无轴承永磁同步电机参数设计及抑制振动控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着科学技术与生产力的迅猛发展,诸如精密数控机床、特种机器人、IC制造装备、低碳新能源、高速飞行器、涡轮分子泵、离心机等装备对高速或超高速电机有着迫切需求。高速电机具有一系列优点,如:(1)电机体积小,原材料少,功率密度高,效率高;(2)可取消传动机构,直接驱动负载,减小了传动损耗,噪音小;(3)转子转动惯量小,动态响应速度快。高速电机在特种传动、高速直驱领域具有广阔的应用前景,正成为国际电气工程领域的研究热点。在高速运行状态下,电机转子对机械轴承振动冲击大,使得轴承发热和磨损严重,大幅度缩短了电机与轴承的使用寿命。磁悬浮轴承能够实现转子无摩擦、无磨损运行,但是由磁悬浮轴承支承的高速电机轴向长度长、临界转速低,由磁悬浮轴承支承的高速电机难以突破转速和功率的限制,同时需采用多个磁轴承单元组成高速电机系统,造成系统结构复杂、体积庞大。而无轴承永磁同步电机结合了永磁同步电机和磁轴承的优点,在产生电磁转矩的同时,还产生使转子悬浮的径向悬浮力,可实现更大功率和更高转速运行,在高速传动领域具有重大的研究和应用价值。
     在国家高技术研究发展计划(2007AA04Z213)和国家自然科学基金(60974053)等基金的资助下,为了解决无轴承永磁同步电机应用于高速直接驱动领域的技术难题,以实现无轴承永磁同步电机高速运行为目标,对无轴承永磁同步电机的数学模型、永磁转子机械强度优化设计、转子涡流损耗模型的建立与极对数优化、转子自适应抑制振动控制方法和无轴承永磁同步电机的数字控制系统等关键技术开展研究。主要研究工作及成果如下:
     (1)分析了无轴承永磁同步电机中的麦克斯韦力和洛伦兹力,研究了悬浮机理,推导出产生稳定可控任意方向径向悬浮力条件,考虑转子偏心,采用解析法建立了悬浮力与转矩数学模型。
     (2)提出了无轴承永磁同步电机瞬态参数化有限元分析方法。建立了无轴承永磁同步电机瞬态有限元分析模型,对定子两套绕组施加频率和相位可调的外部电流源,设定转子旋转速度,验证了无轴承永磁同步电机悬浮机理;计算了两套绕组感应电动势、转矩和径向悬浮力
     (3)提出了永磁转子机械强度优化设计方法。根据材料力学和弹性力学理论,建立了面贴式永磁转子护套过盈配合量与最高运行转速的数学模型;对深埋式永磁转子,提出了计算转子机械强度的等效环法。基于接触有限元法,仿真研究验证了永磁转子机械强度优化设计方法的正确性。
     (4)提出了无轴承永磁同步电机的气隙磁场和绕组极对数优化设计方法。建立了永磁转子涡流损耗模型,对永磁体磁化模式开展研究,以降低气隙磁场谐波为目标,对气隙磁场进行优化;研究对比了具有不同定子两套绕组极对数的无轴承永磁同步电机转子涡流损耗。采用耦合电路瞬态有限元验证了优化设计方法。
     (5)提出了基于多频率跟踪算法的无轴承永磁同步电机转子自适应抑制振动控制策略。为了提高振动信号频率辨识精度,在分析了转子振动产生机理的基础上,提出了基于多频率跟踪算法的无轴承永磁同步电机自适应抑制振动控制策略;建立了转子振动频率的多频率跟踪算法,并分析其稳定性。构建了基于转子振动频率在线辨识与磁场定向控制的无轴承永磁同步电机自适应抑制振动控制系统,并进行仿真实验研究。
     (6)采用空间电压矢量脉宽调制技术实现无轴承永磁同步电机转子磁场定向控制策略,构建了无轴承永磁同步电机数字控制系统,研制了系统硬件电路,开发了相关软件程序,并进行实验研究,实现了无轴承永磁同步电机稳定悬浮。
     最后,在总结全文的基础上,提出有需进一步研究的内容和今后工作的重点。
With the rapid development of science, technology and productivity, high-precision tools, such as precise numerically-controlled machine tools, special robot, IC manufacturing equipments, low carbon energy, high speed aircraft, turbo molecular pumps, centrifuge, are widely applied in engineering, which gives urge requirement of high-speed and super-speed motors. The high-speed motor has some remarkable advantages, such as:(1) It possesses smaller volume, less row material, higher power density, and higher efficiency;(2) It can drive the load directly without the transmission mechanism, which mean less transmission and noise;(3) The rotor of high-speed motor has less rotational inertia and thus has higher-speed dynamic response. For its promising application in special electrical transmission and high-speed direct-drive fields, the high-speed motor has becoming the international research topic in the electrical engineering field. The high-speed motor has vital vibration and shock to bearings, which makes the bearings with severe fever and attrition. This may significantly reduce the service life of bearings. The magnetic bearing can realize the friction-free and abrasion-free operation, which effectively resolves this problem. But, the motor supported by magnetic bearings has longer axial length and lower critical speed, which gives the stubborn ceiling on speed and power restrictions. Besides this, the motor supported by magnetic bearings requires more magnetic bearing units, which makes the motor system more complex and bigger. The bearingless permanent magnet synchronous motor sufficiently combines the advantages of permanent magnet synchronous motor and magnetic bearings, which can produce the radial suspension force and torque simultaneously, and thus it can realize stable operation with bigger power and higher speed. Thus, it has more significant application value in high-speed drive field.
