柔性立管涡激振动频域响应分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
当海洋立管置于一定速度的来流中,流体由于立管的存在会在立管表面发生分离,从而产生漩涡,漩涡交替地产生与泻放就导致立管在横向和流向发生振动。立管振动的产生反过来又会改变尾流结构,这种流体-结构物相互作用的问题被称作“涡激振动”。涡激振动的产生会对系泊系统和立管产生疲劳损害,减小整个平台的疲劳寿命。因此以立管为代表的海洋结构物的涡激振动问题受到人们的高度关注。
     本文分析了频域中海洋立管的涡激振动响应,对频域理论中的一些基本问题进行了深入的研究。内容主要涉及以下几个方面:
     1,为了寻找垂直立管的模态振型非规则正弦曲线的原因,本文研究了简支垂直立管不考虑以及考虑弯曲刚度两种情况。前者分别应用了贝塞尔函数法和渐近法两种方法求解,后者则是采用SHEAR7理论解。
     2,详细介绍了SHEAR7和VIVANA所基于的频域理论。为了为钢悬链线立管的涡激振动预报提供初始数据,首先建立了悬链线方程,然后根据悬链线方程将钢悬链线立管等效为垂直立管。
     3、用SHEAR7研究了3048米水深下钢悬链线立管在不同顶部预张力下以及不同流剖面下的横向涡激振动响应,以及用VIVANA预报了1500米水深下躺底的钢悬链线立管在剪切流下的横向涡激振动响应。为了研究涡激振动三方面的特性,即预张力变化对模态振型的影响;模态振型对模态权重的影响;模态分析方法对低阶模态权重的影响,对MARINTEK的一个实验进行分析。研究结果发现,预张力的变化对模态振型影响几乎很小,模态振型对模态权重的影响也很小。因此这就表明了没有必要去求解复杂的模态振型,可以直接用正弦模态振型来代替求解模态权重。当低阶模态数偏离主控模态数时,低阶模态数的模态权重值不可靠,一部分是由于模态分析方法本身引起的,一部分是由于噪声对低阶模态权重的影响很大。
     4、为了研究柔性立管的柔软特性对附加质量系数的影响,本文基于有限元方法,提出一个直接由随时间变化的位移估算柔性立管各点处附加质量系数的方法。此公式不仅突破了涡激振动频域理论依赖附加质量实验数据的限制以及考虑柔性立管的柔软特性,而且克服了简单地将柔性立管的附加质量系数假定为常数1的缺陷。此公式还考虑了柔性立管各点的振幅以及立管在不同水深处流场不同特性的影响。
When the flexible riser exposed to a certain current, Vortex-Induced Vibrations (VIVs) occur once shedding vortices exert periodical forces on the flexible riser in the cross flow (CF) and in line (IL) directions. The vibration of flexible riser, in turn, changes its wake structure; this fluid-structures interaction problem is called the "VIV". The presence of VIV would lead to fatigue damage of mooring system and riser, reduce the fatigue life of the entire platform. Therefore, more efforts have been put on the research activities on VIVs during the past ten years.
     Based on VIV theories in frequency domain, the present work explores some basic issues of VIV. The main contents and contributions of this thesis may be summarized as follows:
     1, In order to explain the reason why linear axial tension causes mode shapes unlike sine function, the present work considers two scenarios, namely vertical tensioned risers without and with the bending stiffness. The vibrations of former risers were solved with both Bessel and Asymptotic solutions and the latter ones were presented with SHEAR7 theory.
     2, It introduces theories of both SHEAR7 and VIVANA programs in detail. To provide the basic input parameters in VIV tools, the catenary equation was firstly established. According to the equation, the SCR was defined as an equivalent vertical straight riser with linearly varying tension.
     3, It predicts VIV responses of SCR under different water depths, various flow profiles and top tensions with both SHEAR7 and VIVANA. An experiment was studied to achieve three objectives: (1) the effect of changed axial tension on mode shapes; (2) the effect of mode shapes on modal weight; and (3) the effect of modal analysis method on low modal weights. It is found that the variation of axial tension exerts little impact on mode shapes for the weak self-weight and flexural stiffness reasons. The comparison results of two mode shapes, sinusoidal and non-sinusoidal, show also little effect of mode shapes on modal weights. Thus, sinusoidal mode shapes can take place of real mode shapes to obtain modal weights when the tension is dominating. When they are away from the dominating mode, low modal weights become unreliable with modal analysis method. The reasons come from two aspects, one is the modal analysis method itself and the other the presence of noise.
