J Dermatol. 2006;33(5):349-352.
    
    34 Steed DL.The role of growth factors in wound healing.Surg Clin North Am. 1997; 77(3): 575-586.
    
    35 Robinson CJ.Growth factors: therapeutic advances in wound healing.Ann Med. 1993;25(6):535-538.
    
    36 Lu WW, Ip WY, Jing WM, Holmes AD, Chow SP.Biomechanical properties of thin skin flap after basic fibroblast growth factor (bFGF) administration.Br J Plast Surg. 2000;53(3):225-229.
    
    37 Nall AV, Brownlee RE, Colvin CP, Schultz G, Fein D, Cassisi NJ, Nguyen T, Kalra A.Transforming growth factor beta 1 improves wound healing and random flap survival in normal and irradiated rats.Arch Otolaryngol Head Neck Surg. 1996; 122(2): 171 -177.
    
    38 Most D, Hoyt J, Sibley RK, Press BH.Parenchymal cytokine expression precedes clinically observed ischemia in dorsal flaps in the rat.Plast Reconstr Surg. 1996;98(5):856-863.
    
    39 Leor J, Zuloff-Shani A. Ex Vivo Activated Human Macrophages Improve Healing,Remodeling, and Function of the Infarcted Heart .Circulation 2006;114(1):I-94-I-100
    
    40 HillerO, Liehte A, Oberpichler A, et al. Matrix metalloproteinasescollagenase-2, macrophage elastase, collagenase-3, and membrane type 1-matrix metalloproteinase impair clotting by degradation of fibrinogen and factor. J Biol Chem,2000;275;33008-33013.
    
    41 Kraling BM, Wiederschain DG, Boehm T, et al. The role of matrixmetalloproteinase activity in the maturation of human capillary endothelial cells in vitro. J Cell Sci, 1999; 112:1599-1609.
    
    42 Nesbit M, Schaider H, Miller TH, et al. Low-level monocyte chemoattactant protein-1 stimulation of monocytes leads to tumor formation in nontumorigenic melanoma cells[J].Immunol, 2001; 166:6483-6492.
    
    43 Ishihara M, Fujita M, Obara K, et al. Controlled releases of FGF-2 and paclitaxel from chitosan hydrogels and their subsequent effects on wound repair. Curr Drug Deliv. 2006 ;3(4):351-358.
    
    44 Anitua E, Sanchez M, Nurden AT, et al. Reciprocal actions of platelet-secreted TGF-betal on the production of VEGF and HGF by human tendon cells. Plast Reconstr Surg. 2007;119(3):950-959.
    
    45 Ye Q, Chen B, Tong Z, et al. Thalidomide reduces IL-18, IL-8 and TNF-alpha release from alveolar macrophages in interstitial lung disease. Eur Respir J. 2006;28(4):824-831.
    
    46 Naldini A, Carraro F Role of inflammatory mediators in angiogenesis Curr Drug Targets Inflamm Allergy. 2005;4(1):3-8
    
    47 Brewster D, Cupp C, Wester DC.The effects of macrophages on the survival of random skin flaps in swine.Laryngoscope. 1996; 106(9 Pt 1): 1094-1098.
    
    48 Hamilton JA. GM-CSF in inflammation and autoimmunity.Trends Immunol. 2002;23(8):403408.
    
    49 Breuhahn K, Mann A, Miiller G. Epidermal overexpression of granulocyte-macrophag colony-stimulating factor induces both keratinocyte proliferation and apoptosis.Cell Growth Differ. 2000; 11(2): 111-121.
    
    50 Stagno F, Guglielmo P, Consoli U. Successful healing of hydroxyurea-related leg ulcers with topical granulocyte-macrophage colony-stimulating factor.Blood. 1999;94(4): 1479-1480.
    
    51 Mann A, Breuhahn K, Schumacher P.Keratinocyte-derived granulocyte-macrophage colony stimulating factor accelerates wound healing: Stimulation of keratinocyte proliferation, granulation tissue formation, and vascularization. J Invest Dermatol. 2001 ;117(6): 1382-1390.
    
    52 Dinc S, Alagol H, Gulcelik MA.Locally applied granulocyte-macrophage colony-stimulating factor improves the impaired bowel anastomoses in rats with long-term corticosteroid treatment.World J Surg. 2002;26(10):1208-1213.
    
