硅片化学机械抛光加工区域中抛光液动压和温度研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
化学机械抛光(Chemical Mechanical Polishing,简称CMP)作为集成电路(IntegratedCircuit,简称IC)制造的核心技术被广泛应用于集成电路制造过程中硅片表面的局部和全局平坦化加工。硅片化学机械抛光是一个非常复杂的过程,影响化学机械抛光过程的因素有很多,而硅片化学机械抛光加工区域中抛光液的动态压力和温度变化是影响表面非均匀性和材料去除率的关键因素之一。在集成电路制造中,采用的硅片尺寸不断增大,器件特征尺寸不断缩小,硅片化学机械抛光加工区域中抛光液动态压力和温度变化对硅片表面质量的影响越来越突出。目前,对IC制造中硅片CMP加工区域中抛光液动态压力和温度研究还不系统和完善,深入研究硅片CMP加工区域中抛光液动态压力和温度变化对最终实现高质量、超精密、无损伤加工表面有着非常重要的意义。
     本文全面分析了IC制造中硅片CMP加工区域中抛光液动态压力和温度的研究现状及存在的问题。在此基础上,对IC制造中硅片CMP加工区域中抛光液动态压力和温度进行了深入研究。论文的主要研究工作为:
     (1)根据润滑理论、渗流理论和微极流体理论,对大尺寸硅片CMP加工过程中含磨粒抛光液的流动性进行了研究,建立了抛光液流动的三维模型。研究了抛光液中悬浮纳米级磨粒的尺寸、浓度,抛光垫的多孔隙性能、厚度和表面粗糙度,硅片的尺寸和曲率,硅片和抛光垫的转速等关键因素对抛光液流动的影响,流体压力分布的实验结果与理论模拟的结果基本一致。
     (2)根据化学机械抛光的特点,通过对现有实验设备进行改造,建立了硅片化学机械抛光试验台。该试验台实现了抛光头的主动旋转功能,抛光头的万向浮动功能,抛光载荷加载及调节功能,以及抛光液输送及流量控制功能。为进行化学机械抛光扭矩、抛光压力、摩擦力以及加工区域中抛光液动态压力和温度测量等研究提供了基础的试验平台。
     (3)根据流体压力测量的基本原理,对硅片化学机械抛光加工区域中抛光液动态压力测量方法进行研究,提出了多点原位实时测量硅片化学机械抛光加工区域中抛光液动态压力的方法。在此基础上,对硅片化学机械抛光加工区域中抛光液流体压力测量系统进行了研究,建立了硅片CMP加工区域中抛光液动态压力实时检测系统,系统误差小于±0.25%,满足抛光液动态压力测试的要求。
     (4)在CMP试验台上,运用所建立的抛光液动态压力测量系统,进行硅片化学机械抛光加工区域中抛光液流体动态压力测量实验,研究了抛光压力和相对速度对硅片化学机械抛光加工区域中抛光液流体动态压力的影响,结果表明:在抛光压力较小的情况下,硅片与抛光垫之间抛光液容易形成润滑承载膜,抛光液动态压力随着抛光压力的增加而增大;另一方面,在相同工况条件下,硅片与抛光垫之间的相对速度增加时,硅片与抛光垫之间抛光液产生的流体动态压力也增大。
     (5)根据温度测量的基本原理,深入分析了影响硅片CMP加工区域中抛光液温度测量的各种因素,提出了基于接触法的多点原位实时测量硅片化学机械抛光加工区域中抛光液温度的方法。在此基础上,进行了硅片CMP加工过程中抛光液温度测量系统研究,建立了硅片化学机械抛光加工区域中抛光液温度测量系统,进行了抛光液温度测量的误差分析,并在测量中采取一些对应措施,排除干扰,减小了误差,使测量系统误差小于±0.47%。
     (6)运用所建立的抛光液温度测量系统,进行了硅片化学机械抛光加工区域中抛光液温度测量实验研究,结果表明抛光压力、相对速度和抛光垫的摩擦系数等因素对加工区域抛光液温度变化具有决定性的影响。
Chemical mechanical polishing(CMP) as a critical technology in integrated circuit(IC) manufacturing is widely used to achieve a high degree of the local or global planarization of the substrate silicon wafer.The CMP process of silicon wafer usually affected by many factors is very complex.Both dynamic pressure and temperature of slurry in chemical-mechanical polishing of silicon wafer are two main factors influencing the nonuniformity and materials removal rate(MRR) of the silicon wafer during the CMP process. As the minimum resolvable feature size decreases and the silicon wafer size increases in IC manufacturing,the influence of dynamic pressure and temperature of slurry on the wafer surface quality becomes more and more prominent.However,the investigations on dynamic pressure and temperature of slurry in chemical-mechanical polishing of silicon wafer are still not clear at present.A further study on dynamic pressure and temperature of slurry in chemical-mechanical polishing of silicon wafer is important for finishing the silicon wafer with high quality,ultra-precision and damage-free surface.