     4, In order to study the interaction of adjacent elements on the added mass coefficients, the present work proposes a formula, based on FEM, for estimating the added mass coefficients along the flexible riser under known displacements time series. This formula not only wasn’t limited by the experimental data of rigid circular cylinders and considered its flexible characteristics, but also overcame the flaw that added mass coefficients of flexible risers are assumed to be constant. In addition, it also takes into account the varying amplitudes of various points at the flexible risers and different characteristics of flow field at different depths.
引文
[1]张帆,杨建民,李润培.Spar平台的发展趋势及其关键技术[J].中国海洋平台.2005,20(2), p.6-11
    [2]王一飞,深海立管涡激振动疲劳损伤预报方法研究[D],[学位论文],上海交通大学图书馆,2008.
    [3]潘志远,海洋立管涡激振动机理与预报方法研究[D],[学位论文],上海交通大学图书馆,2005,p.1-11
    [4] Paul Stanton. Overview of deepwater drilling and production risers.2006.Technip
    [5]黄维平,李华军.深水开发的新型立管系统—钢悬链线立管(SCR)[J].中国海洋大学学报, 2006,36(5),p:775-780
    [6] David Walters.Deepwater riser system challenges and issues. www.2Hoffshore.com, 2003.
    [7] Daniel Karunakaran , Kjell M Lund , Nils T Nordsve. Steel catenaryriser configurations for North Sea Field developments [C] . // Proceedings Offshore Technology Conference. USA : OTC , 1999 , 2 :331-338.
    [8] Martins C A , Higashi E. A parametric analysis of steel catenary risers : Fatigue behavior near the top [C] . // Proceedings of the International Offshore and Polar Engineering Conference. USA : ISOPE 2 : 54-59,2000.
    [9] Blevins,R.D and Burton,T.E. Fluid forces induced by vortex shedding[J]. Journal of fluids engineering. 1976(95).
    [10] Griffin,O.M and Ramberg,S.E. The vortex street wake of vibrating cylinders[J], Journal of fluid mechanics. 1974(66).
    [11] Sarpkaya, T. A critical review of the intrinsic nature of vortex-induced vibrations[J]. Journal of Fluids and Structures , 2004(19), p:389-447.
    [12] Parkinson, G.V. Mathematical models of flow-induced vibrations of bluff bodies[M]. In: Naudascher, E., Editor. Flow-Induced Structural Vibrations, Springer, Berlin, 1974. p:81-127.
    [13] King, R.A. A Review of Vortex Shedding Research and Its Application[J]. Ocean Engineering , 1977(4), p:141-171.
    [14] Sarpkaya, T. Fluid forces on oscillating cylinders[J]. Journal of Waterway Port Coastal and Ocean Division ASCE, WW4 , 1978(104), p:275-290.
    [15] Griffin, O.M. and Ramberg, S.E.. Some recent studies of vortex shedding with applications to marine tubulars and risers[J]. ASME Journal of Energy Resources Technology , 1982(104), p:2-13.
    [16] Bearman, P.W. and Currie, I.G. Pressure fluctuation measurements on an oscillating circular cylinder[J]. Journal of Fluid Mechanics , 1979(91), p:661-677.
    [17] Parkinson, G.V. Phenomena and modeling of flow-induced vibrations of bluff bodies[M]. Progress in Aerospace Sciences , 1989(26), p:169-224.
    [18] Pantazopoulos, M.S. Vortex-Induced Vibration Parameters: Critical Review[C]. The 13th International Conference on Offshore Mechanics and Arctic Engineering, 1994(1), p:199-255.
    [19] Allen, D.W. and Henning, D.L. Vortex-induced vibration tests of a flexible smooth cylinder at supercritical Reynolds numbers[C]. Proc. of the 7th ISOPE, Honolulu, Hawaii, USA, Vol. III,p:680-685, 1997.
    [20] Vandiver, J.K. Research challenges in the vortex-induced vibration prediction of marine risers[C]. Proc. of the OTC, Houston, USA, Paper No. OTC 8098, 1998.
    [21] Halse, K.H. Norwegian Deepwater Program: Improved Predictions on Vortex Induced Vibrations[C]. Proc. of the OTC, Houston, Texas,Paper No. OTC 11996, 2000.
    [22] Williamson, C.H.K. and Govardhan, R. Vortex-induced Vibrations[J]. Annual Review of Fluid Mechanics ,2004(36), p:413-455.
