深水海洋输流立管涡激振动及干涉试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海洋立管是海面与海底井口间的主要连接部件,是海洋基础结构的关键组成部分,作为海面与海底的一种联系通道,用于钻井、完井和生产。海洋立管既可用于浮式海洋平台,又可用于固定式平台及钻探船舶。
     在深海,海洋立管处于非常复杂的环境中,其内部一般有高温高压的油或气流过,外部承受波浪、海流的作用,上端有浮体的运动以及冰凌等冲击载荷的作用。当波浪、海流流经立管时,在一定的流速下会产生涡旋脱落,使立管发生涡激振动。当海洋立管自振频率与旋涡脱落频率接近时,振动会迫使旋涡脱落频率固定在结构自振频率附近,发生“频率锁定(lock-in)”现象,引起管道振动加强,导致立管疲劳破坏。涡激振动是一种复杂的流体与固体耦合振动现象,其影响因素比较多,如雷诺数、顶张力、外流、内流、振动模态等,这些因素耦合外部海洋环境荷载后,会加速立管的疲劳破坏,立管一旦破坏将会导致巨大的经济损失并引发严重的海洋污染和次生灾害,因此对立管涡激振动及不同因素作用下立管的振动响应进行深入研究具有重要的理论和实际意义。
     为深入研究管内有流体流动的顶张力立管在海流作用下的涡激振动规律,在实验室大型深水池中进行大长细比海洋立管涡激振动模型试验。立管模型采用长6.2m、直径20mm的铜管,沿立管模型轴向均匀布置12个测点,每个测点布置4个应变计,用以测得来流向和横向两个方向的振动响应。试验中立管竖直固定于试验支架上,上端施加变化的顶张力,并且变化不同的外流速,不同的内流速,测量各种工况下立管的横向、顺流向振幅、频率、模态等数据。对实验数据进行处理,分析阶段流作用下大长细比立管模型的振动特性,研究不同顶部张力作用下内流流速对立管涡激振动幅值的影响以及内流流速对立管顶部张力的影响。研究表明,立管涡激振动发生时除了漩涡脱落引发的横向周期性振动外,同时引起结构顺流方向的振动,其振动频率为横向振动的两倍,振动幅值一般小于横向振动幅值;在试验外流施加范围内,立管涡激振动在横向激发出模态数为4阶;顶张力及内流对立管固有频率、模态数及动力响应幅值均有一定的影响;内流流速对立管顶张力变化亦有影响。
     为研究抑振装置对深水立管涡激振动规律影响,设计了一种梯形截面的螺旋线抑振装置,在实验室大型水池进行海洋立管涡激振动试验。通过改变这种抑振装置的螺距、螺旋个数和分布率,研究了梯形截面螺旋线的不同螺旋个数和分布率对抑制海洋立管涡激振动效果的影响。研究结果表明:不同螺旋数的抑振装置都有一定的抑振效果,三螺旋、双螺旋线的抑振效果要优于单螺旋线,螺高对螺旋线抑振装置的抑振效果有较大影响。对于立管抑振装置分布率试验,设计了分布率为90%、70%、50%、30%共4种方案,实验结果显示:各方案都在一定程度上抑制了立管的涡激振动,30%分布率的方案抑制效果没有其他三种分布率方案好,大约能减小60%的振幅,其他三种方案抑振效果都很好,都能抑制约90%的振幅值。
     海洋立管在海中有很多的布置形式,如前后排列,并肩排列,相互交错排列等。当有外流通过时,立管会受到其他立管尾流的影响,使得立管的动力特性、动力响应以及漩涡的脱落形式同单个立管相比都会发生较大的变化。为了研究立管之间相互干涉对涡激振动的影响规律,本文设计了两组立管干涉试验,一组是设计两个裸管模型前后排列、并肩排列,边界均为铰接的干涉试验。第二组是设计一个立管带有三螺旋线扰流装置,另一个立管为裸管,布置方式为并肩排列且边界均为铰接的干涉试验。试验中,通过变化外流速、两管间距以及同单独立管的涡激振动情况进行对比,对立管干涉影响规律进行了研究和探讨。研究结果表明:当有外流通过时,立管会受到其他立管尾流的影响,漩涡脱落引起的振动由于间距及排列方式的不同而显著不同,使得立管的动力特性、动力响应以及漩涡的脱落形式同单个立管相比均有较大的变化。
Marine risers are the main connecter between a platform and the mouth of awell in the seabed and can be applied to floating platform, fixed platform and drillingshipping systems. They can be used for drilling, production and intervention.