     In term of the adequate analysis of the research background,dynamic pressure and temperature of slurry in chemical-mechanical polishing of silicon wafer during IC manufacturing are mainly studied in this paper.The main research content and results are listed as follows:
     Many vital factors such as size and concentration of suspending abrasives contained in the slurry,porous structure,thickness and surface roughness of polishing pad,size and curvature of silicon wafer,rotation speeds of both the silicon wafer and polishing pad,and so on,are taken into account.Flowing properties of the slurry in porous pad and pad roughness are analyzed and discussed in detail.Based on the lubrication theory and solid-liquid two-phase flow theory,a three-dimensional model of the large-sized silicon wafer under the light polishing pressure conditions is developed.The numerical analysis of the model under the quasi-steady states at the wafer scale is well done.The relationships between the important parameters and slurry flowing are discussed.
     According to the properties of CMP,the experiment platform for the CMP silicon wafer, which fully takes advantage of the existing experimental equipments in our experimental lab, is developed.In the design of the experiment platform,driving rotation function and floating universal function of silicon wafer carrier are utilized.At the same time,realization of exerting the constant pressure on the wafer and controlling slurry flowing during CMP process is considered.All these efforts are beneficial to providing a steady experiment platform on the measurement of the torque,positive pressure,friction force,dynamic pressure and temperature of slurry during CMP of silicon wafer.
     In light of the measurement theory of the hydrodynamic pressure,the measurement methods of dynamic pressure of slurry in the CMP of silicon wafer are studied,and a multiple-point in-situ and real-time measurement method of dynamic pressure of slurry in the CMP of silicon wafer is proposed.In accordance with the measurement method,the test system of dynamic pressure of slurry between the pad and silicon wafer during the CMP process of silicon wafer is addressed.Finally,a real-time test system of dynamic pressure of slurry is developed,which meets the real manufacturing process of the CMP of silicon wafer. The error of this test system is less than±0.25%.
     Some test experiments of the dynamic pressure of slurry are carried out to study the effects of the polishing pressure on the back of the silicon wafer,the pad speed and the pad type on the properties of the slurry flowing between the silicon wafer and pad,depending on the experiment platform and the test system that have been established.The results show that the dynamic pressure of slurry in chemical-mechanical polishing of silicon wafer increases with the polishing pressure increasing,and a lubrication film of slurry between the silicon wafer and the pad can be formed under the light polishing pressure condition.On the other hand,the dynamic pressure of slurry in chemical-mechanical polishing of silicon wafer increases with the relative speed between the silicon wafer and the pad increasing under the same conditions All above mentioned results can provide the experimental basis for the adjustment of the back pressure and the optimization of the operating parameters to obtain the uniform and high-quality silicon wafer.
     Considering the basic principle of the temperature measurement,the complicated factors that affect the temperature of slurry in the CMP of silicon wafer are fully analyzed,and a multiple-point in-situ and real-time measurement method of temperature of slurry in the CMP of silicon wafer,which is based on the contact method of temperature measurement,is presented.A measurement system of the temperature of slurry in chemical-mechanical polishing of silicon wafer is designed,and a equipment of the temperature of slurry in chemical-mechanical polishing of silicon wafer is developed on the basis of the experiment platform and the developed measurement method,and the error analysis of the temperature of slurry in chemical-mechanical polishing of silicon wafer is well done,at the same time,some measures that can reduce some errors and avoid the disturbances are taken,finally,the error of this test system that can be obtained is less than±0.47%.