    53 Da Costa RM, Ribeiro Jesus FM, Aniceto C.Randomized, double-blind, placebo-controlled, dose- ranging study of granulocyte-macrophage colony stimulating factor in patients with chronic venous leg ulcers.Wound Repair Regen. 1999;7(1): 17-25.
    
    54 De Ugarte DA, Roberts RL, Lerdluedeeporn P et al. Treatment of chronic wounds by local delivery of granulocyte-macrophage colony-stimulating factor in patients with neutrophil dysrunction.Pediatr Surg Int. 2002; 18(5-6):517-520.
    
    55 Gulcelik MA, Dinc S, Dinc M et al.Local granulocyte-macrophage colony-stimulating factor improves incisional wound healing in adriamycin-treated rats.Surg Today. 2006;36(1):47-51.
    
    56 Groves RW, Schmidt-Lucke JA.Recombinant human GM-CSF in the treatment of poorly healing wounds.Adv Skin Wound Care. 2000; 13( 1): 107-112.
    
    57 Ure I, Partsch B, Wolff K,et al.Granulocyte/macrophage colony-stimulating factor increases wound-fluid interleukin 8 in normal subjects but does not accelerate wound healing.Br J Dermatol. 1998;138(2):277-282.
    
    58 Canriirk NZ, Vural B, Esen N,et al.Effects of granulocyte-macrophage colony-stimulating factor on incisional wound healing in an experimental diabetic rat model.Endocr Res. 1999 ;25(1):105-116.
    
    59 Remes K, Ronnemaa T.Healing of chronic leg ulcers in diabetic necrobiosis lipoidica with local granulocyte-macrophage colony stimulating factor treatment.J Diabetes Complications. 1999; 3(2): 115-118.
    
    60 Ergun SS, Kyran B, Su O.Effects of granulocyte macrophage colony stimulating factor on random flap healing and immune profile in rats with impaired wound healing by glucocorticoids.Ann Plast Surg. 2004;52(1):80-88.
    
    61 Kuru B, Dinc S, Elitok O. fficacy of granulocyte-macrophage colony-stimulating factor on the survival of ischaemic skin flaps in rats.Scand J Plast Reconstr Surg Hand Surg. 2005;39(4): 193-196.
    
    62 Jorgensen LN, Agren MS, Madsen SM,Dose-dependent impairment of collagen deposition by topical granulocyte-macrophage colony-stimulating factor in human experimental woundsAnn Surg. 2002;236(5):684-692.
    
    63 Xing Z, Tremblay GM, Sime PJ,et al.Overexpression of granulocyte-macrophage colony-stimulating factor induces pulmonary granulation tissue formation and fibrosis by induction of transforming growth factor-beta 1 and myofibroblast accumulation.Am J Pathol. 1997;150(1):59-66.
    
    64 Falanga V.Wound healing and its impairment in the diabetic foot.Lancet. 2005; 12;366(9498): 1736-1743.
    
    65. Biswas C, Zhang Y, DeCastro R.The human tumor cell-derived collagenase stimulatory factor (renamed EMMPRIN) is a member of the immunoglobulin superfamily.Cancer Res. 1995;15;55(2):434-439.
    
    66 Caudroy S, Polette M, Nawrocki-Raby B.EMMPRIN-mediated MMP regulation in tumor and endothelial cells.Clin Exp Metastasis. 2002;19(8):697-702.
    
    67 Menashi S, Serova M, Ma L.Regulation of extracellular matrix metalloproteinase inducer and matrix metalloproteinase expression by amphiregulin in transformed human breast epithelial cells.Cancer Res. 2003; 15;63(22):7575-7580
    
    68 Grignon DJ, Sakr W, Toth M.High levels of tissue inhibitor of metalloproteinase-2 (TIMP-2) expression are associated with poor outcome in invasive bladder cancer.Cancer Res. 1996; 1;56(7): 1654-1659.
    
    69 Peled ZM, Rhee SJ, Hsu M.The ontogeny of scarless healing II: EGF and PDGF-B gene expression in fetal rat skin and fibroblasts as a function of gestational age.Ann Plast Surg. 2001;47(4):417-424.
    