     Marine risers are in very harsh environment in the deep ocean and they aresubjected to many kinds of loads including waves, currents, floating platform motionat the upper end, ice, etc. When current or wave flows across the risers at certainspeed, there will appear vortex shedding, and if the frequency of the risers is close tothat of the vortex shedding, oscillation will make the vortex shedding frequency fixednearby the structural natural frequency and cause large amplitude vibration and thefatigue failure of the riser, which is called ‘lock-in’ state. Vortex-Induced Vibration(VIV) is a complex phenomenon of fluid and structure coupling vibration. For VIVphenomenon, many influencing factors, for example, Reynolds number, top tension,current velocity, internal velocity, and mode, especially considering with complexocean environmental loads, which will accelerate the fatigue failure of the riser. Thefailures of the riser will not only incur huge loss for the project itself but also lead tosecondary haphazard. So further researches on the vortex-induced vibrations(VIV)and dynamic behavior of the riser under the excitation of waves and current are verynecessary.
     In order to study the VIV characteristics of large length-to-diameter-ratio riserwith internal flow subjected to marine current, tests of VIV were conducted in a largewave-current pool. Model materials were made of copper, with external diameters of20mm and a total length of6.2m. The model riser was attached vertically to thesupporting structure and different top tension, different external current velocities,different internal velocities, which were acted on the model. The amplitude, frequency and mode were measured respectively. The cylinder model was equipped with twelvemeasured stations which are distributed averagely along the riser and each wasformed by four strain gauges to measure both in-line direction and cross-flowdirection oscillation responses. In order to research the dynamic response of a largelength-to-diameter-ratio riser in a stepped current, the experimental data werecontrastive studied by dynamic response of in-line direction and cross-flow direction.The effect of varying top tensions on the natural frequency, the effect of varyinginternal velocities on the amplitude with different top tensions and the effect ofvarying internal velocities on the top tensions were studied. The experimental resultsshowed that there existed a strong correlation between the motions of in-line andcross-flow with a frequency doubling phenomenon and the in-line vibrationamplitudes is generally less than cross-flow direction. During the region of theexternal current velocities, the highest mode number is four. The following results canbe drawn. that the internal flow and top tension have some influence on thefundamental frequencies, dynamic response amplitude and mode numbers, especiallythe internal flow has important effect on the top tension.
     In order to study the effect of suppression device on VIV, a helical strakesdevice with trapezoid cross section was designed. Modal tests were conducted in alarge wave-current pool. According to change pitch, number of strakes anddistribution rate, the effect of the device was detected. The experimental resultsindicate that double helix and triple helix have a better suppression effect than singlehelix and different pitch also has an important effect on suppression effect. For theexperiment of riser with different distribution rate, the distribution is90%,70%,50%,30%respectively. The experimental results indicate that suppression effect of30%distribution rate is less than other three distribution rate, the Decreasing Value is about60%of the amplitude, the Decreasing Value of another three are more than90%.
     The risers have several arrangements, such as tandem, side-by-side and stagedconfigurations. When a riser is in the wake of another, the oscillations induced by thevortex shedding are considerable modified and strongly depended on the distance ofthe two risers. Compared with the single riser, dynamic characteristics, dynamic response and the form of vortex shedding are considerably modified. In order to studythe vortex-induced vibration of marine risers with interference, two groupsexperimental research on interference of two risers was conducted. One is two barerisers, which arrangements involve tandem and side-by-side, another involve one bareriser and one riser with triple strakes, which is side-by-side. Different external currentvelocities, different distance of the two cylinders were designed and compared with asingle bare riser. The experimental results indicate that when the riser is in the wakeof another, the oscillations induced by the vortex shedding are considerably modifiedand strongly depend on the distance of the two cylinders. Compared with the singleriser, dynamic characteristics, dynamic response and the form of vortex shedding areconsiderably modified.
