新型深吃水多立柱平台的水动力与运动响应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着全球化发展对能源需求的加剧,深水油气开发得到了快速的发展。浮式平台作为深海水域重要的钻井采油装备,其相关问题成为国内外研究的热点。目前,国际上广泛应用的浮式平台类型有:半潜式平台、张力腿TLP平台和Spar平台等。尽管这些平台已经在深水油气田的开发中扮演了重要的角色,但同时也存在着一些不足,例如:传统半潜式平台的水动力性能较一般、TLP平台造价和建造难度对水深敏感以及Spar平台特征尺寸大对船坞要求高等。因此,开发新型深水浮式平台,进一步的改进或改良其性能具有重要的现实意义。此外,对于深水浮式平台,作为其最关键的科学问题之一——水动力与运动性能仍需要进一步的研究。本文在对各类深水浮式平台进行总结、分析和比较的基础上,提出了一种新型的浮式平台概念——Deep Draft Multi-Spar(DDMS),为深水油气开发装备提供了一种新的解决方案。论文对DDMS平台进行了概念设计、频域内水动力与运动响应分析、时域内主体、系泊索和立管全耦合的运动响应分析、垂荡和纵摇耦合的马修不稳定性分析以及DDMS平台物理缩尺模型实验等。主要内容包括以下几个方面:
     (1)采用交互式的方法概念设计了一座工作水深1500m,排水量近7万吨的DDMS平台。概念设计主要包括平台的总体布置、主体尺寸估计、系泊系统布置、立管系统布置、平台重量控制、稳定性验算和运动性能验算等。另外,分析和获得了平台结构特征参数与平台稳性、水动力及运动性能之间的相互关系。
     (2)在频域求解了DDMS平台和Truss Spar的一阶水动力信息,并比较了两种平台的耐波性。在运动响应计算中采用了数值迭代的方法来处理粘滞阻尼等非线性项,并着重分析了垂荡板和平台主体产生的粘滞阻尼对浮式平台运动性能的影响。分析结果表明垂荡板能非常有效地降低平台垂荡响应;平台主体产生的粘滞阻尼对于纵荡低频动力响应有明显的抑制作用。由于自然周期增大,DDMS平台的垂荡运动性能进一步提升,明显优于Truss Spar平台,适用于多种不同海况条件。
     (3)建立了时域内平台主体、系泊系统和立管系统全耦合的数值预报模型。对非耦合、系泊索耦合和全耦合三种不同的数值模型进行了自由衰减测试和风浪流联合作用测试。通过这些测试,比较和分析了系泊索和立管对浮式平台总体响应的影响及其耦合效应。研究结果清楚地显示来自垂荡板和系泊索的阻尼能够减小平台垂荡方向的动力响应特别是纵荡方向的低频运动。在考虑系泊索动力响应的全耦合分析中,波频部分的系泊索张力占主要部分;对于考虑系泊索静力的非耦合分析中,低频部分的张力起到了控制作用。
     (4)建立了垂荡和纵摇耦合的运动方程,严格考虑了平台水线面积、稳性高度和排水体积随平台运动的变化关系。在规则波和随机波作用下分析了DDMS平台的马修不稳定性并着重讨论了阻尼对不稳定的发生起到的抑制作用。分析结果显示,垂荡板和系泊索对于抵抗马修不稳定的发生扮演了重要的角色。数值模拟的结果还很清晰地说明马修不稳定的发生来源于耦合运动之间能量的相互传递和转化。
     (5)在波浪水槽中进行了物理缩尺模型实验,获得了DDMS平台水动力和运动响应的实验室数据。模型实验中还特别包含了6种不同模型工况,用以考察垂荡板和开孔的龙骨立管导向板等薄板对平台水动力与运动性能的影响。实验结果揭示了对于垂荡响应,低频响应与波频响应是可比的,当波浪控制周期远离垂荡自然周期时,低频部分响应甚至大于波频部分。在包括中国南海千年一遇的6种不同海况下,DDMS平台都显示了良好的耐波性能,垂荡响应极值均不超过2.5m。
Recently, the exploration of oil and gas in deepwater expands quickly to meet global development and energy needs. The problems related to deepwater floating platform are becoming the research hotspot due to the significant position of deepwater floating platform serving as drilling and production facility in deepwater oil and gas exploitation. At present, three main floating platform types, Semi, TLP and Spar platform, are widely applied in the worldwide deepwater oil and gas exploitation. However some problems are still existing e.g. poor hydrodynamic performance of conventional Semi, water depth sensitivity of TLP platform and the fabrication difficulty of Spar platform. Therefore, developing innovative deepwater floating platform and improving the behavior are significant and necessary. Meanwhile, being one of the essential research issues for deepwater floating platform, the hydrodynamics and motion performance of the platform still need further study. Based on review, analysis and comparison of various floating platform types for deepwater, a novel concept i.e. Deep Draft Multi-spar (DDMS) is proposed to be an alternative solution for deepwater oil&gas exploration. In this dissertation, the conceptual design of DDMS platform, hydrodynamics and motion of DDMS in frequency domain, the motion analysis of DDMS based on the hull/mooring/riser coupled model in time domain, the analysis of the platform Mathieu instability based on heave and pitch coupled equation, and the physical scale model test of DDMS platform are carried out. The main works of this dissertation are as follow:
     1. In this dissertation, a conceptual design of DDMS platform with 70,000t displacement working in 1500m water area is conducted. The conceptual design procedure includes the general arrangement of the platform, estimation of hull dimensions, arrangement of the mooring system and riser system, platform weight control, stability check, motion performance check and so on. Furthermore, the correlation between the characteristic structure parameters of the platform with the stability, hydrodynamics of the platform are acquired and analyzed.