     Supported by the National High Technology Research and Development Program under grant2007AA04Z213and the National Natural Science Foundation of China under grant60974053, in order to solve technology difficult problems of bearingless permanent magnet synchronous motor applied to the high-speed direct-drive fields, some key theoretical and technological problems such as the mathematical model, the mechanical strength optimal design method of permanent magnet rotor, the construction of the eddy current loss model and winding pole pair number optimization, the adaptive vibration-rejection control, the digital control system design and so on have been researched aiming to realize the high-speed operation of bearingless permanent synchronous motors,. The main researches and the corresponding results are as follows:
     (1) The Maxwell force and Lorenz force in bearingless permanent magnet synchronous motor was analyzed. The operating principle of bearingless permanent magnet synchronous motors was researched and the conditions of producing controllable radial suspension force in any direction were concluded. The mathematic models of torque and radial suspension force were constructed, considering the rotor eccentricity.
     (2) The parametric transient finite element optimal design method was put forward. The transient finite element model of bearingless permanent magnet motor was established. The external current sources with adjustable frequency and phase were loaded to the model. The suspension mechanism was verified and EMF, torque and radial suspension force were calculated.
     (3) The mechanical strength optimal design method of the permanent magnet rotor of bearingless permanent magnet synchronous motors is presented. The mathematic model between the bandage shrink range and the maximum rotating speed was established according to the mechanics of materials and elasticity mechanics theory. For the buried permanent magnet rotor, the equivalent ring method was put forward to calculation the mechanical strength. Finally, based on contact finite element method, the simulation results verify the correctness of the method presented in this paper.
     (4) The air-gap field and pole-pair-number of windings optimal design strategy was presented. The rotor eddy current loss model of permanent magnet synchronous motor was built. The magnetization modes of permanent magnets were researched and air-gap field were optimized in order to reduce the harmonics. The rotor eddy current losses with different pole-pair-numbers were compared. Finally, based on the transient finite element method with coupled circuits, the simulation results verify the correctness of the method.