    70 Mendelsohn J. Baselga J. Status of epidermal growth factor receptor antagonists in the biology and treatment of cancer[J]. JClin Oncol, 2003;21(14):2787-2799.
    1 Knight KR.Review of postoperative pharmacological infusions in ischemic skin flaps.Microsurgery. 1994;15(10):675-684
    
    2 Pang CY, Forrest CR, Morris SF.Pharmacological augmentation of skin flap viability: a hypothesis to mimic the surgical delay phenomenon or a wishful thought. Ann Plast Surg. 1989;22(4):293-306.
    
    3 Waters LM, Pearl RM, Macaulay RM.A comparative analysis of the ability of five classes of pharmacological agents to augment skin flap survival in various models and species: an attempt to standardize skin flap research.Ann Plast Surg. 1989;23(2):117-122.
    
    4 Maeda M, Fukui A, Tamai S.Combined therapy with antithrombotic agents and radical scavengers for reperfusion injury of flaps.J Reconstr Microsurg. 1991;7(3):233-243.
    
    5 Pang CY, Forrest CR.Acute pharmacologic preconditioning as a new concept and alternative approach for prevention of skeletal muscle ischemic necrosis.Biochem Pharmacol. 1995; 18;49(8): 1023-1034.
    
    6 Davis RE, Wachholz JH, Jassir D, Perlyn CA, Agrama MH.Comparison of topical anti-ischemic agents in the salvage of failing random-pattern skin flaps in rats.Arch Facial Plast Surg. 1999;1(1):27-32.
    
    7 Kuru B, Dinc S, Elitok O. fficacy of granulocyte-macrophage colony-stimulating factor on the survival of ischaemic skin flaps in rats.Scand J Plast Reconstr Surg Hand Surg. 2005;39(4):193-196.
    
    8 Ergun SS, Kyran B, Su O.Effects of granulocyte macrophage colony stimulating factor on random flap healing and immune profile in rats with impaired wound healing by glucocorticoids.Ann Plast Surg. 2004;52(1):80-88.
    
    9 Steed DL.The role of growth factors in wound healing.Surg Clin North Am. 1997; 77(3): 575-586.
    
    10 Robinson CJ.Growth factors: therapeutic advances in wound healing.Ann Med. 1993;25(6):535-538.
    
    11 Lu WW, Ip WY, Jing WM, Holmes AD, Chow SP.Biomechanical properties of thin skin flap after basic fibroblast growth factor (bFGF) administration.Br J Plast Surg. 2000;53(3):225-229.
    
    12 Nall AV, Brownlee RE, Colvin CP, Schultz G, Fein D, Cassisi NJ, Nguyen T, Kalra A.Transforming growth factor beta 1 improves wound healing and random flap survival in normal and irradiated rats.Arch Otolaryngol Head Neck Surg. 1996; 122(2): 171 -177.
    
    13 Rashid MA, Akita S, Razzaque MS, Yoshimoto H, Ishihara H, Fujii T, Tanaka K, Taguchi T.Coadministration of basic fibroblast growth factor and sucrose octasulfate (sucralfate) facilitates the rat dorsal flap survival and viability.Plast Reconstr Surg. 1999;103(3):941-948.
    
    14 Most D, Hoyt J, Sibley RK, Press BH.Parenchymal cytokine expression precedes clinically observed ischemia in dorsal flaps in the rat.Plast Reconstr Surg. 1996;98(5):856-863.
    
    15 Walgenbach KJ, Gratas C, Shestak KC, Becker D.Ischaemia-induced expression of bFGF in normal skeletal muscle: a potential paracrine mechanism for mediating angiogenesis in ischaemic skeletal muscle.Nat Med. 1995;l(5):453-459.
    
    16 Erdmann D, Sweis R, Wong MS, Niklason LE, du Laney TV, Levin LS, Klitzman B, Olbrich KC.Vascular endothelial growth factor expression in pig latissimus dorsi myocutaneous flaps after ischemia reperfusion injury.Plast Reconstr Surg. 2003; 111 (2):775-780.
    