     2. In frequency domain analysis, the first-order hydrodynamics of the DDMS platform and Truss Spar are computed and the seakeeping ability of the two platforms is compared. The interactive numerical method is applied in the computation of structure response to handle the nonlinear factors such as viscous damping. Furthermore, the influence of the heave plates and the viscous damping generated by the hull to the motion performance of the floating platform is especially analyzed. The results show that the heave plate can reduce the heave response effectively and the viscous damping contributed by the hull can suppress the low frequency response for surge obviously. The DDMS platform could be applied in more ocean environments than Spar platform due to its much better heave motion performance than the one of Spar platform.
     3. In time domain simulation, a hull/mooring/riser coupled model is established. The three different numerical models, uncoupled, hull/mooring coupled and hull/mooring/riser coupled model, are subjected to free decay test as well as the wind, wave and current joint action test respectively. Based on the above two tests, the effect of mooring line and riser on the global motion of the floating platform as well as the coupled effect are compared and analyzed. The results clearly show the damping from the heave plates and mooring line is able to reduce the dynamic response for heave and especially the low frequency motion for surge. The mooring line tension of wave frequency is the major contributor in dynamic analysis while the low frequency component is dominator in static analysis.
     4. Mathieu instability is carefully analyzed upon the establishment of coupled vertical and rotational motion equations which rigorously consider the varieties of water area, metacentric height and displaced volume with floater’s motion. The Mathieu instability of DDMS is studied in regular and random waves, and the damping effects which suppress the occurrence of Mathieu instability are investigated especially. For the Mathieu instability, damping of heave plate and mooring line play an important role in restraining the instability. The results also obviously indicate Mathieu instability is owing to the energy transfer and exchange between the coupled motions.
     5. The scale model test is executed in wave flume and relevant hydrodynamics as well as global motion are acquired. Six different model cases are employed in the model test to investigate the effect of various horizontal thin plates attached to the model such as heave plate and guide plate at keel with hole on the hydrodynamics and motion performance of platform. The recording heave responses significantly reveal that the low frequency component is comparable with the wave frequency component and even higher when the controlled wave period is far away from the heave natural period. For 6 different extreme environments in model test, even for the extreme environment of South China Sea with 1000-r return period, the DDMS platform exhibits favorable seakeeping ability whose maximal heave response does not exceed 2.5m.
引文
[1]白云程,周晓惠,万群,孙敬杰,孟凡宇.世界深水油气勘探现状及面临的挑战[J].特种油气藏, 2008, 15(2):7-17.
    [2] Fisher F H, Spiess F N. Flip-floating Instrument Platform[J]. Journal of Acoustical Society of America, 1963, 35(10):1633-1644.
    [3] Neale A. Organisational learning in contested environments: Lessons from Brent Spar[J]. Buesiness Strategy and the Environment, 1997, 6(2):93-103.
    [4] Vatdeman R D, Richardson S, McCandless C R. Neptune Project: Overview and Project Management[C]//Offshore Technology Conference Proceedings. Houston: Offshore Technology Conference, 1997: OTC 8381-MS.
    [5] Young W C, May B C and Varnado B R. Genesis Development Project-Overview[C]//Offshore Technology Conference Proceedings. Houston: Offshore Technology Conference, 1999: OTC 10796-MS.
    [6] Bates J B, Kan W C, Allegra A P, Yu C A. Dry Tree and Drilling Riser System for Hoover DDCV[C]//Offshore Technology Conference Proceedings. Houston: Offshore Technology Conference, 2001: OTC 13084-MS.
    [7] Bangs A S, Miettinen J A, Mikkola T J, Silvola I, Beattie S M. Design of the Truss Spasr for the Nansen/Boomvang Field Development[C]//Offshore Technology Conference Proceedings. Houston: Offshore Technology Conference, 1999: OTC 14090-MS.
    [8] DeMerchant T, Magee A, Penn J, Li Z, Loken A, Perryman S. Holstein Spar Hard Tank Strake Structural Design[C]//Offshore Technology Conference Proceedings. Houston: Offshore Technology Conference, 2005: OTC 17300.
    [9] Petruskaa D, Geyer J, Macon R, Craig M, Ran A, Schulzd N. Polyester Mooring for the Mad Dog Spar-Design Issues and Other Considerations[J]. Ocean Engineering, 2005, 32(7):767-782.
    [10] Snyder D, Townsley B. Perdido Development: World’s First Ultra-deepwater Drilling & Production Facility[C]//Offshore Technology Conference Proceedings. Houston: Offshore Technology Conference, 2010:OTC 20887.
    [11] Lamey M, Hawley P, Maher J. Red Hawk Project: Overview and Project Management[C]//Offshore Technology Conference Proceedings. Houston: Offshore Technology Conference, 2005:OTC 17213.
    [12] Larsen C. Flexible Riser Analysis-Comparison of Results from Computer Programs[J]. Marine Structure, 1992, 5(2-3):103-119.
    [13] Dijkhuizen C, Coppens T, Graaf P. Installation of the Horn Mountain SparUsing the Enhanced DCV Balder[C]//Offshore Technology Conference Proceedings. Houston: Offshore Technology Conference, 2003:OTC 15367.
    [14] Luo Y H, Lu R, Wang J, Berg S. Time-domain Fatigue Analysis for Critical Connections of Truss Spar[C]//Proceeding of the 11th International Offshore and Polar Engineering Conference. Norway: The International Society of Offshore and Polar Engineers, 2001, (1):362-368.
    [15] Wang J, Berg S, Luo Y H, Sablok A, Finn L. Structural Design of the Truss Spar-An Overview[C]//Proceeding of the 11th International Offshore and Polar Engineering Conference. Norway: The International Society of Offshore and Polar Engineers, 2001, (1):354-361.