     On the basis of the developed measurement system,some test experiments about the temperature of slurry in chemical-mechanical polishing of silicon wafer are completed on the experiment platform.The results show that the polising pressure,the relative speed and friction behavior between the pad and the silicon wafer have important influence on the temperature of slurry in chemical-mechanical polishing of silicon wafer.
引文
[1]GEHMANB.L.In the age of 300mm silicon,tech standards are even more crucial.Solid State Technology,2001,44(8):127-128.
    [2]Hahn P O.The 300 mm silicon wafer-A cost and technology challenge.Microelectronic Engineering,2001,56(1-2):3-13.
    [3]Sami Franssila.Introduction to microfabrication.Finland:John Wiley&Sons,Inc.2004.
    [4]辛仁周.发挥信息化对提高执政能力的作用.数码世界,2005,1:1-1.
    [5]朱森第.全球化、信息化、绿色化—提升中国制造业.机电工程技术,2004,1:7-9.
    [6]金晓莉.我国信息化建设应实施跨越式发展战略.情报探索,2007,10:69-71.
    [7]王阳元.加强原始创新建设集成电路产业强国.中国集成电路,2006,81:22-23.
    [8]主阳元,张兴.面向21世纪的微电子技术.世界科学研究与发展,2000,21(4):4-11.
    [9](美)Michael Quirk,Julian Serda著;韩郑生等译.半导体制造技术,北京:电子工业出版社,2004.
    [10]张厥宗编著.硅单晶抛光片的加工技术.北京:化学工业出版社,2005.
    [11]Moore G.The role of Fairchild in silicon technology in the early days of 'Silicon Valley'.Proceedings of the IEEE86,1998,1:59.
    [12]Hutcheson G D;黄国勇译.摩尔定律:一个改变历史和经济的推断.中国集成电路,2006,87:77-82.
    [13]Lee J A,Moinpour M,Liou H C,Abell T.Proceedings of Materials Research Society,San Francisco,CA,2003,767:325-336.
    [14]International Technology Roadmap for Semiconductors.2007.
    [15]苏建修,康仁科,郭东明.超大规模集成电路制造中硅片化学机械抛光技术分析.半导体技术,2003,28(10):27-30.
    [16]郭东明,康仁科,苏建修等.超大规模集成电路制造中硅片平坦化技术的未来发展.机械工程学报,2003,39(10):100-105.
    [17]郭东明,康仁科,金洙吉.大尺寸硅片的高效超精密加工技术.世界制造技术与装备市场,2003,1:35-40.
    [18]刘玉岭,檀柏梅,张楷亮编著.超大规模集成电路衬底材料性能及加工测试技术工程[M].冶金工业出版社,2002.
    [19]陈杰,高诚辉.大尺寸集成电路和硅片表面加工技术.现代制造工程,2007,11:127-131.
    [20]狄卫国,刘玉岭,司田华.ULSI硅衬底的化学机械抛光技术.半导体技术,2002,27(7):18-22.
    [21]Van den hove L and Ronse K.Challenges for 0.35-0.25μm optical lithography.Microelectronic Engineering,1995,27(1-4):357-365.
    [22]李兴.高度发展的化学机械抛光技术.半导体杂志,1999,24(3):32-34.
    [23]Hoshino T,Kurata Y,Terasaki Y and Susa K.Mechanism of polishing of SiO_2 films by CeO:particles.Journal of Non-Crystalline Silids,2001,283(1-3):129-136.
    [24]Li W,Shin D W,Tomozawa M,Murarka S P.The effect of the polishing pad treatments on the chemical-mechanical polishing of SiO_2 films.Thin Solid Films,1995,270:601-606.
    [25]Kim N H,Ko P J,Choi G W,Seo Y J,Lee W S.Chemical mechanical polishing (CMP) mechanisms of thermal SiO_2 film after high-temperature pad conditioning.Thin Solid Films,2006,504:166-169.
    [26]Ohring M.Chemical vapor deposition.Materials Science of Thin Films,2002,2:277-355.
    [27]Lin C F,Tseng WT,Feng M S,Wang Y L.A ULSI shallow trench isolation process through the integration of multilayered dielectric process and chemical-mechanical planarization.Thin Solid Films,1999,347(1-2):248-252.