引文
[1]张煜,冯永训。海洋油气田开发工程概论。北京:中国石化出版社,2011。
    [2]杨建民,肖龙飞,盛振邦。海洋工程水动力学试验研究。上海:上海交通大学出版社,2008。
    [3]黄旭东,张海,王雪松。海洋立管涡激振动的研究现状、热点与展望。海洋学研究,2009,27(4):95~101。
    [4]金庆焕深水油气是当今海洋油气勘探的主要热点。科学中国人,2006,(11):18-19。
    [5]李清平我国海洋深水油气开发面临的挑战。中国海上油气,2006,18(2):130-133。
    [6]潘志远,崔维成,张效慈。细长海洋结构物涡激振动研究综述。船舶力学,2005,(6):135~154。
    [7] P. Narzul, A. Marion. Static and dynamic behavior of flexible catenary risers. Proceedings ofthe Fifth International Offshore Mechanics and Arctic Engineering (OMAE) Symposium,1986,378-386.
    [8]李效民,顶张力立管动力响应数值模拟及其疲劳寿命预测:[博士学位论文].青岛,中国海洋大学,2009。
    [9]孟丹,钢悬链线立管非线性振动数值模拟:[博士学位论文].青岛,中国海洋大学,2009。
    [10] Blevins, R D. Flow-induced vibrations.2nd edn. New York: Van Nostrand&Co.,1990.
    [11]娄敏,海洋输流立管涡激振动实验研究及数值模拟:[博士学位论文].青岛,中国海洋大学,2007。
    [12] Feng C C. The measurement of vortex induced effect s in flow past stationary and oscillatingcircular and d-section cylinders:[Master’s Thesis]. Canada: Department of MechanicalEngineering, University of British Columbia,1968.
    [13]张永波,深海输液立管涡激振动预报及抑振技术研究:[博士学位论文].青岛,中国海洋大学,2011。
    [14] Blackburn H M, Govardhan R N, Williamson C H K. A complementary numerical andphysical investigation of vortex-induced vibration. Journal of Fluids and Structures,2000,15(3-4):481~488
    [15] Vikestad K, Halse KH. Effect of variable current on vortex-induced vibrations. Proc. of10thInt. Offshore and Polar Engineering Conference,2000a,3:493-498.
    [16] Jauvtis N, Williamson CHK. Vortex-induced vibration of a cylinder with two degrees offreedom. Journal of Fluids and Structures,2003,17(7):1035-1042.
    [17] Gopalkrishnan R. Vortex Induced Forces on Oscillating Bluff Cylinders:[PhD Thesis].American:MIT, Department of Ocean Engineering,1993.
    [18] Chen S S, Cai Y, Zhu S. Flow-induced vibration of tubes in cross-flow. J. Offshore Mech.Arct. Eng,1996,118,(4),253~258.
    [19] Downes K, Rockwell D. Oscillations of a vertical elastically mounted cylinder in a wave:imaging of vortex pattern. Journal of Fluids and Structures (17):1017~1033,2003.
    [20] Jaap J de Wilde, Rene H M Huijsmans. Laboratory inverstigation of long riser VIV response.14th International Offshore and Polar Engineering Conference.2004,511~516.
    [21] Marcolloa H, and Hinwood JB. On shear flow single mode lock-in with both cross-flow andin-line lock-in mechanisms, Journal of Fluids and Structures,2006,22(2):197-211.
    [22] Beynet P, Shilling MR, Campbell ET, Howells H. Full scale VIV response measurements of adrilling pipe in Gulf of Mexico loop currents. Proceedings of the ASME27th InternationalConference on Offshore Mechanics and Arctic Engineering, Estoril, Portugal,2008,OMAE2008-57610.