    17 Pallua N, Ulrich D.Expression of basic fibroblast growth factor and transforming growth factor-Beta 1 in patients with fasciocutaneous and muscle flaps.Plast Reconstr Surg. 2003;111(1):79-84
    
    18 Mortazavi-Haghighat R, Taghipour-Khiabani K, David S, Kerrigan CL, Philip A.Rapid and dynamic regulation of TGF-beta receptors on blood vessels and fibroblasts during ischemia-reperfusion injury.Am J Physiol Cell Physiol. 2002;282(5):C1161-1169
    
    19 Kusumanto YH, Hospers GA, Mulder NH, Tio RA.Therapeutic angiogenesis with vascular endothelial growth factor in peripheral and coronary artery disease: a review. Int J Cardiovasc Intervent. 2003;5(1):27-34.
    
    20 Lee CH, Smits PC.Vascular growth factors for coronary angiogenesis.J Interv Cardiol. 2002;15(6):511-518.
    
    21 Horn DB, Baker SR, Graham LM, McClatchey KD.Utilizing angiogenic agents to expedite the neovascularization process in skin flaps.Laryngoscope. 1988;98(5):521-526
    
    22 Khouri RK, Brown DM, Leal-Khouri SM, Tark KC, Shaw WW.The effect of basic fibroblast growth factor on the neovascularisation process: skin flap survival and staged flap transfers.Br J Plast Surg. 1991;44(8):585-588.
    
    23 Im MJ, Kim YS, Edwards RJ, et al.The effect of bovine basic fibroblast growth factor on skin flap survival in rats.Ann Plast Surg. 1992 ;28(3):242-245.
    
    24 Bush RL, Pevec WC, Ndoye A, Cheung AT, Sasse J, Pearson DN.Regulation of new blood vessel growth into ischemic skeletal muscle.J Vasc Surg. 1998;28(5):919-928.
    
    25 Carroll SM, Carroll CM, Stremel RW, Heilman SJ, Steffen JM, Tobin GR, Barker JH.Vascular delay and administration of basic fibroblast growth factor augment latissimus dorsi muscle flap perfusion and function.Plast Reconstr Surg. 2000;105(3):964-971.
    
    26 Carroll CM, Carroll SM, Schuschke DA, Barker JH Augmentation of skeletal muscle flap survival using platelet derived growth factor.Plast Reconstr Surg. 1998; 102(2):407-415.
    
    27 Horn DB, Simplot TC, Pernell KJ, Manivel JC, Song CW. Vascular and epidermal effects of fibroblast growth factor on irradiated and nonirradiated skin flaps.Ann Otol Rhinol Laryngol. 2000;109(7):667-675.
    
    28 Flamme I, von Reutern M, Drexler HC, Syed-Ali S, Risau W. Overexpression of vascular endothelial growth factor in the avian embryo induces hypervascularization and increased vascular permeability without alterations of embryonic pattern formation.Dev Biol. 1995; 171(2): 399-414.
    
    29 Hippenstiel S, Krull M, Ikemann A, Risau W, Clauss M, Suttorp N. VEGF induces hyperpermeability by a direct action on endothelial cells.Am J Physiol. 1998;274:678-84.
    
    30 Padubidri A, Browne E Jr. Effect of vascular endothelial growth factor (VEGF) on survival of random extension of axial pattern skin flaps in the rat. Ann Plast Surg. 1996;37(6):604-611.
    
    31 Tucci MG, Scalise A, Lucarini G, .rh VEGF and experimental rat skin flaps: systemic or local administration and morphological characteristics.Int J Artif Organs. 2001 ;24( 10):743-751.
    
    32 Kryger Z, Zhang F, Dogan T, Cheng C, Lineaweaver WC, Buncke HJ.The effects of VEGF on survival of a random flap in the rat: examination of various routes of administration.Br J Plast Surg. 2000;53(3):234-239
    
    33 Zhang F, Fischer K, Komorowska-Timek E.Improvement of skin paddle survival by application of vascular endothelial growth factor in a rat TRAM flap model.Ann Plast Surg. 2001 ;46(3):314-319.
    
    34 Seify H, Bulky U, Jones GEffect of vascular endothelial growth factor-induced angiogenesis on TRAM flap harvesting after abdominoplasty.Plast Reconstr Surg. 2003; 111(3): 1212-1216.
    
    35 Ishiguro N, Yabe Y, Shimizu T,et al.Basic fibroblast growth factor has a beneficial effect on the viability of random skin flaps in rats. Ann Plast Surg. 1994;32(4):356-360.
    