    [28]Lee W S,Kim SY,Seo Y J,Lee J K.An optimization of tungsten plug chemical mechanical polishing (CMP) using different consumables.J.Mater.Sci,2001,12(1):63-68.
    [29]Patrick W J,Guthrie W L,Standley C L,Schiable P M.Application of chemical mechanical polishing to the fabrication of VLSI circuit interconnection.Journal of The Electrochemical Society,1991,138(6):1778-1784.
    [30]Sallagoity P,Gaillard F,Rivoire M,Paoli M,Haond M.STI process steps for sub-quarter micron CMOS.Microelectron.Reliab,1998,38(2):271-276.
    [31]Jeong S Y,Kim SY,Seo Y J.A study on the reproducibility of HSS STI-CMP process for ULSI applications.Microelectronic Engineering,2003,66(1-4):480-487.
    [32]Lee C S,Han C H.A novel sub-micron gap fabrication technology using chemical-mechanical polishing (CMP).-application to lateral field emission device (FED).Sensor and Actuators A,2002,97-98:739-743.
    [33]Zantye P B,Kumar A,Sikder A K.Chemical mechanical planarization for microelectronics applications.Materials Science and Engineering,2004,R45:89-220.
    [34]Stavreva Z,Zeidler D et al.Chemical mechanical polishing of copper for multilevel metallization.Applied Surface Science,1995,91:192-196.
    [35]K(?)cher P,Aochi H,Gambino J,Licata T,Matsuda T,Nguyen S,Okazaki M,Palm H,Ronay M.Advanced metallization technology for 256M DRAM.Applied Surface Science,1995,91:359-366.
    [36]Lassig S E and Tuchker J D.Intermetal dielectric deposition by electron cyclotron resonance chemical vapor deposition (ECR CVD).Microelectronics Journal,1995,26(8):xi-xxiii.
    [37]Li S H and Miller R O.Chemical mechanical polishing in silicon processing.San Diego,CA:Academic Pr,2000.
    [38]Nanz G and Camiletti L.Modeling of chemical-mechanical polishing:a review.IEEE Transactions on Semiconductor Manufacturing,1995,8(4):382-389.
    [39]Terrell E J and Higgs III C F.Hydrodynamics of slurry flow in chemical mechanical polishing.Journal of The Electrochemical Society,2006,153(6):K15~K22.
    [40]Runnels S R.Feature-scale fluid based erosion modeling for chemical-mechanical polishing.Journal of The Electrochemical Society,1994,141(7):1900-1904.
    [41]Runnels S R and Eyman L M.Tribology analysis of chemical-mechanical polishing.Journal of The Electrochemical Society,1994,141(6):1698-1701.
    [42]Sundararajan S,Thakurta D G,Schwendeman D W et al.Two-Dimensional Wafer-Scale Chemical Mechanical Planarization Models Based on Lubrication Theory and Mass Transport.Journal of The Electrochemical Society,1999,146(2):761-766.
    [43]Thakurta D G,Borst C L,Schwendeman D W,Gutmann R J,Gill W N.Pad-porosity,compressibility and slurry delivery effects in chemical mechanical planarization:modeling and experiments.Thin Solid Films,2000,366:181-190.
    [44]Nishioika T,Sekine K and Tateyama Y.Modeling on hydrodynamic effects of pad surface roughness in CMP process.IITC,1999:89-91.
    [45]Park S S,Cho C H and Ahn Y.Hydrodynamic analysis of chemical mechanical polishing process.Tribology International,2000,33(10):723-730.
    [46]Cho C H,Park S S and Ahn Y.Three-dimensional wafer scale hydrodynamic modeling for chemical mechanical planarization.Thin solid Films,2001,389(1-2):254-260.
    [47]Tichy J et al.Contact mechanics and lubrication hydrodynamics of chemical-mechanical polishing.Journal of The Electrochemical Society,1999,146(4):1523-1528.
    [48]Morris J F.Computed fluid flow and stresses in model CMP films.Materials Research Society Spring meeting,CA,San Francisco,1999.
