明槽紊流近壁区的带状结构及颗粒运动规律研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
明槽紊流近壁区的颗粒运动与紊动猝发现象及紊流相干结构有着密切的关
    系,开展近壁区颗粒与紊流相互作用的机理研究对于流体力学和泥沙运动力学
    都有着重要的理论意义和实际价值。本文以试验研究为主要手段,采用流动显
    示和图像处理技术,从水槽底部和侧面两个方向测量,分别对明槽紊流近壁区
    的带状结构及颗粒运动特性进行了系统的试验研究。
    基于流动显示和图像处理技术,独立开发了明槽紊流近壁区带状结构的实
    时测量系统。利用该系统可获取大量的统计样本并进行计算机快速分析,为明
    槽紊流相干结构的试验研究提供了一种崭新的测量手段;在前人工作的基础上,
    开发了一种能够测量水流中颗粒运动轨迹的PTV系统,该系统具有可靠的精度,
    能同步测量全剖面的颗粒瞬时运动信息,为颗粒运动特性及动力学特性的试验
    研究提供了强有力的手段。
    在水力光滑区和过渡区对明槽紊流近壁区的带状结构进行试验,测量并分
    析了带状结构的分布,首次揭示出低速带间距、宽度、纵向尺度及持续时间等
    随摩阻雷诺数的变化规律。试验结果表明,低速带间距的无量纲数λ+并非为以
    往一致认为的100左右的常数,而是随摩阻雷诺数的增大而逐渐增大,在水力
    光滑区与摩阻雷诺数成二次方关系,在过渡区则为线性关系。低速带间距的概
    率密度分布可用对数正态分布来描述。低速带宽度、纵向尺度及持续时间等随
    摩阻雷诺数的变化规律与低速带带间距的变化规律类似。
    低速带宽度在水槽中心位置最大,往两边的边壁逐渐减小,而且在横向上
    相对于水槽中心线对称分布。低速带间距与宽度的比值约为2.0。对带状结构的
    产生过程进行了试验,对其产生机理提出了一种横向涡模型,该模型能够对带
    状结构的空间分布规律进行定量解释。
    对轻质沙和重颗粒在明槽水流中的运动特性进行试验,明确提出了颗粒运
    
    
     。如文摘gb
    山轧;抓山二川it本类型,即L升、下降和平移,颗粒以不问类刑…力;对其协力
    ,}特上2-uV个问。按照三种基本类型对颗粒的运动细节进行划’1。个均分析,g.’i
    人在u,U;,;>U;,;;>U;,;;。轻质颗粒向下的运动速度明显大于其在静水’上的沉速,
    出重颗粒则相反。颗粒纵向平均运动速度沿垂线的分个基本服从对数规律,卡
    门常数的取值范围为0.29~0.43,积分常数有较大的变化范围。厂
     利用实测资料分析了颗粒所受综合升力沿垂线的分布规律,结果表明,综
    合升力与}川成反比关系;基于颗粒运动的力学机理,提出了“颗粒的上升速
    度刚好等于其沉速时表示推移质开始向悬移质转化”的观点,在此基础上推导
    得出了推移质向悬移质转化高度H。。所满足的方程式。
For dilute solid-liquid two-phase flow, the mechanism of particle motion driven by fluid is the main subject, especially the particle motion in the near wall region. The bursting phenomenon and coherent structure of turbulence play an important role on the motion of particles in the near wall region. Therefore, studies on the interaction between particles and turbulence are of essential significance for fluid mechanics and river dynamics. In this paper, the spatial structure of the low-speed streaks and particle motion in the near wall region of turbulent open channel flow were observed on the side and bottom of a water flume, respectively, using flow visualization and image processing techniques.
    A measurement system was developed based on flow visualization and image processing techniques, which can be used to investigate the spatial structure of low-speed streaks in the near wall region of turbulent open channel flow. A large number of data can be collected using this system because of the real-time sampling on the computer. It is a reliable instrument for the measurement of the coherent structure in turbulence. An improved 2-D PTV was developed based on previous research experiences, which can be used to measure the trajectories of particles motion. For the experimental study on the particle motion in the dilute solid-liquid two-phase flow, especially for the motion characteristics and dynamic characteristics of coarse particles in water, this kind of system was proved to have great advantages.
    A series of experiments in a wider range of Reynolds number were conducted for the investigation on the spatial and temporal distribution of the low-speed streaks in the near wall region of turbulent open channel flow. For the first time, the relationships between the spacing, the width, the length scale in the streamwise direction and the duration time of low-speed streaks and the Reynolds number based on shear velocity were revealed. The present results indicate that the quantitative description of the non-dimensional mean lateral streak spacing + differs from the results previously published. The spacing + is not a constant value of 100. It becomes larger as the Reynolds number in terms of shear velocity increase. In the smooth regime the spacing
    increases with the quadratic power of Re., but has a linear relationship with Re, in
    the transitional regime. The dividing point is located at about Re, = 900 . The probability density distribution of + conforms to the lognormal behavior. The
    