    [16] Lu R, Wang J, Erdal E. Time Domain Strength and Fatigue Analysis of Truss Spar Heave Plate[C]//Proceeding of the 13th International Offshore and Polar Engineering Conference. Hawaii: The International Society of Offshore and Polar Engineers, 2003:272-279.
    [17] Kocaman A, Verdin E, Toups J. Neptune Project: Spar Hull, Mooring and Topsides Installation[C]//Offshore Technology Conference Proceedings. Houston: Offshore Technology Conference, 1997:OTC 8385.
    [18] Dove P, Weisinger D, Abbassian F, Hooker J. The Development and Testing of Polyester Moorings for Ultradeep Drilling Operations[C]//Offshore Technology Conference Proceedings. Houston: Offshore Technology Conference, 2000:OTC 12172.
    [19] Petruska D, Geyer J, Ran A. Mad Dog Polyester Mooring - Prototype Testing And Stiffness Model for Use in Global Performance Analyses[C]//Offshore Technology Conference Proceedings. Houston: Offshore Technology Conference, 2004:OTC 16589.
    [20] Haslum H, Tule J, Huntley M, Jatar S. Red Hawk Polyester Mooring System Design and Verification[C]//Offshore Technology Conference Proceedings. Houston: Offshore Technology Conference, 2005:OTC 17247.
    [21]王颖,杨建民,肖龙飞. Spar平台与刚性立管及浮力罐耦合动力研究综述[J].海洋工程, 2008, 26(2):140-154.
    [22] Morooka C, Coelho F, Shiguemoto D, Franciss R, Matt C. Dynamic Behavior of A Top Tensioned Riser in Frequency and Time Domain[C]//Proceeding of the 16th International Offshore and Polar Engineering Conference. San Francisco: The International Society of Offshore and Polar Engineers, 2006:31-36.
    [23] Chedzoy C, Lim F. Design Challenges of Deepwater Dry Tree Riser Systems for Different Vessel Types[C]//Proceeding of the 13th International Offshoreand Polar Engineering Conference. Hawaii: The International Society of Offshore and Polar Engineers, 2003:76-82.
    [24] Sorensen A, Sagatuna S, Fossen T. Design of a Dynamic Positioning System Using Model-Based Control[J]. Control Engineering Practice, 1996, 4(3):359-368.
    [25] Ellis N, Tetlow J, Anderson F, Woodhead A. Hutton TLP Vessel- Structural Configuration and Design Features[C]//Offshore Technology Conference Proceedings. Houston: Offshore Technology Conference, 1982:OTC 4427.
    [26] Huang E, Bhat S, Luo Y, Zou J. Evaluation of Dry Tree Platform Concepts. Offshore Technology Conference[C]//Offshore Technology Conference Proceedings. Houston: Offshore Technology Conference, 2000:OTC 11899.
    [27] Kibbee S, Leverette S, Davies K, Matten R. Morpeth SeaStar Mini-TLP. Offshore Technology Conference[C]//Offshore Technology Conference Proceedings. Houston: Offshore Technology Conference, 1999:OTC 10855.
    [28] William F, Unlimited Depth Minimal TLP Gets First Application on Prince[J]. Offshore, 2001, 61(10):82,160.
    [29] Reinhardt w, Williamson R, Eaton L, Actis S. Magnolia Deepwater Development-Striving for Best in Class Drilling Performance[C]//Offshore Technology Conference Proceedings. Houston: Offshore Technology Conference, 2005:OTC 92439.
    [30] Shimamura Y. FPSO/FSO: State of the Art[J]. Journal of Marine Science and Technology, 2002, 7(2):59-70.
    [31] Mack R, Gruy R, Hall R. Turret Moorings for Extreme Design Conditions[C]//Offshore Technology Conference Proceedings. Houston: Offshore Technology Conference, 1995:OTC 79696.
    [32] Chaudhury G, Kennefick J. Design, Testing and Installation of Steel Catenary Risers[C]//Offshore Technology Conference Proceedings. Houston: Offshore Technology Conference, 1999:OTC 10980.
    [33] Torres A, Gonzalez E, Ferreira M, Siqueira M, Mourelle M, Silva R. Lazy-Wave Steel Rigid Risers for FSO With Spread Mooring Anchoring System[C]//Proceeding of the 22nd International Conference on Offshore Mechanics and Arctic Engineering. Mexico: ASME, 2003:547-555.
    [34] Roberts R, Garnham S, D'All B. Fatigue Monitoring of Flexible Risers Using Novel Shape-Sensing Technolog[C]//Offshore Technology Conference Proceedings. Houston: Offshore Technology Conference, 2007:OTC 19051.
    [35] Mekha B. New Frontiers in the Design of Steel Catenary Risers for Floating Production Systems[J]. Journal of Offshore Mechanics and Arctic Engineering, 2001, 123(4):153-158.
    [36] Arnesen G, Dalane J, Aramanadka S, Herfjord K, Snell R, Stansberg C. Integrated Semi and Steel Catenary Risers (SCRs) in Deep Water and Harsh Environment Conditions[C]//Offshore Technology Conference Proceedings. Houston: Offshore Technology Conference, 2006:OTC 18259.
    [37] Quintin H, Legras J, Huang K, Wu M. Steel Catenary Riser Challenges and Solutions for Deepwater Applications[C]//Offshore Technology Conference Proceedings. Houston: Offshore Technology Conference, 2006:OTC 19118.
    [38] Mekha B, Johnson C, Roesset J. Nonlinear response of a Spar in deep water: Different hydrodynamic and structural models[C]//Proceeding of the 5th International Offshore and Polar Engineering Conference. Holland: The International Society of Offshore and Polar Engineers, 1995, (3):462-469.
    [39] P. Cao and J. Zhang. Slow Motion Responses of Compliant Offshore Structures[C]//Proceeding of the 6th International Offshore and Polar Engineering Conference. USA: The International Society of Offshore and Polar Engineers, 1996, (1):296-303.