    [23] Gabbai, R.D. and Benaroya, H. An overview of modeling and experiments of vortex-induced vibration of circular cylinders[J]. Journal of Sounds and Vibration , 2005(282), p:575-616.
    [24] Chen, S.S. Flow-Induced Vibration of Circular Cylinder Structures[M], Hemisphere Publishing Corporation, Springer, Washington, DC, USA (Chapter 7), 1987.
    [25] Blevins, R. D. Flow-Induced Vibration[M], Van Nostrand Reinhold, New York, 1990.
    [26] Naudascher, E. and Rockwell, D. Flow-Induced Vibrations[M]. An Engineering Guide, A.A. Balkema, Rotterdam, 1994
    [27] Sumer, B.M. and Freds?e, J. Hydrodynamics around Cylindrical Structures[M]. World Scientific, Singapore , 1997
    [28] Au-Yang, M.K. Flow-Induced Vibrations of Power and Process Plant Components—A Practical Workbook[M]. The American Society of Mechanical Engineers, New York, NY, 2001.
    [29] Zdravkovich, M.M. Flow around Circular Cylinders, Vol. 1: Fundamentals[M]. Oxford University Press, Oxford, 1997.
    [30] Zdravkovich, M.M. Flow around Circular Cylinders, Vol. 2: Applications[M]. Oxford University Press, Oxford, 2003.
    [31] Bishop,R E D, Hassan A Y. The lift and drag forces on a circular cylinder in a flowing fluid[C]. Proceedings of Royal Society of London, Series A 277, 1964. p:32-50, 51-75.
    [32] Birkoff,G, Zarantnanello,EH. Jets, wakes and cavities[M]. NewYork: Academic Press.1957.
    [33] Hartlen R T, Currie I G. Lift oscillation model for vortex-induced vibration[J]. Engineering Mechanics,1970(96), p:577-591.
    [34] Skop, R.A. and Griffin, O.M. On a theory for the vortex-excited oscillations of flexible cylindrical structures[J]. Journal of Sound and Vibration, 1975(41), p:263-274.
    [35] Iwan W D.The vortex-induced oscillation of non-uniform structural systems[J]. Journal of Sound and Vibration,1981,79(2):291-301.
    [36] Vandiver, J.K. and Li, L. SHEAR7 program Theory manual[M]. MIT, Department of Ocean Engineering, 1999.
    [37] Triantafyllou, M.S., Triantafyllou, G.S., Tein, D. and Ambrose, B.D. Pragmatic Riser VIV Analysis[C]. Proc. of the OTC, Houston, USA, Paper OTC 10931, 1999.
    [38] Larsen, C.M., Vikestad, K., Yttervik, R. and Passano, E. VIVANA, Theory Manual[M]. MARINTEK, Trondheim, 2001.
    [39] Lyons, G.J. and Patel, M.H. A prediction technique for vortex induced transverse response of marine risers and tethers[J]. Journal of Sound and Vibration, 1986. 111(3), p:467-487
    [40] Furnes, G.K.On marine riser responses in time-and-depth dependent flows[J]. Journal of Fluids and Structures , 2000(14),p:257-273.
    [41]董艳秋.波、流联合作用下海洋平台张力腿的涡激非线性振动[J].海洋学报, 1994, 16(3), p:121-129.
    [42]马驰,董艳秋,杨丽婷.海洋平台张力腿在两种边界条件下的涡激非线性振动的比较研究[J].船舶力学, 2000, 4(1), p:56-65.
    [43]唐友刚,谷家扬,左建立,闵建琴.隔水套管波流联合作用下非线性动力响应.应用数学与力学, 2005, 26(8),p:951-956.
    [44] Blevins, R.D.,Burton, T.E. Fluid Forces Induced by Vortex Shedding[J]. ASME Journal of Fluids Engineering,1976,98, p:19~26.
    [45] Kennedy.M,Vandiver,J.K.A Random Vibration Model for Cable Strumming Prediction[J]. ASCE Civil Engineering in the Oceans,1979,4, p:273~292.
    [46] Vickery,B.J, Basu,R.I. Across-Wind Vibrations of Structures of Circular Cross-Section. Part I: Development of a Mathematical Model for Two-dimensional Conditions[J]. Journal of Wind Engineering and Industrial Aerodynamics,1983, 12, p:49~73.