    
    
    
    variation of the width, the length scale in the streamwise direction and the persisting time of low-speed streaks with Re, have similar relations to the spacing.
    The distribution of streak width along the lateral direction shows that the width attains its maximum value at the central line and becomes narrower toward the side wall, and its distribution is symmetrical about the central line of the flume. The ratio of the streak spacing to the width is about 2.0, which implies that the high and low speed streaks takes up almost the same space in the lateral direction. A special experiment was performed to investigate the formation process of streaks. A new vortex model was presented to interpret some experimental results in present work based on the mechanism of streaks production.
    A series of experiments on the motion characteristics of light polystyrene particles and heavy glass particles were carried out in open channel flow. The test results show that it is essential to divide the particle motion into three typical types that is rising, falling and translating motion, because the motion characteristics and dynamics characteristics are apparently different when the particles moving in different types, especially in the near bed region of the open channel flow. The mean velocity profile of
    particles in streamwise direction follows the log-law, namely U p = Kp lny+ + Bp
    with KP = 0.29 ~ 0.43 . The value of Bp is dispersed. The particle velocity in
    streamwise direction as the particle rise is larger
引文
曹志先,基于湍流猝发的明渠流悬沙浓度分布,水利学报,1997年2月,第2期,第52-57页.
    陈德明,推移质和悬移质转换层的输沙规律研究,[硕士学位论文].成都:成都科技大学, 1995年3月.
    胡春宏,水流中推移质颗粒跃移规律的力学和统计分析,[博士学位论文].北京:清华大学 水利系,1989年1月。
    胡春宏,惠遇甲,水流中跃移颗粒的受力分析,水利学报,1993年1月,第1期,第11-20页.
    胡春宏,惠遇甲,明渠挟沙水流运动的力学和统计规律,北京:科学出版社,1995.
    李丹勋,悬移质颗粒运动特性的研究,[博士学位论文].北京:清华大学水利系,1999年10 月.
    李玉梁,陈朝泉,余常昭,环境水力学试验研究中的图像处理技术,应用基础与工程科学学 报,1995,3(4) :420-436.
    刘大有,二相流体动力学,高等教育出版社,1993.9.
    刘青泉,床面附近泥沙运动的力学特性,应用基础与工程科学学报,1997年3月,第5卷,第 1期,第56-65页.
    刘青泉,水-沙两相流的激光多普勒分相测量和试验研究,泥沙研究,1998年6月,第2期, 第72-80页.
    倪晋仁,王光谦,论悬移质浓度垂线分布的两种类型及其产生的原因,水利学报,1987年7 月,第7期,第60-68页.
    倪晋仁,惠遇甲,悬移质浓度垂线分布的各种理论及其间关系,水利水运科学研究,1988年,
    