    [40] Mekha B, Weggel D, Johnson C, Rosset J. Effects of Second order Diffraction Forces in the Global Response of Spars[C]//Proceeding of the 6th International Offshore and Polar Engineering Conference. USA: The International Society of Offshore and Polar Engineers, 1996, (1):273-280.
    [41] Ran Z, Kim M H, Niedzwecki J, Johnson R. Responses of a Spar Platform in Random Waves and Currents(Experiment vs. Theory)[J]. International Journal of Offshore and Polar Engineering, 1996, 6(1):27-34.
    [42] Chitrapu A, Saha S, Salpekar V. Time-domain Simulation of Spar Platform Response in Random Waves and Current[C]//Proceeding of the 17th International Conference on Offshore Mechanics and Arctic Engineering. Portugal: ASME, 1998:OMAE98-0380.
    [43] Datta I, Prislin I, Halkyard J, Greiner W, Bhat S, Perryman S, Beynat P. Comparison of Truss Spar Model Test Results with Numerical Predictions[C]//Proceeding of the 18th International Conference on Offshore Mechanics and Arctic Engineering. Canada: ASME, 1999:OMAE99/OFT-4231.
    [44] Anam I, Roesset J. Evaluation of Newman's Approximation for Dynamic Analysis of a Spar[C]//Proceeding of the 20th International Conference on Offshore Mechanics and Arctic Engineering. Portugal: ASME, 2001:OMAE01/OFT-1240.
    [45] Anam I, Roesset J. Effect of Nonlinear Wave Kinematics on Dynamic Response of Spars[J]. Journal of Engineering Mechanics, 2002, 128(9):925-934.
    [46] Ma Q, Patel M. On The Non-linear Forces Acting on A Floating Spar Platform in Ocean Waves[J]. Applied Ocean Research, 2001, 23(1):29-40.
    [47] Agarwal A, Jain A. Nonlinear Coupled Dynamic Response of Offshore Spar Platforms Under Regular Sea Waves[J]. Ocean Engineering, 2003, 30(4):517-551.
    [48] Prislin I, Halkyard J, DeBord F, Collins J, Lewis J. Full-Scale Measurements of the Oryx Neptune Production Spar Platform Performance[C]//Offshore Technology Conference Proceedings. Houston: Offshore Technology Conference, 1999:OTC 10952.
    [49]张智. Spar平台系泊系统计算及波浪载荷研究[D].天津:天津大学硕士学位论文. 2005:30-50.
    [50]张帆,杨建民,李润培.新型多柱桁架式Spar平台水动力性能研究[J].海洋工程, 2007, 25(2):1-8.
    [51]张帆,杨建民,李润培,陈刚. Numerical and Experimental Research on the Global Performances of Cell-Truss Spar Platform[J]. China Ocean Engineering, 2007, 21(4):561-576.
    [52]张海燕,赵文斌,唐友刚.深水Spar平台主体波浪载荷计算[J].中国海洋大学学报(自然科学版), 2008, 38(3):508-512.
    [53]王颖,杨建民,肖龙飞,胡志强.内置集成浮力罐的几何形Spar平台运动性能数值模拟[J].上海交通大学学报, 2008, 42(6):924-928.
    [54] Wang Y, Yang J M, Hu Z Q, Xiao L F. Theoretical Research on Hydrodynamics of a Geometric Spar in Frequency and Time Domains[J]. Journal of Hydrodynamics, Ser. B, 2008, 20(1):30-38.
    [55]白兴兰,黄维平.钢悬链线立管与Spar整体分析初探[J].工程力学, 2009, 26(12):161-166.
    [56]白兴兰,黄维平.考虑海床土吸力的SCR-Spar整体波浪响应分析[J].海洋工程, 2010, 28(2):58-64.
    [57]李彬彬,欧进萍.深吃水多立柱式平台的运动响应分析[J].中国造船, 2010, 51(2):107-116.
    [58] Haslum H A, Faltinsen O M. Alternative Shape of Spar Platform for Use in Hostile Areas[C]//Offshore Technology Conference Proceedings. Houston: Offshore Technology Conference, 1999:OTC 10953.
    [59] Rho J B, Choi H S, Lee W S, Shin H S, Park I K. Heave and Pitch Motions of a Spar Platform with Damping Plate[C]//Proceeding of the 12th International Offshore and Polar Engineering Conference. Japan: The International Society of Offshore and Polar Engineers, 2002:198-201.
    [60] Rho J B, Choi H S, Shin H S, Park I K. An Experimental Study for Mooring Effects on the Stability of Spar Platform[C]//Proceeding of the 13th International Offshore and Polar Engineering Conference. Canada: The International Society of Offshore and Polar Engineers, 2003:285-288.
    [61] Rho J B, Choi H S. Vertical Motion Characteristics of Truss Spars in Waves[C]//Proceeding of the 14th International Offshore and Polar Engineering Conference. France: The International Society of Offshore and Polar Engineers, 2004:262-665.
    [62] Hong Y P, Lee D Y, Choi Y H, Hong S H, Kim S E. An Experimental Study on the Extreme Motion Responses of A Spar Platform in the Heave Resonant Waves[C]//Proceeding of the 15th International Offshore and Polar Engineering Conference. Korea: The International Society of Offshore and Polar Engineers, 2005:225-232.
    [63] Koo B J, Kim M H, Randall R E. Mathieu Instability of A Spar Platform with Mooring and Risers[J]. Ocean Engineering, 2004, 31(17-18):2173-2208.
    [64] Liao S W, Yeung R W. Investigation of the Mathieu Instability of Roll Motion by a Time-Domain Viscous-Fluid Method[C]//Proceeding of the 16th International Workshop on Water and Floating Bodies. Japan: International Workshop on Water and Floating Bodies, 2001: iwwwfb16_25.