     (5) The adaptive vibration-rejection control method of rotor is presented based on multi-frequency tracking algorithm. The vibration producing principle was analyzed, based on which, the adaptive vibration-rejection control strategy is presented based on the multi-frequency tracking algorithm for bearingless permanent magnet synchronous motors. The multi-frequency tracking algorithm had been deduced and the stability was analyzed. Combing the online identification of rotor vibration frequency and magnetic field orientation, the adaptive vibration-rejection control strategy is presented. The simulation results have shown that the presented method efficiently eliminates the rotor vibration and thus improves the rotating precision.
     (6) The digital control system of bearingless permanent magnet synchronous motors is designed based on the space voltage vector pulse width modulation to realize the rotor magnetic field-orientated control strategy. The corresponding hardware systems and software systems are designed and the related experiments are conducted. The experiment results have shown that the platform can realize the stable suspension operation.
     As a conclusion, the summarization of the whole contents is given. The content and emphasis of the further research is also given.
引文
[1]中华人民共和国科学技术部.国家中长期科技发展规划纲要[M].北京:中国法制出版社,2006.
    [2]中华人民共和国科学技术部.“十一五”科学技术发展规划[DB/OL],,http://www.most.gov.cn/sytt/200610/t20061031_37727.htm,2006,10.
    [3]中华人民共和国科学技术部.“十二五”科学技术发展规划[DB/OL],http://www.most.gov.cn/kjgh/,2011,7.
    [4]王凤翔.高速永磁电机的设计特点及相关技术研究[J].沈阳工业大学学报,2006,28(3):258-264.
    [5]张涛,朱熀秋,孙晓东,等.基于有限元法的高速永磁转子强度分析[J].电机与控制学报,2012,16(6):63-68.
    [6]张涛,朱熀秋,孙晓东,杨泽斌.基于场路耦合时步有限元法的高速无轴承永磁同步电机电磁分析[J].武汉大学学报(工学版),2011,44(5):645-649.
    [7]田拥胜,孙岩桦,虞烈.高速永磁电机-电磁轴承转子系统的动力学及实验研究[J].中国电机工程学报,2012,32(9):116-123.
    [8]张云鹏,刘淑琴,李红伟,等.基于磁路分析的轴向混合磁轴承径向承载力解析计算[J].电工技术学报,2012,27(5):137-142
    [9]张维煜,朱熀秋.基于麦克斯韦张量法的交流磁轴承径向悬浮力建模[J].科学通报,2012,57(11):976-986.
    [10]侯二永,刘昆.混合磁轴承磁场与磁力解析计算[J].机械工程学报,2012,48(6):193-198.
    [11]侯二永,刘昆,单小强.扁平型外转子混合磁悬浮飞轮动力学分析[J].宇航学报,2011,32(5):998-1004.
    [12]孙玉坤,朱志荧.三自由度混合磁轴承最小二乘向量机逆模辨识与解耦控制[J].中国电机工程学报,2010,30(15):112-117.
    [13]冯宪章.先进制造技术基础[M].北京:北京大学出版社,2009,80-94.
    [14]A. Chiba, T. Fukao, O. Ichikawa, et al. Magnetic bearings and bearingless drives [M]. Tokyo:Newnes,2005.
    [15]卜文绍,黄声华,万山明,等.无轴承同步电机旋转惯性振动抑制模型[J].华中科 技大学学报,2009,37(1):116-122.
    [16]A. O. Salazar, A. Chiba, T. Fukao. A review of developments in bearingless Motors [C]. Proceedings of 7th International Symposium on Magnetic Bearings, ETH Zurich, Switzerland,2000,335-340
    [17]廖启新,王晓琳,邓智泉,等.3对极无轴承交替极薄片电机的理论与实现[J].中国电机工程学报,28(36):68-72.
    [18]朱熀秋,张伟霞,费德成,等.磁悬浮无轴承电机发展、应用和前景[J].微特电机,2006,3:39-41.
    [19]仇志坚.永磁型无轴承电机的基础研究[D].南京:南京航空航天大学,2009.
    [20]孙晓东.无轴承永磁同步电机及其非线性控制研究[D].镇江:江苏大学,2011.