     第1期,第83-97页.
    倪晋仁,王光谦,张红武,固液两相流基本理论及其最新应用,科学出版社,1991.
    钱宁,万兆惠,泥沙运动力学,科学出版社,1991.
    邵学军,夏震寰,紊动流场中悬浮颗粒分布的随机理论,力学学报,1991年,第23卷,第 1期,第28-36页。
    王光谦,固液两相流与颗粒流的运动理论及实验研究,[博士学位论文].北京:清华大学水 利系,1989年。
    王光谦,倪晋仁,再论悬移质浓度垂线分布的两种类型及其产生的原因,水动力学研究与进 展,A辑第6卷第4期,1991年12月,第60-71页.
    王兴奎,悬移质泥沙运动及其对水流结构的影响,[博士学位论文].北京:清华大学水利系, 1985年9月.
    王兴奎,庞东明,王桂仙,安凤玲,图像处理技术在河工模型试验流场量测中的应用,泥 沙研究,1996年12月,第4期,第21-6页。
    王兴奎,翟大潜,史强,丁忠,跌坎下游水流和悬沙浓度的分布特性,应用基础与工程科学 学报,1996,12,Vol.4(4) :426-434.
    王煊,张永泽,李嘉,数字图像处理技术在固-液两相流实验中的应用,水动力学研究与 进展,1999年6月,A辑第14卷第2期,第210-217页。
    夏震寰,现代水力学(三):紊动力学,高等教育出版社,1992.8.
    杨斌,成家扬,挟沙水流紊流结构及推悬交换的实验研究,全国泥沙基本理论研究学术讨论 会论文集,1992年11月,北京,第18-26页.
    钟德钰,水流冲泻质输沙机理及其与床沙质的相互转化规律:[博士学位论文].北京:清华 大学水利系,1999年10月。
    Chen, Ching-Jen, You-Gon Kim and J.A. Walter, Recent Development in Quantitative Flow Visualization and Imaging Process, Hemisphere Publish Corporation, 1992, 17-28.
    
    
    Dyer, K. R., R. L. Soulsby, Sand transport on the continental shelf, Annu. Rev. Fluid Mech., 1988, Vol. 20, pp. 295-324.
    Garcia M., Y. Nino & F. Lopez, Laboratory Observations of Particle Entrainment into Suspension by Turbulent Bursting, Coherent Flow Structures in Open Channels, Edited by P. J. Ashworth, S. J. Bennett, J. L. Best and S. J. McLelland, 1996, John Wiley & Sons Ltd.
    Gottero M., M. Onorato, Low-speed streak and internal shear layer motions in a turbulent boundary layer, Eur. J. Mech. B-Fluids, 19, 23-36, 2000.
    Grass, A. J., Structural factors of turbulent flow over smooth and rough boundaies, J. Fluid Mech., Vol.50, part 2, pp.233-255, 1971.
    Grass, A. J;, Transport of fine sand on a flat bed: turbulence and suspension mechanics. In Euromech 48, 1974, pp. 33-34.Inst. Hydrodynamic and Hydraulic Engrg. Tech. Univ. Denmark.
    Gupta, A. K., Laufer, J., Kaplan, R. E., Spatial structure in the viscous sublayer, J. Fluid Men., Vol.50, part 3, pp.493-512, 1971.
    Hetsroni, G., Particles-turbulence Interaction, Int. J. Multiphase Flow, Vol.15, No.5, pp.735-746, 1989
    Hinze, J.O., Turbulence, 2nd Ed., Mcgraw-Hill, New York, 1975
    Hu,Chunhong(胡春宏)and Yujia Hui(惠遇甲),Bed-load Transport,Ⅰ:Mechanical Characteristics,Journal of Hydraulic Engineering,Vol.122,No.5,May 1996,PP.245-254.
    Hu,Chunhong(胡春宏)and Yujia Hui(惠遇甲),Bed-load Transpo~,Ⅱ:Stochastic Characteristics,Journal of Hydraulic Engineering,Vol.122,No.5,May 1996,PP.255-261.
    Itakura, T. and T. Kishi, Open Channel Flow with Suspended Sediments, J. Hydrau. Div., ASCE, Vol.106, No.8, pp1325, 1980
    Jackson, R. G., Sedimentological and fluid dynamics implications of the turbulent bursting
    