    [49]Higgs III C F,Ng S H,Yoon I,Shan L,Yap L,Danyluk S.Mechanical modeling of the 2D interfacial slurry pressure in CMP.Materials Research Society Sysmposium Proceedings,2003,767:305-313.
    [50]Fu M N,Liao S H,Li C C and Chang P Y.Slurry transport during chemical mechanical polishing.Japanese Journal of Applied Physics,2005,44(11):7843-7848.
    [51]Rogers C,Coppeta J,Racz L,Philipossian A,Kaufman F and Bramono D.Analysis of flow between a wafer and pad during CMP processes.Journal of Electronic Materials,1998,27(10):1082-1087.
    [52]Bramano D and Racz L.Numerical flow visualization of slurry in a chemical mechanical planrization process.Proc.Of CMP-MIC Conf.,CA,Santa Clara,1998:185-192.
    [53]Coppeta J,Rogers C,Racz L,Duska C,Bramono D,Lu J,Philipossian A and Kaufman F.Pad effects on slurry transport and fluid film thickness beneath a wafer.Proc.Of CMP-MIC Conf.,CA,Santa Clara,1998:185-192.
    [54]Coppeta J,Rogers C,Racz L,Philipossian A and Kaufman F.The influence of CMP process parameters on slurry transport.Proc.Of CMP-MIC Conf.,CA,Santa Clara,1999:37-44.
    [55]Lu J,Coppeta J,Rogers C,Manno V P,Racz L,Philipossian A,Moinpour M,Kaufman F.The effect of wafer shape on slurry film thickness and friction coefficients in chemical mechanical planarization.Materials Research Society Symposium,2OOO,613:E1.2.1-E1.2.6.
    [56]Chen J M and Fang Y C.Hydrodynamic characteristics of the thin fluid film in chemical-mechanical polishing.IEEE Transactions on Semiconductor Manufacturing,2002,15(1):254-260.
    [57]Thakurta D G,Borst C L,Schwendeman D W,Gutmann R J,Shankar S,Jiang L,Gill W N.Three-dimensional wafer-scale copper chemical - mechanical planarization model.Thin Solid Films,2002,414:78-90.
    [58]张朝辉,叶巍.抛光垫特性对抛光中流体运动的影响分析.润滑与密封,2007,32(11):59-64.
    [59]张朝辉,雒建斌.化学机械抛光中抛光液流动的微极性分析.北京交通大学学报,2005,29(1):74-77.
    [60]张朝辉,雒建斌,温诗铸.化学机械抛光特性的应力偶模拟.计算力学学报,2005,22(2):160-164.
    [61]Liu J Y,Jin Z J,Guo D M and Kang R K.Effects of suspending abrasives on the lubrication properties of slurry in chemical mechanical polishing of silicon wafer.Key Engineering Materials,2006,304-305:359-363.
    [62]Liu J Y,Guo D M,Jin Z J and Kang R K.A suspending abrasives and porous pad model for the analysis of lubrication in chemical mechanical polishing.Key Engineering Materials,2006,315-316:775-778.
    [63]Guo D M,Liu J Y,Kang R K and Jin Z J.A pad roughness model for the analysis of lubrication in chemical mechanical polishing of silicon wafer.Semiconductor Science and Technology,2007,22:793-797.
    [64]Yu T K,Yu C and Orlowski M.Combined asperity contact and fluid flow model for chemical-mechanical polishing.IEEE International Interconnect Technology Conference (IITC),1994,NUPAD:29-32.
    [65]Yao C H,Feke D L,Robinson K M and Meikle S.Modeling of chemical mechanical polishing processes using a discretized geometry approach.Journal of The Electrochemical Society,2000,147(4):1502-1512.
    [66]Muldowney G P and James D B.Characterization of CMP pad surface texture and pad-wafer contact.Materials Research Society Symposium,2004,816,147:K5.2-K5.3.
    [67]Srinivasa M C,Wang D,Beaudoin S P,Bibby T,Bolland K,Cale T S.Stress distribution in chemical mechanical polishing.Thin solid films,1997,308-309:533-537.
    [68]Fu M N and Chou F C.Flow simulation for chemical mechanical planarization.Japanese Journal of Applied Physics,1999,38(8):4709-4714.