    [65] Radhakrishnan S, Datlaa R, Hires R I. Theoretical and Experimental Analysis of Tethered Buoy Instability in Gravity Waves[J]. Ocean Engineering, 2007, 34(2):261-274.
    [66]赵晶瑞,唐友刚,刘利琴.传统Spar平台和型组合共振运动响应研究[J].海洋工程, 2009, 27(4):23-30.
    [67]赵晶瑞,唐立志,唐友刚,王文杰.传统Spar平台垂荡-纵摇耦合内共振响应[J].天津大学学报, 2009, 42(3):201-207.
    [68]刘利琴,唐友刚,王文杰. Spar平台垂荡-纵摇耦合运动失稳机理[J].海洋工程, 2009, 27(2):29-35.
    [69] Li B B and Ou J P. Numerical Study on Mathieu Instability of DDMS Platform[C]//Proceeding of the 29th International Conference on Offshore Mechanics and Arctic Engineering. China: ASME, 2010:OMAE2010-20138.
    [70] Garrett D L. Dynamic Analysis of Slender Rods[J]. Journal of Energy Resources Technology, 1982, 104(4): 302-307.
    [71] Garrett D L, Chappell J F, Gordon R B. Global Performance of Floating Production Systems[C]//Offshore Technology Conference Proceedings. Houston: Offshore Technology Conference, 2002:OTC 14230.
    [72] Garrett D L. Coupled Analysis of Floating Production Systems[J]. OceanEngineering, 2005, 32(7):802-816.
    [73] Ran Z, Kim M H. Nonlinear Coupled Responses of A Tethered Spar Platform in Waves[C]//Proceeding of the 6th International Offshore and Polar Engineering Conference. USA: The International Society of Offshore and Polar Engineers, 1996, (1):281-288.
    [74] Ran Z, Kim M H. Nonlinear Coupled Responses of a Tethered Spar Platform in Waves[J]. International Journal of Offshore and Polar Engineering, 1997, 7(2):111-118.
    [75] Ran Z, Kim M H. Coupled Dynamic Analysis of a Moored Spar in Random Waves and Currents (Time-Domain Versus Frequency-Domain Analysis)[J]. Journal of Offshore Mechanics and Arctic Engineering, 1999, 121(3):194-200.
    [76] Kim M H, Ran Z, Zheng W. Hull/Mooring Coupled Dynamic Analysis of a Truss Spar in Time Domain[J]. Journal of Offshore Mechanics and Arctic Engineering, 2001, 11(1):42-54.
    [77] Kim M H, Koo B J, Mercier R M, Ward E G. Vessel/mooring/riser Coupled Dynamic Analysis of A Turret-Moored FPSO Compared with OTRC Experiment[J]. Ocean Engineering, 2005, 32(14-15):1780-1802.
    [78] Astrup O C, Nesteg?rd A, Ron?ss M, S?dahl N. Coupled Analysis Strategies for Deepwater Spar Platforms[C]//Proceeding of the 11th International Offshore and Polar Engineering Conference. Norway: The International Society of Offshore and Polar Engineers, 2001:449-456.
    [79] Tahar A, Ran Z, Kim M H. Hull/mooring/Riser Coupled Spar Motion Analysis with Buoyancy-Can Effect[C]//Proceeding of the 12th International Offshore and Polar Engineering Conference. Japan: The International Society of Offshore and Polar Engineers, 2002:223-230.
    [80] Tahar A, Kim M H. Hull/Mooring/Riser Coupled Dynamic Analysis and Sensitivity Study of A Tanker-Based FPSO[J]. Applied Ocean Research, 2003, 25(6):367-382.
    [81] Tahar A, Kim M H. Coupled-Dynamic Analysis of Floating Structures with Polyester Mooring Lines[J]. Ocean Engineering, 2008, 35(17-18):1676-1685.
    [82] Koo B J, Kim M H, Randall R E. The Effect of Nonlinear Multi-Contact Coupling with Gap Between Risers and Guide Frames on Global Spar Motion Analysis[J]. Ocean Engineering, 2004, 31(11-12):1469-1502.
    [83] Chen X H, Zhang J, Ma W. Coupled Time-Domain Analysis of the Response of A Spar and Its Mooring System[C]//Proceeding of the 9th International Offshore and Polar Engineering Conference. France: The International Society of Offshore and Polar Engineers, 1999:293-300.
    [84] Chen X H, Zhang J, Ma W. On Dynamic Coupling Effects Between A Sparand Its Mooring Lines[J]. Ocean Engineering, 2001, 28(7):863-887.
    [85] Chen X H, Ding Y, Zhang J, Liagre P, Niedzwecki J, Teigen P. Coupled Dynamic Analysis of A Mini TLP: Comparison with Measurements[J]. Ocean Engineering, 2006, 33(1):93-117.
    [86] Spanos P D, Ghosh R, Finn L D, Halkyard J. Coupled Analysis of a Spar Structure: Monte Carlo and Statistical Linearization Solutions[J]. Journal of Offshore Mechanics and Arctic Engineering, 2005, 127(1):11-16.
    [87] Low Y M, Langley R S. Time and Frequency Domain Coupled Analysis of Deepwater Floating Production Systems[J]. Applied Ocean Research, 2006, 28(6):371-385.
    [88] Low Y M, Langley R S. A Hybrid Time/Frequency Domain Approach for Efficient Coupled Analysis of Vessel/Mooring/Riser Dynamics[J]. Ocean Engineering, 35(5-6), 433-446.
    [89] Low Y M, Langley R S. Understanding the dynamic coupling effects in deepwater floating structures using a simplified model. Journal of Offshore Mechanics and Arctic Engineering, 2008,130(3):031007-1-031007-10.