    36 Sun T, Fu X, Xu M. Effects of bFGF on succinate dehydrogenase level and oxygen consumption of skin flap in rats Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 1997;11(5):264-266.
    
    37 Banbury J, Siemionow M, Porvasnik S, Petras S, Browne E. Improved perfusion after subcritical ischemia in muscle flaps treated with vascular endothelial growth factor.Plast Reconstr Surg. 2000;106(7):1541-1546
    
    38 Kryger Z, Dogan T, Zhang F. Effects of VEGF administration following ischemia on survival of the gracilis muscle flap in the rat. Ann Plast Surg. 1999;43(2):172-178.
    
    39 Kryger Z, Zhang F, Dogan T,et al.The effects of VEGF on survival of a random flap in the rat: examination of various routes of administration.Br J Plast Surg. 2000;53(3):234-239
    
    40 Banbury J, Siemionow M, Porvasnik S,et al.Improved perfusion after subcritical ischemia in muscle flaps treated with vascular endothelial growth factor.Plast Reconstr Surg. 2000;106(7):1541-1546.
    
    41 Pu LL, Ahmed S, Thomson JG, Reid MA, Madsen JA, Restifo RJ.Endothelial cell growth factor enhances musculocutaneous flap survival through the process of neovascularization.Ann Plast Surg. 1999;42(3):306-312.
    
    42 Rashid MA, Akita S, Razzaque MS, et al.Coadministration of basic fibroblast growth factor and sucrose octasulfate (sucralfate) facilitates the rat dorsal flap survival and viability. Plast Reconstr Surg. 1999;103(3):941-948.
    
    43 Yuksel E, Weinfeld AB, Cleek R, Jensen J, Wamsley S, Waugh JM, Spira M, Shenaq S. Augmentation of adipofascial flaps using the long-term local delivery of insulin and insulin-like growth factor-1.Plast Reconstr Surg. 2000;106(2):373-382.
    
    44 Bach KK, Cupp C, Brewster D, Wester D, Keefe M.Effects of activated macrophages and fibroblast growth factor on random skin flap survival in swine.Laryngoscope. 1999;109:1156-1159
    
    45 Yao ST.Microvascular transplantation of prefabricated free thigh flap.Plast Reconstr Surg. 1982;69(3):568.
    
    46 Chen HC, Kuo YR, Hwang TL, Chen HH, Chang CH, Tang YB.Microvascular prefabricated free skin flaps for esophageal reconstruction in difficult patients.Ann Thorac Surg. 1999;67(4):911-916.
    
    47 Orringer JS, Shaw WW, Borud LJ, Freymiller EG, Wang SA, Markowitz BL.Total mandibular and lower lip reconstruction with a prefabricated osteocutaneous free flap.Plast Reconstr Surg. 1999;104(3):793-797.
    
    48 Govila A.Reconstruction of penis by prefabrication on forearm.Acta Chir Plast. 1993;35(3-4):125-130.
    
    49 Khouri RK, Upton J, Shaw WW.Prefabrication of composite free flaps through staged microvascular transfer: an experimental and clinical study.Plast Reconstr Surg. 1991;87(1):108-115.
    
    50 Iwasawa M.Accelerated maturation in prefabricated flaps by transforming growth factor-beta: an experimental study in the rabbit.Ann Plast Surg. 1993;31(1):72-75.
    
    51 Bayati S, Russell RC, Roth AC.Stimulation of angiogenesis to improve the viability of prefabricated flaps.Plast Reconstr Surg. 1998;101(5):1290-1295.
    
    52 Hickey MJ, Wilson Y, Hurley JV, Morrison WA.Mode of vascularization of control and basic fibroblast growth factor-stimulated prefabricated skin flaps.Plast Reconstr Surg. 1998;101(5):1296-1306.
    
    53 Li QF, Reis ED, Zhang WX, Silver L, Fallon JT, Weinberg H.Accelerated flap prefabrication with vascular endothelial growth factor.J Reconstr Microsurg. 2000; 16( 1 ):45-49.
    
    54 Ko CY, Shaw WW. Durability of prefabricated versus normal random flaps against a bacterial challenge.Plast Reconstr Surg. 1997;99(2):372-377.
    