    [21]P. K. Hermann. A radial active magnetic bearing. England,1478868 [P],1973.
    [22]P. K. Hermann. A radial active magnetic bearing have a rotating drive. England, 1500809 [P],1974.
    [23]P. Meinke, G. Flaeheneeker. Electromagnetie drive assembly for rotary bodies using a magnetically mounted rotor, United States,3988658 [P],1974.
    [24]T. Higuchi. Magnetically floating actuator having angular positioning function [P], United States,4683391 [P],1985.
    [25]R. Bosch. Development of a bearingless motor [C]. Proceedings of international Conference Electric Machines, Pisa, Italy,1988:373-375.
    [26]J. Biehsel. Beitraege zum Iagerlosen Elektromotor [D]. Zuerich, Switzerland, ETH, 1990.
    [27]R. Schob. Beitrxge zur lagerlosen Asynchron maschine [D]. Zuerich, Switzerland, ETH, 1993.
    [28]N. Barletta, R. Schob, Principle and application of a bearingless slice motor [C]. Proceedings of 5th International Symposium on Magnetic Bearings, Kanazawa, Japan. 1996:313-318.
    [29]S. Silber, W. Amrhein. Bearingless single-phase with concentrated full pitch windings in exterior rotor design [C]. Proceedings of International Symposium Magnetic Bearing, 1998:476-485.
    [30]M. Takemoto, K. Yoshida, N. Itasaka, et al. Synchronous reluctance type bearingless motors with multi-flux barriers [J]. Power Conversion Conference Nagoya,2007: 1559-1564.
    [31]A. Chiba, M. A. Rahman, T. Fukao. Radial force in a bearingless reluctance motor Magnetics [J], IEEE Transactions on magnetics,1991,27(2):786-790.
    [32]A. Chiba, M. Hanazawa, T. Fukao, et al. Effect of magnetic saturation on radial force of bearingless synchronous reluctance motor [J]. IEEE Transactions on Industry Application,1996,32(2):354-362.
    [33]C. Michioka, T. Sakamoto, O. Ichikawa, et al. A decoupling control method of reluctance type bearingless motors considering magnetic saturation [J]. IEEE Transaction on Industry Application,1996,32(5):1204-1210.
    [34]A. Chiba, K. Sotome, Y. Iiyama, et al. A novel middle point current injection type bearingless PM synchronous motor for vibration suppression [J]. IEEE Transaction on Industry Application,2011,47(4):1700-1706.
    [35]S. Yajima, M. Takemoto, Y. Tanaka, et al. Total efficiency of a deeply buried permanent magnet type bearingless motor equipped with 2-pole motor windings and 4-pole suspension windings [C]. The proceedings of Power Engineering Society General Meeting,2007:1-7.
    [36]M. Oshima, S. Miyazawa, T. Deido, et al. Characteristics of a permanent magnet type bearingless motor [J]. IEEE Transaction on Industry Application,1996,32(2):363-370.
    [37]H. Kusayanagi, M. Takemoto, Y. Tanaka, et al. Basic characteristics of a permanent-magnet type bearingless motor with positive salient pole [C]. The proceedings of International Conference on Electrical Machines and Systems, 2007:1698-1703.
    [38]M. A. Rahman, A. Chiba, T. Fukao. Super high speed electrical machines-summary [C]. Power Engineering Society General Meeting,2004:1272-1275.
    [39]M. Takemoto, M. Uyama, A. Chiba, et al. A deeply-buried permanent magnet bearingless motor with 2-pole motor windings and 4-pole suspension windings [C]. Industry Applications Conference,2003:1413-1420.
    [40]M. Ooshima, T. Kurokawa, M. Sakagami, et al. An identification method of suspension force and magnetic unbalance pull force parameters in buried-type IPM bearingless motors [C]. Power Engineering Society General Meeting,2004:1276-1279.