    [47] Whitney, A.K.,Chung,J.S.,Yu,B.K. Vibrations of Long Marine Pipes due to Vortex Shedding[J]. ASME Journal of Energy Resources Technology, 1981,103, p:231~236.
    [48]尹德操.均匀和分层粘性流体中直立圆柱体的绕流特性研究[D],[学位论文],上海交通大学图书馆,2008,p:1-13.
    [49] Menter, F.R. Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications[J]. AIAA Journal , 1994(32), p:1598-1605.
    [50] Wilcox, D.C. Reassessment of the scale-determining equation for advanced turbulence models[J], AIAA Journal, , 1988, 26 (11), p:1299-1310.
    [51]黄志勇.柔性立管涡激振动时域响应分析[D],[学位论文],上海交通大学图书馆,2008,p:1-27.
    [52] Blackburn, H., Govardhan, R. and Williamson, C.H.K. A complementary numerical and physical investigation of vortex-induced vibration[J]. Journal of Fluids and Structures, , 2001(15), p:481-488.
    [53] Guilmineau, E. and Queutey, P. Numerical simulation of vortex-induced vibration of a circular cylinder with low mass-damping in a turbulent flow[J]. Journal of Fluids and Structures , 2004(19), p: 449-466.
    [54] Pan, Z.Y., Cui, W.C., Miao, Q.M. Numerical simulation of vortex-induced vibration of a circular cylinder at low mass damping using RANS code[J], Journal of Fluids and Structures, 2007(23),p:23-37.
    [55] Rakshit,T., Atluri, S., Dalton, C. VIV Of A Composite Riser At Moderate Reynolds Number Using CFD[C]. Paper No. OMAE2005- 67206, Halkidiki, GReece,2005.
    [56] Kevin Huang, Hamn-Ching Chen, Chia-Rong Chen. Deepwater Riser VIV Assessment by Using a Time Domain Simulation Approach[J].Paper No.OTC18769, Houston,Texas,2007.
    [57] Lu, X., Dalton, C., and Zhang, J. Application of large eddy simulation flow past a circular cylinder[J]. ASME J. Offshore Mech. Arct. Eng, 1997(119), p:219–225.
    [58] Dong, S., and Karniadakis, G. E. DNS of Flow Past a Stationary and Oscillating Rigid Cylinder at Re=10,000[J]. J. Fluids Struct., 2005(20), p:519–532.
    [59] Kim, J., Moin, P. & Moser, R. Turbulence statistics in fully developed channel flow at lowReynolds number[J]. J. Fluid Mech. ,1987(177), p:133–166.
    [60] Moin P, Mahesh K. Direct numerical simulation: a tool inturbulence research[J]. Annu Rev Fluid Mech, 1998(30), p:539– 578.
    [61] Scardovelli, R., Zaleski, S. Direct numerical simulation of free-surface and interfacial flow[J]. Annual Review of Fluid Mechanics, . 1999(31), p: 567-603.
    [62] Lucor, D., Foo, J. and Karniadakis, G.E. Vortex mode selection of a rigid cylinder subject to VIV at low mass-damping[J]. Journal of Fluids and Structures, 2005(20), p:483-503.
    [63] Newman, D. J., and Karniadakis, G. E. A Direct Numerical Simulation of Flow Past a Freely Vibrating Cable[J]. J. Fluid Mech. ,1997(344). P:95–136.
    [64] Evangelinos. C., Lucor, D., and Karniadakis, G. E. DNS-Derived Force Distribution on Flexible Cylinders Subject to Vortex-Induced Vibration[J]. J. Fluids Struct. ,2000(14), p:429–440.
    [65]姚宗.流速分层流场中细长柔性立管涡激振动实验研究[D], [学位论文],上海交通大学图书馆,2008.
    [66] Vandiver, J.K. Dimensionless parameters important to the prediction of vortex-induced vibration of long, flexible cylinders in ocean currents[J]. Journal of Fluids and Structures, 1993(7), p:423-455.
    [67] Vandiver, J.K., Allen, D. and Li, L. The Occurrence of Lock-In Under Highly Sheared Conditions[J]. Journal of Fluids and Structures ,1996(10), p:555-561.
    [68] Lie, H., Kaasen, K.E. Modal analysis of measurements from a large-scale VIV model test of a riser in linearly sheared flow[J]. Journal of Fluids and Structures, 2006(22), p: 557–575
    [69] Chaplin, J.R., Bearman, P.W., Huera Huarte, F.J., Pattenden, R.J. Laboratory measurements of vortex-induced vibrations of a vertical tension riser in a stepped current[C]. In: de Langre, E., Axisa, F. (Eds.), Proc. of the 8th FIV, vol. 2, Paris, France, pp. 279-284, 2004a.