    55 Zhang F, Richards L, Angel MF.Accelerating flap maturation by vascular endothelium growth factorin a rat tube flap model.Br J Plast Surg. 2002;55(1):59-63.
    
    56 Khouri RK, Brown DM, Leal-Khouri SM,et al.The effect of basic fibroblast growth factor on the neovascularisation process: skin flap survival and staged flap transfers.Br J Plast Surg. 1991;44(8):585-588.
    
    57 Shima DT, Deutsch U, D'Amore PA.Hypoxic induction of vascular endothelial growth factor (VEGF) in human epithelial cells is mediated by increases in mRNA stability.FEBS Lett. 1995 ;370(3):203-208.
    
    58 Taub PJ, Marmur JD, Zhang WX..Locally administered vascular endothelial growth factor cDNA increases survival of ischemic experimental skin flaps.Plast Reconstr Surg. 1998;102(6):2033-2039.
    
    59 Neumeister MW, Song YH, Mowlavi A.Effects of liposome-mediated gene transfer of VEGF in ischemic rat gracilis muscle.Microsurgery. 2001;21(2):58-62.
    
    60 O'Toole G, MacKenzie D, Lindeman R.Vascular endothelial growth factor gene therapy in ischaemic rat skin flaps.Br J Plast Surg. 2002;55(1):55-58.
    
    61 Lubiatowski P, Goldman CK, Gurunluoglu R. Enhancement of epigastric skin flap survival by adenovirus-mediated VEGF gene therapy.Plast Reconstr Surg. 2002; 109(6): 1986-1993.
    
    62 Lubiatowski P, Gurunluoglu R, Goldman CK.Gene therapy by adenovirus-mediated vascular endothelial growth factor and angiopoietin-1 promotes perfusion of muscle flaps.Plast Reconstr Surg. 2002 ;110(1):149-159.
    
    63 Gurunluoglu R, Ozer K, Skugor B.Effect of transfection time on the survival of epigastric skin flaps pretreated with adenovirus encoding the VEGF gene.Ann Plast Surg. 2002;49(2):161-169.
    
    64 Rinsch C, Quinodoz P, Pittet B.Delivery of FGF-2 but not VEGF by encapsulated genetically engineered myoblasts improves survival and vascularization in a model of acute skin flap ischemia.Gene Ther. 2001;8(7):523-533.
    
    65 Machens HG, Morgan JR, Berthiaume F.Genetically modified fibroblasts induce angiogenesis in the rat epigastric island flap.Langenbecks Arch Surg. 1998;383(5):345-350.
    66 Machens HG, Morgan JR, Berthiaume F.Platelet-derived growth factor-AA-mediated functional angiogenesis in the rat epigastric island flap after genetic modification of fibroblasts is ischemia dependent.Surgery. 2002;131(4):393-400.
    
    67 Polverini PJ, Cotran RS, Gimbrone MA, et al. Activated macrophage induce vascular proliferation. Nature, 1977;269:804-806.
    
    68 Schaper J, Koenig R, Franz D, et al. The endothelial surface of growing collateral arteries. Intimal margination and diapedesis of monocyte. A conbined SEM and TEM study. Virchows Arch A Pathol Anat Histdopathol, 1976,370:193-205.
    
    69 Kraling BM, Wiederschain DG, Boehm T, et al. The role of matrixmetalloproteinase activity in the maturation of human capillary endothelial cells in vitro. J Cell Sci,1999,112:1599-1609.
    
    70 Hiller 0, Liehte A, Oberpichler A, et al. Matrix metalloproteinasescollagenase-2, macrophage elastase, collagenase-3, and membrane type 1-matrix metalloproteinase impair clotting by degradation of fibrinogen and factor. J Biol Chem,2000;275;33008-33013.
    
    71 Kraling BM, Wiederschain DG, Boehm T, et al. The role of matrixmetalloproteinase activity in the maturation of human capillary endothelial cells in vitro. J Cell Sci,1999;l 12:1599-1609.
    
    72 Nesbit M, Schaider H, Miller TH, et al. Low-level monocyte chemoattactant protein-1 stimulation of monocytes leads to tumor formation in nontumorigenic melanoma cells[J].Immunol,2001;I66:6483-6492.
    