    [90] Low Y M. Prediction of Extreme Responses of Floating Structures Using A Hybrid Time/Frequency Domain Coupled Analysis Approach[J]. Ocean Engineering, 2008, 35(14-15):1416-1428.
    [91] Xu Q, Perryman S, Prislin I. Assessment of the Horn Mountain Spar in Hurricane Ivan[C]//Proceeding of the 26th International Conference on Offshore Mechanics and Arctic Engineering. USA: ASME, 2007:OMAE2007-29354.
    [92] Ormberg H, Larsen K. Coupled Analysis of Floater Motion and Mooring Dynamics for A Turret-Moored Ship[J]. Applied Ocean Research, 1998, 20(1-2):55-67.
    [93] Ormberg H, Baarholm R, Stansberg C T. Time-domain coupled analysis of deepwater TLP, and verification against model tests[C]//Proceeding of the 13th International Offshore and Polar Engineering Conference. USA: The International Society of Offshore and Polar Engineers, 2003:145-152.
    [94] Ma W, Lee M Y, Zou J, Huang E W. Deepwater Nonlinear Coupled Analysis Tool[C]//Offshore Technology Conference Proceedings. Houston: Offshore Technology Conference, 2000:OTC 12085.
    [95] Chaudhury G, Ho C Y. Coupled Dynamic Analysis of Platforms, Risers, and Moorings[C]//Offshore Technology Conference Proceedings. Houston: Offshore Technology Conference, 2000:OTC 12084.
    [96] Heurtier J M, Buhan P L, Fontaine E, Cunff C L, Biolley F, Berhault C. Coupled Dynamic Response of Moored FPSO with Risers[C]//Proceeding ofthe 11th International Offshore and Polar Engineering Conference. Norway: The International Society of Offshore and Polar Engineers, 2001:319-326.
    [97] Kim S, Sclavounos P D. Fully Coupled Response Simulations of Theme Offshore Structures in Water Depths of Up to 10,000 Feet[C]//Proceeding of the 11th International Offshore and Polar Engineering Conference. Norway: The International Society of Offshore and Polar Engineers, 2001:457-466.
    [98] Zhang X Y, Zou J. Coupled Effects of Risers/Supporting Guide Frames on Spar Responses[C]//Proceeding of the 12th International Offshore and Polar Engineering Conference. Japan: The International Society of Offshore and Polar Engineers, 2002:231-236.
    [99] Bhattacharyya S K, Sreekumar S, Idichandy V G. Coupled Dynamics of SeaStar Mini Tension Leg Platform[J]. Ocean Engineering, 2003, 30(6):709-737.
    [100] Ye W, Shanks J, Fang J. Effects of Fully Coupled and Quasi-Static Semi-Submersible Vessel Motions on Steel Catenary Riser's Wave Loading Fatigue[C]//Offshore Technology Conference Proceedings. Houston: Offshore Technology Conference, 2003:OTC 15105.
    [101] Botros F, Burke R, Magee A, Lu X, Leung M. Coupled Analysis And Tensioning System For Holstein Dry-Tree Risers[C]//Offshore Technology Conference Proceedings. Houston: Offshore Technology Conference, 2005:17252-MS.
    [102] Chen C Y, Kang C H, Mills T. Spar Response with Buoyancy Cans vs. Tensioners[C]//Proceeding of the 18th International Offshore and Polar Engineering Conference. Canada: The International Society of Offshore and Polar Engineers, 2008:164-170.
    [103] Zhang F, Yang J M, Li R P, Chen G. Coupling Effects for Cell-Truss Spar Platform: Comparison of Frequency- and Time-. Domain analysis with Model Test[J]. Journal of Hydrodynamics, 2008, 20(4):424-432.
    [104] Han Z Q, Bernt J L, Li S. Coupling Effect of Riser on Integrated FPS in Deepwater Area[J]. China Ocean Engineering, 2009, 23(4):613-622.
    [105] Li B B, Ou J P, Teng B. Fully Coupled Effects of Hull, Mooring and Risers Model in Time Domain Based on An Innovative Deep Draft Multi-Spar[J]. China Ocean Engineering, 2010, 24(2):219-233.
    [106] Prislin I, Blevins R D, Halkyard J E. Viscous Damping and Added Mass of Solid Square Plates[C]//Proceeding of the 17th International Conference on Offshore Mechanics and Arctic Engineering. Portugal: ASME, 1998: OMAE1998-316.
    [107] Fischer F J, Gopalkrishnan R. Some Observations on the Heave Behavior ofSpar Platforms[J]. Journal of Offshore Mechanics and Arctic Engineering, 1998, 120(4):221-225.
    [108] Troesch A W, Perlin M, He H P. Hydrodynamics of Thin Plates[R]. USA: Dept Naval Architecture and Marine Engineering, Ann Arbor, University of Michigan, 2000:1-40.
    [109] He H P, Troesch A W, Perlin M. Hydrodynamics of Damping Plates at Small KC Numbers[C]//IUTAM Symposium on Fluid-Structure Interaction in Ocean Engineering. Germany, Springer, 2008, 8:93-104.
    [110] Thiagarajan K P, Troesch A W. Effects of Appendages and Small Currents on the Hydrodynamic Heave Damping of TLP Columns[J]. Journal of Offshore Mechanics and Arctic Engineering, 1998, 120(1):37-42.
    [111] Lake M, He H P, Troesch A W, Perlin M, Thiagarajan K P. Hydrodynamic Coefficient Estimation for TLP and Spar Structures[J]. Journal of Offshore Mechanics and Arctic Engineering, 2000, 122(2):118-124.
    [112] Holmes S, Bhat S, Beynet P, Sablok A, Prislin I. Heave Plate Design With Computational Fluid Dynamics[J]. Journal of Offshore Mechanics and Arctic Engineering, 2001, 123(1):22-28.