    [41]M. Ooshima, S. Kitazawa, A. Chiba, et al. Design and analyses of a coreless-stator-type bearingless motor/generator for clean energy generation and storage systems [J]. IEEE Transaction on Magnetics,2006,42(10):3461-3463.
    [42]Y. Okada, S. Miyamoto, T. Ohishi. Levitation and torque control of internal permanent magnet type bearingless motor [J]. IEEE Transactions on Control System Technology, 1996,4(5):564-571.
    [43]M. Ooshima, A. Chiba, T. Fukao, et al. Design and analysis of permanent magnet-type bearingless motors [J]. IEEE Transactions on Industrial Electronics,1996,43(2): 292-299.
    [44]M. Ooshima, S. Miyazawa, A. Chiba, et al. Performance evaluation and test results of a 11 OOOr/min,4kW surface-mounted permanent magnet-type bearingless motor [C]. Proceedings of 7th International Symposium on Magnetic Bearings, ETH Zurich, Switzerland,2000:377-382.
    [45]M. Takemoto, K. Shimada, A. Chiba. A design and characteristics of switched reluctance type bearingless motors[C]. Proceedings of 4th International. Symposium on Magnetic Suspension Technology,1998:49-63.
    [46]M. Takemoto, H. Suzuki, A. Chiba, et al. Improved analysis of a bearingless switched reluctance motor [J]. IEEE Transactions on Industry Application,2001,37:26-34.
    [47]M. Takemoto, A. Chiba, T. Fukao. A new control method of bearingless switched reluctance motors using square-wave currents [C]. IEEE Power Engineering Society Winter Meeting,2000,1:375-380.
    [48]J. Asama, M. Amada, M. Takemoto, et al. Voltage characteristics of a consequent-pole bearingless PM motor with concentrated windings [J]. IEEE Transactions on Magnetics, 2009,45(6):2823-2826.
    [49]J. Amemiya, A. Chiba, D. G. Dorrell, et al. Basic characteristics of a consequent pole type bearingless motor [J]. IEEE Transactions on Magnetics,2005,41(1):82-89.
    [50]T. Suzuki, A. Chiba, M. A. Rahman, et al. An air-gap-flux-oriented vector controller for stable operation of bearingless induction motors [J]. IEEE Transactions on Industry Applications,2000,36(4):1069-1076.
    [51]A. Chiba, D. Akamatsu, T. Fukao, et al. An improved rotor resistance identification method for magnetic field regulation in bearingless induction motor drives [J]. IEEE Transactions on Industrial Electronics,2008,55(2):852-860.
    [52]A. Chiba, D. T. Power, M. A. Rahman. Characteristics of a bearingless induction motor [J]. IEEE Trancactions on Magnetics,1991,27(6):5199-5201.
    [53]A. Chiba, J. A. Santisteban. A PWM harmonics elimination method in simultaneous estimation of magnetic field and displacements in bearingless induction motors [J]. IEEE Transactions on Industry Applications,2012,48(1):124-131.
    [54]A. Chiba, D. T. Power, M. A. Rahman. Analysis of no-load characteristics of a bearingless induction motor [J]. IEEE Transactions on Industry Applications,1995, 31(1):77-83.
    [55]S.Sliber, W. Amerhein, P. Bosch, et al. Design aspects of bearingless slice motors [J]. IEEE/ASME Transaction on Mechatronics,2005,10(6):611-617.
    [56]Z. Ren, L. S. Stephens. Closed-loop performance of a six degree-of freedom precision magnetic actuator [J]. IEEE/ASME Transactions on Mechatronics,2005,10(6):666-674.
    [57]Z. Ren, L. S. Stephens. Force characteristics and gain determiniation for a slotless self-bearing motor [J]. IEEE Transactions on Magnetics,2006,42(7):1849-1860.
    [58]Z. Ren, L. S. Stephens, A. V. Radun. Improvements on windings flux models for a slotless self-bearing motor [J]. IEEE Transactions on Magnetics,2006,42(7):1838-1848.