    73 Ishihara M, Fujita M, Obara K, et al. Controlled releases of FGF-2 and paclitaxel from chitosan hydrogels and their subsequent effects on wound repair. Curr Drug Deliv. 2006 ;3(4):351-358.
    
    74 Anitua E, Sanchez M, Nurden AT, et al. Reciprocal actions of platelet-secreted TGF-betal on the production of VEGF and HGF by human tendon cells. Plast Reconstr Surg. 2007;119(3):950-959.
    
    75 Ye Q, Chen B, Tong Z, et al. Thalidomide reduces IL-18, IL-8 and TNF-alpha release from alveolar macrophages in interstitial lung disease. Eur Respir J. 2006;28(4):824-831.
    
    76 Naldini A, Carraro F Role of inflammatory mediators in angiogenesis Curr Drug Targets Inflamm Allergy. 2005;4(1):3-8
    
    77 Tsutsui S, Yasuda K, Suzuki K, et al. Macrophage infiltration and its prognostic implications in breast cancer: the relationship with VEGF expression and microvessel density. Oncol Rep. 2005;14(2):425-431.
    
    78 Esposito 1, Menicagli M, Funel N, et al. Inflammatory cells contribute to the generation of an angiogenic phenotype in pancreatic ductal adenocarcinoma J. Clin Pathol, 2004;57(6):630-636.
    
    79 Koga F, Kageyama Y, Kawakami S, et al. Prognostic significance of endothelial Per-Amt-sim domain protein 1/hypoxia-inducible factor-2a]pha expression in a subset of tumor associated macrophages in invasive bladder cancer. J. Urol, 2004;171(3) ;1080-1084
    
    80 Tataroglu C, Kargi A, Ozkal S, et al. Association of macrophages, mast cells and eosinophil leukocytes with angiogenesis and tumor stage in non-small cell lung carcinomas(NSCLC)[J].Lung Cancer. 2004,43(1 ):47-54
    
    81 Willett CG, Duda DG, di Tomaso E, et al. Complete pathological response to bevacizumab and chemoradiation in advanced rectal cancer. Nat Clin Pract Oncol. 2007 ;4(5):316-321
    
    82 Jorgensen JM, Sorensen FB, Bendix K, et al. Angiogenesis in non-Hodgkin's lymphoma: Clinico-pathological correlations and prognostic significance in specific subtypes. Leuk Lymphoma. 2007;48(3):584-595
    
    83 Zhu BH, Zhan WH, Li ZR, et al. Epigallocatechin-3-gallate inhibits growth of gastric cancer by reducing VEGF production and angiogenesis. World J Gastroenterol. 2007;13(8):1162-1169.
    
    84 Bolat F, Kayaselcuk F, Nursal TZ, et al. Microvessel density, VEGF expression, and tumor-associated macrophages in breast tumors: correlations with prognostic parameters. J Exp Clin Cancer Res. 2006;25(3):365-372.
    
    85 Ogawa E, Tekenaka K, Yanagihara K, et al. Clinical significance of VEGF-C status in tumour cells and stromal macrophages in non-small cell lung cancer patients [j].Br J Cancer, 2004, 91(3):498-503.
    
    86 Li C, Shintani S. Infiltration of tumor-associated macrophages in human oral squamous cell carcinoma [J]. Oncol Rep, 2002,96(6): 1219-1223.
    
    87 Sosman JA, Puzanov I, Atkins MB, et al.Opportunities and obstacles to combination targeted therapy in renal cell cancer. Clin Cancer Res. 2007 ; 13(2):764-769
    
    88 Rudmik LR, Magliocco AM. Molecular mechanisms of hepatic metastasis in colorectal cancer. J Surg Oncol. 2005 Dec 15;92(4):347-359.
    
    89 Zhao JX, Yang LP, Wang YF Gelatinolytic activity of matrix metalloproteinase-2 and matrix metalloproteinase-9 in rat brain after implantation of 9L rat glioma cells. Eur J Neurol. 2007 ;14(5):510-516
    
    90 Hiibel K, Dale DC, Liles WC.Therapeutic use of cytokines to modulate phagocyte function for the treatment of infectious diseases: current status of granulocyte colony-stimulating factor, granulocyte-macrophage colony-stimulating factor, macrophage colony-stimulating factor, and interferon-gamma.J Infect Dis. 2002;185(10):1490-1501.
    