    [113] Tao L B, Thiagarajan K P. Low KC Flow Regimes of Oscillating Sharp Edges I. Vortex Shedding Observation[J]. Applied Ocean Research, 2003, 25(1):21-35.
    [114] Tao L B, Thiagarajan K P. Low KC Flow Regimes of Oscillating Sharp Edges II. Hydrodynamic Forces[J]. Applied Ocean Research, 2003, 25(2):53-62.
    [115] Tao L B, Cai S Q. Heave Motion Suppression of A Spar with A Heave Plate[J]. Ocean Engineering, 2004, 31(5-6):669-692.
    [116] Tao L B, Molin B, Scolan Y M, Thiagarajan K P. Spacing Effects on Hydrodynamics of Heave Plates on Offshore Structures[J]. Journal of Fluids and Structures, 2007, 23(8):1119-1136.
    [117] Tao L B, Dray D. Hydrodynamic Performance of Solid and Porous Heave Plates[J]. Ocean Engineering, 2008, 35(10):1006-1014.
    [118]纪亨腾,范菊,黄祥鹿.垂荡板水动力的数值模拟[J].上海交通大学学报, 2003, 37(8):1266-1270.
    [119]吴维武,缪泉明,匡晓峰,杨烁,何再明. Spar平台垂荡板受迫振荡水动力特性研究[J].船舶力学, 2009, 13(1):27-33.
    [120]李彬彬,欧进萍. Truss Spar平台垂荡响应频域分析[J].海洋工程, 2009, 28(3):8-16.
    [121]滕斌,郑苗子,姜胜超,勾莹,吕林. Spar平台垂荡板水动力系数计算与分析[J].海洋工程, 2010, 28(3):1-8.
    [122] Irani M, Finn L. Model Testing for Vortex Induced Motions of Spar Platforms[C]//Proceeding of the 24th International Conference on Offshore Mechanics and Arctic Engineering. Canada: ASME, 2004:OMAE2004-51315.
    [123] Irani M, Finn L. Improved Strake Design for Vortex Induced Motions of Spar Platforms[C]//Proceeding of the 24th International Conference on Offshore Mechanics and Arctic Engineering. Greece: ASME, 2005:OMAE2005-67384.
    [124] Irani M, Perryman S, Brewer J, McNeill S. Vortex Induced Motions of the Horn Mountain Truss Spar[C]//Proceeding of the 27th International Conference on Offshore Mechanics and Arctic Engineering. Portugal: ASME, 2008:OMAE2008-57992.
    [125] Halkyard J, Sirnivas S, Holmes S, Constantinides Y, Oakley O, Thiagarajan K. Benchmarking of Truss Spar Vortex Induced Motions Derived from CFD with Experiments[C]//Proceeding of the 24th International Conference on Offshore Mechanics and Arctic Engineering. Greece: ASME, 2005:OMAE2005-67252.
    [126] Halkyard J, Atluri S, Sirnivas S. Truss Spar Vortex Induced Motions: Benchmarking of CFD And Model Tests[C]//Proceeding of the 25th International Conference on Offshore Mechanics and Arctic Engineering. Germany: ASME, 2006:OMAE2006-92673.
    [127] Kokkinis T, Sandstr?m R E, Jones H T. Development of a Stepped Line Tensioning Solution for Mitigating VIM Effects in Loop Eddy Currents for the Genesis Spar[C]//Proceeding of the 23th International Conference on Offshore Mechanics and Arctic Engineering. Canada: ASME, 2004:OMAE2004-51546.
    [128] Finnigan T, Irani M, van Dijk R. Truss Spar VIM in Waves and Currents[C]//Proceeding of the 24th International Conference on Offshore Mechanics and Arctic Engineering. Greece: ASME, 2005:OMAE2005-67054.
    [129] Finnigan T, Roddier D. Spar VIM Model Tests at Supercritical Reynolds Numbers[C]//Proceeding of the 26th International Conference on Offshore Mechanics and Arctic Engineering. USA: ASME, 2007:OMAE2007-29160.
    [130] Atluri S, Halkyard J, Sirnivas S. CFD Simulation of Truss Spar Vortex-Induced Motion[C]//Proceeding of the 25th International Conference on Offshore Mechanics and Arctic Engineering. Germany: ASME, 2006:OMAE2006-92400.
    [131] Atluri S, Magee A, Lambrakos K. CFD as a Design Tool for Hydrodynamic Loading on Offshore Structures[C]//Proceeding of the 28th International Conference on Offshore Mechanics and Arctic Engineering. USA: ASME, 2009:OMAE2009-79502.
    [132] Oakley O H, Constantinides Y. CFD Truss Spar Hull BenchmarkingStudy[C]//Proceeding of the 26th International Conference on Offshore Mechanics and Arctic Engineering. USA: ASME, 2007:OMAE2007-29150.
    [133] Holmes S. Predicting Spar VIM Using CFD[C]//Proceeding of the 27th International Conference on Offshore Mechanics and Arctic Engineering. Portugal: ASME, 2008:OMAE2008-57706.
    [134] Fujarra A, Gon?alves R, Faria F. Mitigation of Vortex-Induced Motions in a Monocolumn Platform[C]//Proceeding of the 28th International Conference on Offshore Mechanics and Arctic Engineering. USA: ASME, 2009: OMAE2009-79380.
    [135] Zhang F, Yang J M, Li R P, Chen G. Experimental Investigation on Hydrodynamic Behavior of the Geometric Spar Platform[J]. China Ocean Engineering, 2006, 20(2):213-224.
    [136] Zhang F, Yang J M, Li R P. Numerical Investigation on The Hydrodynamic Performances of A New Spar Concept[J]. Journal of Hydrodynamics, 2007, 19(4):473-481.
    [137]彭程,匡晓峰,郝林,强兆新.一种新型SPAR平台——TCell SPAR的水动力性能[J].中国海洋平台, 2009, 24(6):31-35.