    [59]孙玉坤,吴建斌,项倩雯.基于有限元法的磁悬浮开关磁阻电机数学模型[J].中国电机工程学报,2007,27(12):49-54.
    [60]孙玉坤,刘羡飞,王德明,等.基于有限元分析的磁悬浮开关磁阻电机数学模型的全角度拓展[J].电工技术学报,2007,22(9):34-39.
    [61]朱烷秋,成秋良,王成波.基于机械/电气坐标变换的无轴承永磁同步电机建模[J].中国科学(工程科学),2010,40(1):52-58.
    [62]朱熀秋,成秋良.基于磁链等效虚拟绕组电流分析方法的无轴承电机径向悬浮力控制[J].科学通报,2009,54(2):262-268.
    [63]项倩雯,孙玉坤,张新华.磁悬浮开关磁阻电机与参数优化设计[J].电机与控制学报,2011,15(4):74-79.
    [64]朱熀秋,李元飞.无轴承同步磁阻电机设计及有限元分析[J].江苏大学学报(自然科学版),2011,27(6):536-540.
    [65]朱烷秋,翟海龙.无轴承永磁同步电机控制系统设计与仿真[J].中国电机工程学报,2005,25(14):120-124.
    [66]张亮,孙玉坤.基于微分几何的磁悬浮开关磁阻电机径向力的变结构控制[J].中国电机工程学报,2006,26(19):121-126.
    [67]刘羡飞,孙玉坤,王德明.磁悬浮开关磁阻电机径向位置解耦及仿真研究[J].系统仿真学报,2007,19(7):1527-1530.
    [68]刘国海,孙玉坤,张浩,等.基于神经网络逆系统的磁悬浮开关磁阻电机的解耦控制[J].电工技术学报,2005,20(9):39-43.
    [69]孙玉坤,任元,黄永红.磁悬浮开关磁阻电机悬浮力与旋转力的神经网络逆解耦控制[J].中国电机工程学报,2008,28(9):81-85.
    [70]朱志荧,孙玉坤,黄永红.磁悬浮开关磁阻电机逆系统动力学建模与控制[J].电机 与控制学报,2011,15(3):74-79.
    [71]H. Q. Zhu, Y. Zhou, T. Li, et al. Decoupling control of 5 degrees of freedom bearingless induction motors using a-th order inverse system method [J]. ACTA AUTOMATIC A SINICA,2007,33(3):273-278.
    [72]孙晓东,朱烷秋.基于神经网络逆系统理论无轴承异步电动机解耦控制[J].电工技术学报,2010,25(1):43-49.
    [73]孙玉坤,费德成,朱煜秋.基于α阶逆系统五自由度无轴承永磁电机解耦控制[J].中国电机工程学报,2006,26(1):120-126.
    [74]仇志坚,邓智泉,王晓琳,等.计及偏心及洛伦兹力的永磁型无轴承电机建模与控制研究[J].中国电机工程学报,2007,27(9):64-70.
    [75]邓智泉,杨钢,张媛,等.一种新型的无轴承开关磁阻电机数学模型[J].中国电机工程学报,2005,25(9):139-149.
    [76]曹鑫,邓智泉,杨钢,等.新型无轴承开关磁阻电机双相导通数学模型[J].电工技术学报,2006,21(4):50-56.
    [77]曹鑫,邓智泉,杨钢,等.无轴承开关磁阻麦克斯韦应力法数学模型[J].中国电机工程学报,2009,29(3):78-83.
    [78]G. Yang, Z. Q. Deng, X. Cao, et al. Optimal winding arrangement of a bearingless switched reluctance motor [J]. IEEE Transactions on Power Electronics,2008,23(6): 3056-3066.
    [79]刘泽远,邓智泉,曹鑫,等.全周期无轴承开关磁阻发电机的设计[J].中国电机工程学报,2011,31(12):72-83.