    [23] Jaiswal V, Vandiver J K. VIV Response Prediction for Long Risers with Variable Damping,Proceedings of the26th International Conference on Offshore Mechanics and ArcticEngineering, San Diego, California, USA,2007.
    [24] Halse KH. Norwegian deepwater program: improved predictions of vortex induced vibrations,Offshore Technology Conference,2000,557-564.
    [25] Larsen C M, Baarholm G S, Lie H. Influence from helical strakes on vortex inducedvibrations and static deflection of drilling risers. International Conference on OffshoreMechanics and Arctic Engineering,2005,477~483.
    [26] Lee S J, Lee J Y. Flow structure of wake behind a rotationally oscillating circular cylinder.Journal of Fluids and Structures,2006,22(8):1097~1112.
    [27] Sarpkaya T. Fluid forces on oscillating cylinders. ASCE Journal of Waterway Port Coastaland Ocean Division,1978,104:275~290.
    [28] Moe G, Wu Z J. The lift force on a cy1inder vibrating in a current. ASCE Journal of OffshoreMechanics and Arctic Engineering,1990,112:297~303.
    [29] Morse TL, Govardhan RN, Williamson CHK. The effect of end conditions on the vortex-induced vibration of cylinders, Journal of Fluids and Structures,2008,4(8):1227-1239.
    [30] Khalak A, Williamson C H K. Motions Forces and Mode Transitions in Vortex-InducedVibrations at Low Mass-Damping. Journal of Fluids and Structures (13):813~851,1999.
    [31] Jauvtis N and Williamson C H K. The effect of two degrees of freedom on vortex inducedvibration at low mass and damping. Journal of Fluid Mechanics (509):23~62,2004.
    [32] Williamson C H K, Jauvtis N. A high amplitude2t mode of vortex-induced vibration for alight body in x-y motion. European Journal of Mechanics, B/Fluids(23):107~114,2004.
    [33] Guo H Y, Lou M. Effect of internal flow on vortex-induced vibration of risers. Journal ofFluids and Structures.2008,24:496~504.
    [34] zhang Yongbo, Meng Fanshun, Guo Haiyan. Experimental investigation of vortex-inducedvibration responses of tension riser transporting fluid. Proceedings of the ASME28thInternational Conference on Ocean, Offshore and Arctic Engineering. Hawaii, USA,2009.
    [35] Vandiver JK, Allen D, Li L. The occurrence of lock-in under highly sheared conditions,Journal of Fluids and Structures,1996,10(5):555-561
    [36] Huse E, Kleiven G, Nielsen F G. Large scale model testing of deep sea risers. OTC,1998
    [37] Nielsen F G, S reide T H and Kvarme S O. VIV response of long free spanning pipelines.OMAE2002, Oslo, Norway,2002
    [38] Chaplin JR, Bearman PW, Huera Huarte FJ, Pattenden RJ. Laboratory measurements ofvortex-induced vibrations of a vertical tension riser in a stepped current. Journal of Fluidsand Structures,2005a,21(1):3-24.
    [39] Trim AD, Braaten H, Lie H, Tognarelli MA. Experimental investigation of vortex-inducedvibration of long marine risers. Journal of Fluids and Structures,2005,21(3):335-361.
    [40] Lie H, and Kaasena KE. Modal analysis of measurements from a large-scale VIV model testof a riser in linearly sheared flow. Journal of Fluids and Structures,2006,22(4):557-575.
    [41] Vandiver J K, Marcollo H, Swithenbank S, and Jhingran V. High Mode NumberVortex-Induced Vibration Field Experiments. Offshore Technology Conference, PaperNumber17383, Houston, Texas, May2-5,2005.
    [42] Larsen C M, Halse K H.Comparison of models for vortex induced vibrations of slendermarine structures. Marine Structures,1997,10(6):413~441.
    [43] Chaplin J R, Bearman P W, Cheng Y, Fontaine E, Graham J M R, Herfjord K, Huera Huarte.Blind predictions of laboratory measurements of vortex-induced vibrations of a tension riser.Journal of Fluids and Structures,2005b,21(1):25~40.