    [70] Feng, C.C.. The measurement of vortex induced effects in flow past stationary and oscillating circular and d-section cylinders[D]. Department of Mechanical Engineering, University of British Columbia, Canada, 1968.
    [71] Khalak, A., Williamson, C.H.K. Dynamics of a hydroelastic cylinder with very low mass and damping. Journal of Fluids and Structures, 1996(10), p:455-472.
    [72] Khalak, A., Williamson, C.H.K. Motions, forces and mode transitions in vortex-induced vibrations at low mass-damping. Journal of Fluids and Structures, 1999(13), p:813-851.
    [73] Govardhan, R., Williamson, C.H.K. Modes of vortex formation and frequency response for a freely vibrating cylinder. Journal of Fluid Mechanics, , 2000(420), p:85-130.
    [74] Govardhan, R., Williamson, C. H. K. Resonance forever: existence of a critical mass and an infinite regime of resonance in vortex-induced vibration[J]. Journal of Fluid Mechanics, 2002(473), p:147-166.
    [75] Jauvtis, N., Williamson, C. H. K. Vortex-induced vibration of a cylinder with two degrees of freedom, Journal of Fluids and Structures, 2003(17), p:1035-1042.
    [76] Aronsen, K.H. An experimental investigation of in-line and combined in-line and cross-flow vortex induced vibrations[D]. Norwegian University of Science and Technology, Trondheim, Norway , 2007.
    [77] Staubli T. Calculation of the vibration of an elastically mounted cylinder using experimental datafrom forced oscillation[J]. Fluids Eng.,1983(105),p:225-229.
    [78] Moe, G., Wu, Z.J. The lift force on cylinder vibrating in a current[J]. ASME Journal of Offshore Mechanics and Arctic Engineering, 1990(112), p:297–303.
    [79] Griffin O M, Votaw C W. The vortex street in the wake of a vibrating cylinder[J]. Journal of Fluid Mechanics. 1972(51), p:31-48.
    [80] Gopalkrishnan, R. Vortex induced forces on oscillating bluff cylinders[D]. Ph.D. Thesis, Department of Ocean Engineering, MIT, Cambridge, MA, USA,1993.
    [81] Patrikalakis, N.M. and Chryssostomidis, C. Vortex induced response of a flexible cylinder in a sheared current[J]. ASME Journal of Energy Resources Technology, , 1986(108),p:59-64.
    [82]陈铁云,陈伯真.船舶结构力学[M].上海交通大学出版社,1991.
    [83]金咸定,赵德有.船体振动学[M].上海:上海交通大学出版社,2000.
    [84] Sparks C P. Transverse modal vibrations of vertical tensioned risers. A simplified analytical approach [J]. Oil and Gas Science and Technology, 2002, 57(1),p:71-86.
    [85] Senjanovic I., et al. Natural vibration analysis of tensioned risers by segmentation method [J]. Oil and Gas Science and Technology, 2006, 61(5), p:647-659.
    [86] Timoshenko, S. Vibration Problems in Engineering. D.Van Nostrand Company. 1995.
    [87] Clough, R.W. and Penzien, J. Dynamics of Structures, McGraw-Hill Book Company.1975.
    [88] MMS.SCR INTEGRITY STUDY.Volume1, Main study Report. INTEC PROJECT NUMBER:11172601, 2006.
    [89] Mekha B B. New Frontiers in the Design of Steel Catenary Risers for Floating Production Systems [J] . Journal of Offshore Mechanics andArctic Engineering , 2001 , 123 (11),p:153-158.
    [90] Anthi Miliou , Spencer J Sherwin , J Michael R Graham. Fluid dynamic loading on curved riser pipes [J] . Journal of Offshore Mechanics and Arctic Engineering , 2003 , 125 (3),p:176-182.
    [91] Chaplin, J.R, et al., Blind predictions of laboratory measurements of vortex induced vibrations of a tension riser [J]. Journal of fluids and structures, 2005(21), p:25-40.
    [92] Vandiver, J.K., Li Li. SHEAR7 V4.3 Program Theoretical Manual[M]. Department of Ocean Engineering Massachusetts Institute of Technology, 2003.