    [138]李彬彬,欧进萍,滕斌.深吃水多立柱平台稳性与水动力分析[J].海洋工程, 2010, 28(2):8-14.
    [139] Gupta H, Blevins R, Banon H. Effect of Moonpool Hydrodynamics on Spar Heave[C]//Proceeding of the 27th International Conference on Offshore Mechanics and Arctic Engineering. Portugal: ASME, 2008:OMAE2008-57264.
    [140] Holmes S, Gebara J, Magee A. Centerwell Water Motions and Hydrodynamic Loading Using Viscous Flow Calculations[C]//Proceeding of the 27th International Conference on Offshore Mechanics and Arctic Engineering. Portugal: ASME, 2008:OMAE2008-57882.
    [141] Spanos P D, Nava V, Arena F. Coupled Surge-Heave-Pitch Dynamic Modeling of Spar-Moonpool-Riser Interaction[C]//Proceeding of the 28th International Conference on Offshore Mechanics and Arctic Engineering. USA: ASME, 2009:OMAE2009-79844.
    [142] Bauduin C, Naciri M. A Contribution on Quasi-Static Mooring Line Damping[J]. Journal of Offshore Mechanics and Arctic Engineering, 2000, 122(2):125-133.
    [143] Garza-Rios L O, Bernitsas M M, Nishimoto K, Matsuura J P J. Dynamics of Spread Mooring Systems with Hybrid Mooring Lines[J]. Journal of Offshore Mechanics and Arctic Engineering, 2000, 122(4):274-281.
    [144] Loukogeorgaki E, Angelides D A. Stiffness of Mooring Lines and Performance of Floating Breakwater in Three Dimensions[J]. Applied Ocean Research, 2005, 27(4-5):187-208.
    [145] Haslum H A, Tule J, Huntley M, Jatar S. Red Hawk Polyester Mooring System Design and Verification[C]//Offshore Technology Conference Proceedings. Houston: Offshore Technology Conference, 2005:OTC 17247.
    [146] Johanning L, Smith G H, Wolfram J. Measurements of Static and Dynamic Mooring Line Damping and Their Importance for Floating WEC Devices[J]. Ocean Engineering, 34(14-15):1918-1934.
    [147] Jenkins R W, McFadyen M K, Dechant S C, J. Weber and T. Saifuzzaman. Kikeh Development[C]//Offshore Technology Conference Proceedings. Houston: Offshore Technology Conference, 2008:OTC 19481.
    [148] Halkyard J, Chao J, Abbott P, Dagleish J, Banon H, Thiagarajan K. A Deep Draft Semisubmersible with a Retractable Heave Plate[C]//Offshore Technology Conference Proceedings. Houston: Offshore Technology Conference, 2002:OTC 14304.
    [149] Srinivasan N, Chakrabarti S, Radha R. Response Analysis of a Truss-Pontoon Semisubmersible with Heave-Plates[J]. Journal of Offshore Mechanics and Arctic Engineering, 2006, 128(2):100-107.
    [150] Ocker C, Bordlee C. Mirage Field Multi-Column Deep Draft Floating Platform: Graving Dock Construction and Hull Fabrication[C]//Offshore Technology Conference Proceedings. Houston: Offshore Technology Conference, 2010:OTC 21003.
    [151] Herman D, Garrett D, Shivers R, Veselis T. Performance Benefits of the MinDOC Hull at the Mirage Field in a Post-Katrina/Rita Environment. Offshore Technology Conference. Houston, 2010, OTC 21029
    [152] Saad A C, Vilain L, Loureiro R R, Brand?o R M, Machado R Z, Lopes C, Gioppo H. Motion Behaviour of the Mono-Column FPSO Sevan Piranema in Brazilian Waters[C]//Offshore Technology Conference Proceedings. Houston: Offshore Technology Conference, 2009:OTC 20139.
    [153] Chakrabarti S. Handbook of Offshore Engineering[M]. USA, Elsevier, 2005: 40-60.
    [154] Almeida J C L, Jordani C G, Rossi R R, Schachter R D. The Development and Application of a Design Methodology for the Concept Design of Tension Leg Platform (TLPS) Using Non-Dimensional Parameters[C]//Proceeding of the 20th International Conference on Offshore Mechanics and Arctic Engineering. Brazil: ASME, 2001:OMAE2008-OFT-1242.
    [155] American Bureau of Shipping. Mobile Offshore Drilling Units Part 3: HullConstruction and Equipment[S]. USA: ABS, 2006: 134-165.
    [156]中国船级社.海上移动平台入级与建造规范[S].北京:人民交通出版社,2005:89-102.
    [157] Chou F S F, Ghosh S, Huang E W. Conceptual Design Process of A Tension Leg Platform[J]. SNAME Transactions, 1983, 91:275-305.
    [158] Maruo H. The Drift of a Body Floating on Waves[J]. Journal of Ship Research, 1960, 4(3):1-10.
    [159] Newman J N. The Drift Force and Moment on Ships in Waves[J]. Journal of Ship Research, 1967, 11:51-60.
    [160] Newman J N. Second-order, Slowly-varying Forces on Vessels in Irregular Waves[J]. Marine Vehicles, 1974:182-186.
    [161] Kim M H, Yue D K P. The Complete Second-order Diffraction Solutions for an Axisymmetric Body Part2. Bichromatic Incident Waves and Body Motions[J]. Journal of fluid mechanics, 1990, 211:557-593.
    [162] Hooft J P. Advanced Dynamics of Marine Structure[M]. USA : John Wiley&Sons, 1982:86-89.
    [163] Hoerner S F. Fluid-dynamic Drag: Practical Information on Aerodynamic Drag and Hydrodynamic Resistance[M]. USA: Hoerner Fluid Dymamics, 1965, 36-51.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700