    [44]潘志远,崔维成,刘应中。阶梯状来流中立管的涡激振动响应预报。上海交通大学学报,2006,40(6):1064~1068。
    [45] Hartlen R T, Currie I G. Lift-oscillator model of vortex induced vibration. Journal of theEngineering Mechanics,1970,96:(5):577~591
    [46] Skop R A, Griffin O M. A model for the vortex-excited resonant response of bluff cylinders.Journal of Sound and Vibration,1973,27(2):225~233
    [47] Facchinetti M L, de Langre E, Biolley F. Vortex shedding modeling using diffusive van derPol oscillators. Comptes Rendus de l'Academie des Sciences, Paris, serie IIb,2002,451~456.
    [48] Mathelin L, Langre E D. Vortex-induced vibrations and waves under shear flow with a wakeoscillator model. European Journal of Mechanics-B/Fluids,2005,24(4):478~490.
    [49] Braza M, Chassaing P, Ha Minh H. Numerical sutudy and phsical analysis of the Pressureand velocity fields in the near wake of a circular cylinder. J.Fluid Mech.,1986,165:79~130.
    [50] Lecointe Y, Piquet J. Flow surtcture in the wake of an oscillating cylinder. Jounral of FluidEngineering,1989,111:139~148
    [51] Labbé DFL, Wilson PA. A numerical investigation of the effects of the spanwise length onthe3-D wake of a circular cylinder. Journal of Fluids and Structures,2007,23(8):1168-1188.
    [52] Willden R H J, Graham J M R. Multi-modal vortex-induced vibrations of a vertical riser pipesubject to a uniform current profile. European Journal of Mechanics/B Fluids,2001,23(1):209~218.
    [53] Shulz K W, Meling T S. Multi-Strip Numerical Analysis for Flexible Riser Response.23rdInternational Conference on Offshore Mechanics and Arctic Engineering, Vancouver, Canada,2004.
    [54] Pan Z Y, Cui W C, Miao Q M. Numerical simulation of vortex-induced vibration of a circularcylinder at low mass-damping using RANS code. Journal of Fluids and Structures,2007,23(1):23~37.
    [55] Aiten, J.. An account of some experiments on rigidity produced by centrifugal force.Philosophical Magazine,1878, Vol.5:81-105.
    [56] Wu, M.C., Lou, J.Y.K. Effect of rigidity and internal flow on marine riser dynamics. AppliedOcean Research,1991, Vol.13(5):235-244.
    [57] Housner, G.W.. Bending vibration of pipeline containing flowing fluid. Journal of AppliedMechanics,1952, Vol.19:205-208.
    [58] Chen, S.S.. Dynamics stability of tube conveying fluid. Journal of the Engineering MechanicsDivision, Proceedings of the American Society of Civil Engineers,1971,1469-1485.
    [59] Moe.G., Chucheepsakul.S. The effect of internal flow on Marine risers.7th InternatinalConference on Offshore Mechanics and Arctic Engineering,1998,375-382.
    [60] Namseeg Hong, Taiknyung Huh. Effect of internal flow on vortex-induced viration of riser.Proceediings of the Ninth International Offshore and Polar Engineering Conference, Brest,France,1999,688-693.
    [61] Feodos’ev, V.P.. Vibrations and stability of a pipe when liquid flows through it. InzhenernyiSbornik,10:169-170.
    [62] Paidoussis, M. P.. Issid, N.T. Dynamic Stability of pipes conveying fluid. Journal of Soundand Vibration,1974, Vol.33(3):267-294.
    [63]吴浩,孙大鹏。深海立管涡激振动被动抑制措施的研究。中国海洋平台,2009,24(4):1~8。
    [64] Naoaki M, Bando A, Otsuka K. Experimental study of a flexible riser covered with helicalstrakes. The Thirteenth Internatinal Offshore and Polar Engineering Conference, USA,2003
    [65] Paolo S, Neil W. Investigation on vortex induced oscillations and helical strakes effectivenessat very high incidence angles. ISOPE, France,1999
    [66] Trim A D, Braaten H, Lie H, Tognarelli M A. Experimental investigation of vortex-inducedvibration of long marine risers. Journal of Fluids and Structures,2005,21:335~361.