    [93] Vandiver, J.K., Li Lee, Steve Leverette, Hayden Marcollo. User Guide for SHEAR7 Version 4.3[M]. Massachusetts Institute of Technology, 2003.
    [94] Yong Bai, Qiang Bai. Subsea Pipelines and Risers[M]. Elsevier Science Ltd, 2005.
    [95] Bridge,C., Willis, N. Development of SHEAR 7 Lift Curves for VIV Analysis and Application to Single Pipe and Bundle Risers[M]. OTC 17533, 2005.
    [96] Venugopal, M. Damping and Response Prediction of a Flexible Cylinder in a Current[D]. Ph.D. Thesis, Department of Ocean Engineering, MIT, Cambridge, MA, USA, 1996.
    [97] Baarholm,G. S.,Larsen,C. M., Lie,H. Reduction of VIV using suppression devices -An empirical approach. Marine Structures, 2005(18), p:489~510.
    [98] DEEPSTARⅡA Project. Steel Catenary Riser Performance on a floating production system. DSⅡA CTR A401-1, March 11th, 1996.
    [99] Vandiver,J.K. The occurrence of lock-in under highly sheared conditions [J]. Journal of fluids and structures, 1996(10), p:555-561.
    [100] M.A.Tognarelli, S.T.Slocum, W.R. Frank, R.B. Campbell (2004). VIV Response of a LongFlexible Cylinder in Uniform and Linearly Sheared Currents [C]. OTC16338, Offshore Technology Conference, Houston, TX.
    [101] Vikestad.K and Vandiver, J.K. Added mass and oscillation frequency for a circular cylinder subjected to vortex-induced vibrations and external disturbance[J]. Journal of Fluids and Structures, 2000(14), p:1071-1088.
    [102] Fujarra, A.L.C. and Pesce, C.P. Added mass of an elastically mounted rigid cylinder in water subjected to vortex induced vibrations[C]. Proceedings of the 21st international conference on offshore mechanics and artic engineering. Oslo, Norway. OMAE28375,2002.
    [103] Aronsen, K.H., Carl.M.Larsen, and K. Mφrk. Hydrodynamic coefficients from in-line viv experiments[C]. In: Proceedings of the 24th International conference on offshore mechanics and artic engineering.. Halkidiki, Greece. OMAE67393, 2005.
    [104] Aronsen, K.H. and Carl.M.Larsen. Hydrodynamic coefficients for in-line vortex induced vibrations[C].In: Proceedings of the 26th international conference on offshore mechanics and arctic engineering. San Diego, California, USA. OMAE29531, 2007.
    [105] Wu, J., Carl.M.Larsen, and K.E. Kaasen. A new approach for identification of forces on slender beams subjected to vortex induced vibrations[C]. Proceedings of the ASME 27th international conference on offshore mechanics and arctic engineering. Estoril, Portugal. OMAE2008-57550, 2008.
    [106] Vandiver, J.K. Drag coefficients of long flexible cylinders[C]. In: Offshore Technology Conference. Houston, Texas. OTC 4490, 1983.
    [107] Kaasen, K.E., Lie, H., Solaas, F., Vandiver, J.K. Norwegian deepwater program: analysis of vortex-induced vibrations of marine risers based on full-scale measurements[C]. In: Proceedings of the Offshore Technology Conference, Houston, Texas, OTC11997, 2000.
    [108] Skop, R.A., Griffin, O.M., and Ramberg, S.E. Strumming predictions for the seacon II experimental mooring[C]. Offshore Technology conference Preprint OTC 2491, 1977.
    [109] Vikas Jhingran, Vivek Jaiswal and J.Kim Vandiver. Spatial variation of drag on long cylinders in sheared flow[C]. Proceedings of the ASME 27th International Conference on Offshore Mechanics and Arctic Engineering. Estoril, Portugal. OMAE2008-57803.
    [110] Prashant Soni. Hydrodynamic coefficients for vortex-induced vibrations of flexible beams[D]. Phd thesis, NTNU, Trondheim, Norway, 2008.
    [111] Violette R, de Langer E, Szydlowski J. Computation of vortex-induced vibrations of long structures using a wake oscillator model: Comparison with DNS and experiments[J]. Comp Struct, 2007(85), p:1134—1141.
    [112] Vivek Jaiswal. Effect of traveling waves on vortex-induced vibration of long flexible cylinders[D]. Ph.D. Thesis, Department of Ocean Engineering, MIT, Cambridge, MA, USA, 2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700