    [69]Zhou C et al.Fluid pressure and its effects on chemical mechanical polishing.Wear,2002,253:430-437.
    [70]Shan L,Levert J L and Danyluk S.Pressure distribution at the silicon/polishing pad interface.Proceedings of ASPE Spring Topical Meeting on Silicon Machining,1998:96-100.
    [71]Shan L,Levert J L,Meade L,Tichy J and Danyluk S.Interfacial fluid mechanics and pressure prediction in chemical mechanical polishing.ASME J.Tribol.,2000,122(3):539-543.
    [72]Higgs III C F,Ng S H,Borucki L,Yoon I and Danyluk S.A Mixed-Lubrication Approach to Predicting CMP Fluid Pressure Modeling and Experiments.Journal of The Electrochemical Society,2005,152(3):G193-G198.
    [73]Ng S H,Hight R,Zhou C,Yoon I and Danyluk S.Pad Soaking Effect on interfacial fluid pressure measurements during CMP.ASME J.Tribol.,2003,125(3):582-586.
    [74]Ng S H,Borucki L,Higgs III C F,Yoon I,Osorno A and Danyluk S.Tilt and interfacial fluid pressure measurements of a disk sliding on a polymeric pad.ASME J.Tribol.,2005,127(1):198-205.
    [75]Bullen D et al.In situ technique for dynamic fluid film pressure measurement during chemical mechanical polishing.Journal of The Electrochemical Society,2000,47(7):2741-2743.
    [76]Scarfo A M,Manno V P,Rogers C B,Anjur S P and Moinpourc M.In situ measurement of pressure and friction during CMP of contoured wafers.Journal of The Electrochemical Society,2005,152(6):G477-G481.
    [77]Hocheng H and Cheng C Y.Visualized characterization of slurry film between wafer and pad during chemical mechanical planarization.IEEE Transactions on Semiconductor Manufacturing,2002,15(1):45-50.
    [78]Coppeta J,Rogers C,Philipossian A and Kaufman F B.A technique for measuring slurry flow dynamics during chemical mechanical polishing.Materials Research Society Proceedings,Symposium 1996,447:95-100.
    [79]Hocheng H,Huang Y L and Chen L J.Kinematic analysis and measurement of temperature rise on a pad in chemical mechanical planarization.Journal of The Electrochemical Society,1999,146(11):4236-4239.
    [80]White D,Melvin J and Boning D.Characterization and modeling of dynamic thermal behavior in CMP.Journal of The Electrochemical Society,2003,150(4):G271-G278.
    [81]Kim H J,Kim H Y,Jeong H D,Lee E S and Shin Y J.Friction and thermal phenomena in chemical mechanical polishing.Journal of Materials Processing Technology,2002,130-131:334-338.
    [82]http://www.c-e-m.com/.
    [83]苏建修.IC制造中硅片化学机械抛光材料去除机理研究:(博士学位论文).大连:大连理工大学,2006.
    [84]Luo J and Dornfeld D A.Material removal mechanism in chemical mechanical polishing:Theory and modeling.IEEE Transactions on semiconductor manufacturing,2001,14(2):112-133.
    [85]Basim G B,Vakarelaki I U and Moudgil B M.Role of interaction forces in controlling the stability and polishing performance of CMP slurry.Journal of Colloid and interfaces Science,2003,263(2):506-511.
    [86]袁哲俊,王先逵.精密和超精密加工技术.北京:机械工业出版社,1999.
    [87](英)H.A.巴勒斯,J.H.赫顿,K.瓦尔特斯著;吴达成,古大治等译校.流变学导引.北京:中国石化出版社,1992.
    [88]沈钟,赵振国,王果庭.胶体与表面化学.北京:学工业出版社,2004.
    [89]陆章基.溶质在作圆管层流的微极流体中的分散.大自然探索,1986,5(16):43-49.
    [90]裘祖干,陆章基.微极流体润滑在径向轴承中的应用.1987,8(7):623-632.
    [91]Eringen A C.Theory of micropolar fluids.J.Math.Mech.,1966,16:1-18.
    [92]Hooper B J,Byrne G and Galligan S.Pad conditioning in chemical mechanical polishing.Journal of Materials Processing Technology,2002,123:107-113.