    [67] Jaiswal V, Vandiver J K. Performance of Strakes and Farings. SHEAR7Usergroup Meeting,2007, June21.
    [68]宋吉宁,吕林等。三根附属控制杆对海洋立管涡激振动抑制作用试验研究。海洋工程,2009,27(3):23~29。
    [69]王海青,郭海燕等。海洋立管涡激振动抑振方法试验研究。中国海洋大学学报,2009,39:479~482。
    [70]刘晓春,郭海燕,张永波等。月牙肋形抑振装置对柔性立管涡激振动抑振作用的试验研究。中国海洋大学学报,2009,40(3):116~120。
    [71] M.M. Zdravkovich. Flow induced oscillations of two interfering circular cylinders. Journal ofSound and Vibration,1985,101(4):511-521.
    [72] M.M. Zdravkovich. The effects of interference between circular cylinders in cross flow.Journal of Fluids and Structures,1987,1(2):239-261.
    [73] A. Bokaian. Interference galloping of upstream member of a pair of circular cylinders.Journal of Sound and Vibration,1987,117(3):433-446.
    [74] A. Bokaian. Galloping of a circular cylinder in the wake of another. Journal of Sound andVibration,1989,128(1):71-85.
    [75] E.B. Medeiros, M.M. Zdravkovich. Interference-induced oscillations of two unequalcylinders. Journal of Wind Engineering and Industrial Aerodynamics,1992,41(1-3):753-762.
    [76] D. Brika, A. Laneville. Wake interference between two circular cylinders. Journal of WindEngineering and Industrial Aerodynamics,1997,72:61-70.
    [77] D. Brika, A. Laneville. The flow interaction between a stationary cylinder and a downstreamflexible cylinder. Journal of Fluids and Structures,1999,13(5):579-606.
    [78] F.S. Hover, M.S. Triantafyllou. Galloping response of a cylinder with upstream wakeinterference. Journal of Fluids and Structures,2001,15(3-4):503-512.
    [79] G.R.S. Assi, J.R. Meneghini, J.A.P. Aranha, P.W. Bearman, E. Casaprima. Experimentalinvestigation of flow-induced vibration interference between two circular cylinders. Journalof Fluids and Structures,2006,22(6-7):819-827.
    [80] F.J. Huera-Huarte, P.W. Bearman. Vortex and wake-induced vibrations of a tandemarrangement of two flexible circular cylinders with near wake interference. Journal of Fluidsand Structures,2011,27(2):193-211.
    [81]李玉柱,苑明顺。流体力学(第2版)。北京:高等教育出版社,2008。
    [82]刘鹤年流体力学。北京:中国建筑工业出版社,2006。
    [83]周云龙工程流体力学。北京:中国电力出版社,2006。
    [84]陈懋章粘性流体动力学基础。北京:高等教育出版社,2004。
    [85] W.F.休斯.流体动力学。北京:科学出版社,2002。
    [86]罗伯特.E.兰德尔海洋工程基础。上海:上海交通大学出版社,2002。
    [87]孙红宾,陈宝华。光纤布拉格光栅在结构应变检测中的应用研究。淮阴师范学院学报(自然科学版),2008,7(1):33~36。
    [88]林钧岫,王文华,王小旭。光纤光栅传感技术应用研究及其进展。大连理工大学学报,2004,44(6):931~936。
    [89]金龙,张伟刚等。光纤光栅传感器实用化的关键性技术研究。纳米技术与精密工程,2004,2(4):319~324。
    [90]刘辉,瞿伟廉,李功标等。光纤光栅传感系统在结构损伤识别中的应用。应用基础与工程科学学报,2009,17(3):395~401。
    [91]安勇龙,叶敦范。光纤光栅传感器的工作原理和应用实例。仪器仪表与分析监测,2005,1:5~11。
    [92]唐国强,吕林,滕斌等。基于光纤光栅传感器的细长柔性立管涡激振动响应实验。中国海上油气,2010,22(5):338~343。
    [93]张文东,海洋立管涡激振动及抑振技术的实验研究:[硕士学位论文].青岛:中国海洋大学,2010。
    [94]张旭东,陆明泉。现代信号处理导论。北京:清华大学电子工程系,2004。
    [95] R.克拉夫,J.彭津,王光远译。结构动力学。北京:高等教育出版社,2007。
    [96]李东旭高等结构动力学。北京:科学出版社,2010。
    [97] J. W. Cooley, J. W. Tukey. An Algorithm for Machine calculation of complex Fourier Series.Math. Computation,Vol.19, April1965.