    phenomenon in geophysical flows, J. Fluid Mech., 1976, Vol. 77, pp. 531-560.
    Kaftori, D., G. Hetsroni and S. Banerjee, Particle Behavior in the Turbulent Boundary Layer, Ⅰ : Motion, Deposition, and Entrainment, Phys. Fluids, 7(5) , May, 1995, p1095-1106.
    Kaftori, D., G. Hetsroni and S. Banerjee, Particle Behavior in the Turbulent Boundary Layer, Ⅱ: Velocity and Distribution Profiles, Phys. Fluids, 7(5) , May, 1995, p1107-1121.
    Karcz, I., Reflections of the origin of source: Small-scale longitudinal streambed scours, Fluvial Geomorphology (ed. M. Morisawa), 4th Annual Geomorphology Symposia Series, 1973, pp. 149-173.
    Kim, H. T., S. J. Kline and W. C. Reynolds, The production of turbulence near a smooth wall in a turbulent boundary layer, J. Fluid Mech., Vol.50, part 1, pp. 133-160, 1971.
    Lee M. K., L; D. Eckelman & T. J. Hanratty, Identification of turbulent wall eddies through the phase ralation of the components of the fluctuating velocity gradient, J. Fluid Mech., Vol. 66, part 1,pp. 17-33, 1974.
    Li,Danxun(李丹勋),Xingkui Wang(王兴奎)& Mingzhong Yu(禹明忠)et al.,Experimental study on suspended particle motion by image processing technique,Proceedings of the seventh international symposium on river sedimentation,Hong Kong,China,16-18, December,1998.
    Moriotti & Banerjee. Direct numerical simulation of particle behaviour in the wall region of turbulent flows in horizontal channels. Int. J. Multiphase Flow, 1992, 18:927-941.
    Murphy, P.J. and E.J. Aguirre, Bed Load or Suspended Load, Proc. ASCE, J. Hydr. Engr., 1985, 111(1)
    Nakagawa H and I. Nezu, Structure of space-time correlations of bursting phenomena in an open-channel flow, J. Fluid Mech., Vol.104, pp.1-43, 1981.
    Nezu, I. & H. Nakagawa, Cellular secondary currents in straight conduit, J. Hydraulic Eng., ASCE, 1984, Vol. 110, pp. 173-193.
    Ni,Jinren(倪晋仁)and Guangqian Wang(王光谦),Vertical Sediment Distribution,Jour.of Hyd. Eng,1991.117(9) .
    
    
    Nino, Y. and M.H. Garcia, Experiments on Particle-turbulence Interactions in the near-wall Region of an Open Channel Flow: Implications for Sediment Transport, Journal of Fluid Mechanics, Vol.326, Nov 10, 1996, p.285-319
    Offen, G. R. and S. J. Kline, Combined dye-streak and hydrogen-bubble visual observation of a turbulent boundary layer, J. Fluid Mech., Vol.62, part 2, pp.223-239, 1974.
    Offen, G. R. and S. J. Kline, A proposed model of the bursting process in turbulent boundary layer, J. Fluid Mech., Vol.70, part 2, pp.209-228, 1975.
    Oldaker D. K., W. G. Tiederman, Spatial structure of the viscous sublayer in drag-reducing channel flows, The Physics of Fluids, Vol. 20, No. 10, Pt. Ⅱ, S133-S144, October 1977.
    Owen, P.R., Pneumatic transport, J. Fluid Mech., 1969, vol.39, part 2, pp.407-432.
    Rashidi, M., G. Hetsroni and S. Banerjee, Particle-turbulence Interaction in a Boundary Layer, Int. J. Multiphase Flow, 1990, Vol.16, pp.935-949
    Rizk, M. A. & S. E. Elghobashi, The Motion of a Spherical Particle Suspended in a Turbulent Flow near a Plane Wall, Phys. Fluid, 1985, 28(3) , pp.806-817.
    Robinson, S.K., Coherent Motions in the Turbulent Boundary Layer, Ann. Review of Fluid Mech., Vol.23, 1991.
    Rolland, T., Development d'une instrumentation Doppler ultrasonore adaptee a l'etude hydraulique de la turbulence dans les canaux, These de doctoral No 1281, Ecole Polytechnique federate de Lausanne 1994.
    Runstadler, P. W., S. J. Kline & W. C. Reynolds, 1963, Dept. Mech. Engng., Stanford University, Rep. MD-8.
    Saffman, P.G., The Lift on a Small Sphere in a Slow Shear Flow, J. Fluid Mech., Vol.22, pp.385-400, 1965.
    Schraub, F. A., S. J. Kline, Henry, J. Runstadler, Jr. P. W. and A. Littell, Use of hydrogen bubbles
    