    [93]Bajaj R,Desai M,Jairath R,Stell M,Tolles R.Effect of polishing pad material properties on chemical mechanical polishing(CMP) processes.Mater.Res.Soc.Symp.Proc,1994,337:637-644.
    [94]John M,Chris D.Polishing pad surface characterisation in chemical mechanical planarisation.Journal of Materials Processing Technology,2004,153-154:666-673.
    [95]Lu H,Obeng Y,Ricardson K A.Applicability of dynamic mechanical analysis for CMP polyurethane pad studies.Materials Characterization,2003,49:177-186.
    [96]吴雪花.抛光垫特性及其对化学机械抛光效果影响的研究:(硕士学位论文).大连:大连理工大学,2004.
    [97]Tichy J A.A porous media model for thin film lubrication.Transactions of the ASME,1995,117:16-21.
    [98]Sinha P,Kennedy S J,Rodkiewicz C M,Chandra P,Sharma R,Prasad K R.Effects of surface roughness and additives in lubrication:generalized Reynolds equation and its application to elastohydrodynamic film Proc.Instn.Mech.Engrs,1987,201(C1):1-9.
    [99]李荣华,冯果忱.微分方程数值解法.北京:人民教育出版社,1980.
    [100]刘超群.多重网格法及其在计算流体力学中的应用.北京:清华大学出版社,1995.
    [101]温诗铸,杨沛然.弹性流体动力润滑.北京:清华大学出版社,1992.
    [102]王彩玲.化学机械抛光机机械本体设计:(硕士学位论文).大连:大连理工大学,2006.
    [103]http://www.sykejing.com/.
    [104]http://www.thkdb.com/.
    [105]朱龙根.简明机械零件设计手册.北京:机械工业出版社,1997.
    [106]颜大椿.实验流体力学.北京:高等教育出版社,1992.
    [107]盖秉政.实验力学.哈尔滨:哈尔滨工业大学出版社,2006.
    [108]戴昌晖.流体流动测量.北京:航空工业出版社,1992.
    [109]周作元,李荣先.温度与流体参数测量基础.北京:清华大学出版社,1996.
    [110]周朴,殷侠.数据采集与分析技术.西安:西安电子科技大学出版社,2005.
    [111]王正山,周竟.USB总线接口的开发.江南大学学报,2002,1(3):234-237.
    [112]戴向华.USB原理及其在数据采集系统中的应用.计算机工程与设计,2004,25(5):840-843.
    [113]曹虹,刘世杰,张翔,戴国骏.基于USB的高速并行数据采集系统的设计与实现.计算机测量与控制.2007,15(8):1105-1107.
    [114]黄长艺,严普强.机械工程测试技术基础.北京:机械工业出版社,1996.
    [115]鲍鸿,刘明建.数字化霍尔转速仪的研究.广东工学院学报,1996,13(3):66-70.
    [116]周小全,王智勇.精密导电滑环主要检测参数的分析.计量与质量专题学术交流会论文专辑.2007,27:72-73.
    [117][美]L.E.雷克著,赵凯华译.统计物理现代教程.北京:北京大学出版社,1983.
    [118]王魁汉.温度测量技术.沈阳:东北工学院出版社,1991.
    [119]汪志诚.熟力学.统计物理.北京:高等教育出版社,2003.
    [120]朱浩.硅片CMP加工过程中界面温度的测量:(硕士学位论文).大连:大连理工大学,2007.
    [121]秦永烈.表面温度测量.北京:中国计量出版社,1989.
    [122]黄泽铣.热电偶原理及其检定.北京:中国计量出版社,1991.
    [123]金齐.热电偶测温.北京:原子能出版社,1980.
    [124]三零四所.热电偶.北京:国防工业出版社,1978.
    [125]李迎.智能二线制温度变送器的研究.自动化技术与应用,2004,23(6):67-70.
    [126]杨文.智能型温度变送器.仪表技术,1998,1:51-52.
    [127]梁伟,童少为,赵岩.一种小型隔离式智能温度变送模块的设计.传感器技术,2004,23(4):28-30.
    [128]姜忠良,陈秀云.温度的测量与控制.北京:清华大学出版社,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700