    91 Hamilton JA. GM-CSF in inflammation and autoimmunity.Trends Immunol. 2002;23(8):403-408.
    
    92 Breuhahn K, Mann A, Miiller GEpidermal overexpression of granulocyte-macrophage colony-stimulating factor induces both keratinocyte proliferation and apoptosis.Cell Growth Differ. 2000; 11(2): 111-121.
    
    93 Stagno F, Guglielmo P, Consoli U. Successful healing of hydroxyurea-related leg ulcers with topical granulocyte-macrophage colony-stimulating factor.Blood. 1999;94(4): 1479-1480.
    
    94 Kim MJ, Nafziger AN, Harro CD.Revaccination of healthy nonresponders with hepatitis B vaccine and prediction of seroprotection response.Vaccine. 2003 Mar 7;21(ll-12):1174-9.
    
    95 Dranoff GGM-CSF-secreting melanoma vaccines.Oncogene. 2003 May 19;22(20):3188-92.
    
    96 Mann A, Breuhahn K, Schirmacher P.Keratinocyte-derived granulocyte-macrophage colony stimulating factor accelerates wound healing: Stimulation of keratinocyte proliferation, granulation tissue formation, and vascularization. J Invest Dermatol. 2001;117(6):1382-1390.
    
    97 Dinc S, Alagol H, Gulcelik MA.Locally applied granulocyte-macrophage colony-stimulating factor improves the impaired bowel anastomoses in rats with long-term corticosteroid treatment.World J Surg. 2002;26(10):1208-1213.
    
    98 Da Costa RM, Ribeiro Jesus FM, Aniceto C.Randomized, double-blind, placebo-controlled, dose- ranging study of granulocyte-macrophage colony stimulating factor in patients with chronic venous leg ulcers.Wound Repair Regen. 1999;7(1):17-25.
    99 De Ugarte DA, Roberts RL, Lerdluedeepom P et al. Treatment of chronic wounds by local delivery of granulocyte-macrophage colony-stimulating factor in patients with neutrophil dysfunction.Pediatr Surg Int. 2002;18(5-6):517-520.
    
    100 Mery L, Girot R, Aractingi S.Topical effectiveness of molgramostim (GM-CSF) in sickle cell leg ulcers.Dermatology. 2004;208(2): 135-137.
    
    101 Shpiro D, Gilat D, Fisher-Feld L et al.Pyoderma gangrenosum successfully treated with perilesional granulocyte-macrophage colony stimulating factor.Br J Dermatol. 1998;138(2):368-369.
    
    102 Bulvik S, Jacobs P.Pyoderma gangrenosum in myelodysplasia responding to granulocyte macrophage-colony stimulating factor (GM-CSF) Br J Dermatol. 1997 Apr;136(4):637-638
    
    103 Jaschke E, Zabernigg A, Gattringer C.Recombinant human granulocyte-macrophage colony-stimulating factor applied locally in low doses enhances healing and prevents recurrence of chronic venous ulcers.Int J Dermatol. 1999;38(5):380-386
    
    104 Gulcelik MA, Dinc S, Dinc M et al.Local granulocyte-macrophage colony-stimulating factor improves incisional wound healing in adriamycin-treated rats.Surg Today. 2006;36(1):47-51.
    
    105 Groves RW, Schmidt-Lucke JA.Recombinant human GM-CSF in the treatment of poorly healing wounds.Adv Skin Wound Care. 2000; 13(1): 107-112.
    
    106 Ure I, Partsch B, Wolff K,et al.Granulocyte/macrophage colony-stimulating factor increases wound-fluid interleukin 8 in normal subjects but does not accelerate wound healing.Br J Dermatol. 1998;138(2):277-282.
    
    107 Canriirk NZ, Vural B, Esen N,et al.Effects of granulocyte-macrophage colony-stimulating factor on incisional wound healing in an experimental diabetic rat model.Endocr Res. 1999 ;25(1):105-116.
    
    108 Remes K, Ronnemaa T.Healing of chronic leg ulcers in diabetic necrobiosis lipoidica with local granulocyte-macrophage colony stimulating factor treatment.J Diabetes Complications. 1999; 3(2): 115-118.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700