    for quantitative determination of time-dependent velocity fields in low speed water flows, J. Basic Eng. Trans. ASME, Vol.87, pp.429-444, 1965.
    Shen, C, An acoustic instantaneous particle flux profiler for turbulent flow, These de doctoral No 1630, Ecole Polytechnique federale de Lausanne, 1997.
    Silberman, E., et al. Friction factors in open channels, J. Hydr. Div., ASCE, 1963, 89(2) , 97-143.
    Smith C. R. & S. P. Metzler, The characteristics of low-speed streaks in the near-wall region of a turbulent boundary layer, J. Fluid Mech., 129, 27-54, 1983.
    Soulsby, R.L. and B.L.S.A. Wainwright, A Criterion for the Effect of Suspended Sediment on near Bottom Velocity Profiles, J. Hydrau. Res., Vol.25, pp341, 1987.
    Sumer, B.M. and B. Oguz, Particle Motions near the Bottom in Turbulence Flow in an Open Channel, J. of Fluid Mechanics, London, Vol.86(1) :109-127, 1978.
    Sumer, B.M. and R. Deigaard, Particle Motions near the Bottom in Turbulent Flow in an Open Channel, Part 2, J. Fluid Mech., Vol.109, pp311-337, 1981.
    Sumer, B.M., Lift Forces on Moving Particle near Boundaries, Jour, of Hydr. Engi., ASCE, Vol. .110, No.9, 1984.
    Sutherland, A. J., Proposed mechanism for sediment entrainment by turbulent flows, J. Geophys. Res., Vol. 72, 1967, pp. 191-198.
    Taylor, P.A. and K.R. Dyer, Theoretical Models of Flow near the Bed and Their Implications for Sediment Transport, In the Sea, Vol.6, pp579, 1977
    Tchen, C. M., Mean value and correlation problems connected with the motion of small particles suspended in a turbulent fluid, Ph. D. thesis, Delft, 1947.
    Wang,Xingkui(王兴奎)and Ning Qian(钱宁),Turbulence Characteristics of Sediment-laden Flow,J.Hydr.Eng.,ASCE,Vol.115,No.6,1989,PP.781-800
    Wei, T. and W.W. Willmarth, Examination of v-velocity Fluctuations in a Turbulent Channel Flow
    
    in the Context of Sediment Transport, J. Fluid Mech., Vol.223:241-252, 1991
    Yarin, L.P. and G. Hetstroni, Turbulence Intensity in Dilute Two-phase Flows, Part Ⅰ: Effect of Particle-Size Distribution on the Turbulence of the Carrier Fluid, Int. J. Multiphase Flow, Vol.20, No. 1, pp. 1-15, 1994
    Yarin, L.P. and G. Hetstroni, Turbulence Intensity in Dilute Two-phase Flows, Part Ⅲ: The Particles-turbulence Interaction in Dilute Two-phase Flow, Int. J. Multiphase Flow, Vol.20, No.1,pp.27-44, 1994.
    Yu Mingzhong(禹明忠),Wang Xingkui(王兴奎),Wang Dianchang(王殿常)and Li Danxun(李丹 勋),Application of PTV to Flow Field Measurement in Large-scale Physical Models,9th (Millennium)International Symposium on Flow Visualization,Edinburgh,August 22-25th, 2000.
    Yung, B. P. K., H. Merry & T. R. Bott, The role of turbulent bursts in particle re-retrainment in aqueous systems, Chem. Engng Sci., 1989, Vol. 44, pp. 873-882.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700