    [80]邓智泉,张宏全,王晓琳,等.基于气隙磁场定向无轴承异步电机非线性解耦控制[J].电工技术学报,2002,17(6):19-24.
    [81]邓智泉,王晓琳,张宏全,等.无轴承异步电机转子磁场定向控制[J].中国电机工程学报[J].2003,23(3):89-92.
    [82]邓智泉,王晓琳,李冰,等.无轴承异步电机悬浮子系统独立控制的研究[J].中国电机工程学报,2003,23(9):107-111.
    [83]仇志坚,邓智泉,王晓琳.无轴承永磁同步电机的转子磁场定向控制研究[J].中国电机工程学报,2005,25(1):104-108.
    [84]仇志坚,邓智泉,王晓琳.无轴承永磁同步电机的独立控制研究[J].中国电机工程 学报,2006,26(1):115-119.
    [85]廖启新,邓智泉,王晓琳.无轴承薄片电机磁体形状优化设计及系统实现[J].中国电机工程学报,2011,31(12):28-32.
    [86]朱俊,邓智泉,王晓琳,等.单绕组无轴承永磁薄片电机的原理与实现[J].中国电机工程学报,2008,28(33):68-74.
    [87]岳盛奏,王晓琳,廖启新,等.无轴承薄片电机的自诊断容错运行[J].电工技术学报,2010,25(5):76-81.
    [88]盛旺,王晓琳,邓智泉,等.单绕组无轴承永磁薄片电机短路容错运行[J].中国电机工程学报,2011,31(6):66-72.
    [89]仇志坚,邓智泉,王晓琳,等.新型交替极无轴承永磁薄片电机的原理与实现[J].中国电机工程学报,2007,27(33):1-5.
    [90]黄燕,王晓琳,仇志坚,等.交替极无轴承电机的转矩与悬浮特性[J].电机与控制学报,2010,14(12):91-95.
    [91]解超,王晓琳,邓智泉等.无轴承交替极电机控制系统改进及实现[J].中国电机工程学报,2010,30(18):78-84.
    [92]廖启新,邓智泉,王晓琳等.交替极无轴承永磁电机的悬浮力脉动分析[J].中国电机工程学报,2007,27(30):49-54.
    [93]年珩.无轴承电机的设计与控制研究[D].杭州:浙江大学,2005.
    [94]贺益康,年珩,阮秉涛.感应型无轴承电机的优化气隙磁场定向控制[J].中国电机工程学报,2004,24(6):116-121.
    [95]周媛,贺益康,年珩.永磁型无轴承电机的完整系统建模[J].中国电机工程学报,2005,26(4):134-139.
    [96]年珩,贺益康,黄雷.内插式永磁无轴承电机转子位置/位移综合自检测[J].中国电机工程学报,2004,24(6):116-121.
    [97]朱熀秋,张涛.无轴承永磁同步电机有限元分析[J].中国电机工程学报,2006,26(3):136-140.
    [98]陈伯时.电力拖动自动控制系统[M].北京:机械工业出版社,2006.
    [99]秦忆.现代交流伺服系统[M].武汉:华中理工大学出版社,1995.
    [100]Bu Wenshao, Huang Shenghua, Wan Shanming, et al. A kind of generalized analytical model on inductance matrixes of four-pole bearingless motor[C]. Proceedings of 2nd IEEE Conference on Industrial Electronics and Applications,2007:1657-1662.
    [101]Degner Michael W, Van Maaren Richard, Fahim Azza, et al. A rotor lamination design for surface permanent magnet retention at high speeds [J]. IEEE Transactions on Industry Applications,1996,32(2):380-385.
    [102]H. W. Cho, K. O. Ko, J. Y. Choi, et al. Rotor natural frequency in high-speed permanent magnet synchronous motor for turbo-compressor application [J]. IEEE Transactions on Magnetics,2011,47(10):4258-4261.
    [103]N. Bianchi, S.Bolognani, F. Luise. Potentials and limits of high-speed PM motors [J]. IEEE Transactions on Industry Applications,2004,40 (6):1570-1578.