    [98] LEE L, Allen D. Vibration frequency and lock-in bandwidth of tensioned, flexible cylindersexperiencing vortex shedding. Journal of Fluids and Structures,2010,26(2010):602~610.
    [99] Chang R. Straight talk about riser tension and more. Proceedings of the ASME28thInternational Conference on Ocean, Offshore and Arctic Engineering. Hawaii, USA,2009.
    [100]唐友刚海洋工程结构动力学。天津:天津大学出版社,2008。
    [101]刘树堂杆系结构有限元分析与MATLAB应用。北京:中国水利水电出版社,2007。
    [102]董艳秋深海采油平台波浪荷载及响应。天津:天津大学出版社,2005。
    [103]聂武,刘玉秋。海洋工程结构动力分析。哈尔滨:哈尔滨工程大学出版社,2002。
    [104] Shreenaath Natarajan, Hugh Howells. OPTIMIZATION OF SENSOR PLACEMENT TOCAPTURE RISER VIV RESPONSE. Proceedings of the OMAE25th InternationalConference on Ocean, Offshore and Arctic Engineering. Hamburg, Germany,2006.
    [105] Campbell, M., Shilling, R., Howells, H. Drilling Riser VIV Analysis Calibration Using FullScale Field Data, Deepwater Offshore Technology, Vitoria, Brazil,8-10thNov2005.
    [106] Pei An, Neil Willis, Steve Hatton Standalone Subsea Data Monitoring System,6thUnderwater Science Symposium, Aberdeen University, Scotland, UK,3-6thApril2003.
    [107] Podskarbi M, Thethi R, Howells, H. Fatigue Monitoring of Deepwater Drilling Risers.Subsea Rio, Rio de Janeiro, Brazil,8-10thJune2005.
    [108] Thethi R., Howells H, Natarajan S, Bridge C. A Fatigue Monitoring Strategy andImplementation on a Deepwater Top Tensioned Riser. OTC, Houston, TX, USA,2-5thMay2005.
    [109]王瑞金,张凯,王刚。Fluent技术基础与应用实例。北京:清华大学出版社,2007。
    [110]王福军计算流体动力学分析—CFD软件原理与应用。北京:清华大学出版社,2004。
    [111]盛磊祥,陈国明,许亮斌。减振器绕流流场的CFD分析。中国造船,2007,48(增刊):475-480。
    [112]韩占忠Fluent—流体工程仿真计算实例与分析。北京:北京理工大学出版社,2009。
    [113]潘小强,袁璟。CFD软件在工程流体数值模拟中的应用。南京工程学院学报(自然科学版),2004,2(1):62-66。
    [114] Tamotsu IGARASHI, Characteristics of the flow around Two circular cylinders Arranged inTandem. Bulletin of JSME,1981,188(24):323-331.
    [115] Md. Mahbub Alam, Y. Zhou. Dependence of Strouhal Number, Drag and Lift on the Ratioof Cylinder Diameters in a Two-Tandem Cylinder Wake.16th Australasian FluidMechanics Conference, Australia,2007:750-757.
    [116] D. Sumer, Two circular cylinders in cross-flow: A review. Journal of Fluids andStructures,2010,26:849-899.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700