    [104]W. J. Jae, H. L. Byeong, J. K. Do, et al. Mechanical stress reduction of rotor core of interior permanent magnet synchronous motor [J]. IEEE Transactions on Magnetics, 2012,48(2):911-914.
    [105]H. S. Jang, M. K. Sung, K. J. Hyun. Rotor design strategy of IPMSM for 42V integrated starter generator [J]. IEEE Transactions on Magnetics,2010,46(6):2458-2461.
    [106]王继强,王凤翔,鲍文博,等.高速永磁电机转子设计与强度分析[J].中国电机工程学报,2005,25(15):140-145.
    [107]B. Aleksandar, P. Henk, A. F. Jan. On the speed limits of permanent magnet machines [J]. IEEE Transactions on Magnetics,2010,57(1):220-227.
    [108]I. K. Sung, K. K. Young, H. L. Geun, et al. A novel rotor configuration and experimental verification of interior PM synchronous motor for high Speed applications [J]. IEEE Transactions on Magnetics,2012,48(2):843-846.
    [109]钱伟长.电机设计强度计算的理论基础[M].合肥:安徽科学技术出版社,1992.
    [110]徐永向,胡建辉,胡任之,等.永磁同步电机转子涡流损耗计算的试验验证方法[J].电工技术学报,2007,22(7):150-154.
    [111]徐永向,胡建辉,邹继斌.表贴式永磁同步电机转子涡流损耗解析计算[J].电机与控制学报,2009,13(1):63-66.
    [112]周凤争,沈建新,林瑞光.从电机设计角度减少高速永磁电机转子涡流损耗[J].浙江大学学报(工学版),2007,41(9):1587-1591.
    [113]T. Okitsu, D. Matsuhashi, K. Muramatsu. Method for evaluating the eddy current loss of a permanent magnet in a PM motor driven by an inverter power supply using coupled 2-D and 3-D finite element analyses [J]. IEEE Transactions on magnetics,2009,45(10): 4574-4577.
    [114]N. Bianchi, S. Bolognani, E. Fornasiero. An overview of rotor losses determination in three-phase fractional-slot PM machines [J]. IEEE Transactions on Industry Applications, 2010,46(6):2338-2345.
    [115]田占元,祝长生,王玎.飞轮储能用高速永磁电机转子的涡流损耗[J].浙江大学学报(工学版),2011,45(3):451-457.
    [116]Z. Kolondzovski, A. Belahcen, A. Arkkio. Comparative thermal analysis of different rotor types for a high-speed permanent magnet electrical machine [J]. IET Electr. Power Applications,2009,3(4):279-288.
    [117]Elnaz V, Bahram S and Stuart B. Estimation and rejection of unknown sinusoidal disturbance using a generalized adaptive force balancing method[C]. Proceedings of the 2007 American control conference, USA,2007:3529-3534.
    [118]张涛,朱熀秋.无轴承永磁同步电机转子质量不平衡补偿控制[J].中国电机工程学报,2007,27(15):33-37.
    [119]张倩影,邓智泉,杨艳.无轴承开关磁阻电机转子质量偏心补偿控制[J].中国电机工程学报,2011,31(21):128-134.
    [120]B. Shafai, S. Beale, P. Larocca, et al. Magnetic bearing control systems and adaptive forced balancing [J]. IEEE Control System,1994:4-12.
    [121]M. Takemoto, A.Chiba, T. Fukao. A feed-forward compensator for vibration reduction considering magnetic attraction force in bearingless switched reluctance motors [C]. Proceedings of 7th International Symposium on Magnetic Bearings, ETH Zurich,2000: 395-400.
    [122]K. Nonami, L. Z. He. Adaptive unbalance vibration control of magnetic bearing system using frequency estimation for periodic disturbances with noise [C]. Proceedings of IEEE International Conference Control Applications. Hawai'i, USA,1999:576-581.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700