CAGD中等距线及测地线相关问题的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
等距线和测地线是计算机辅助几何设计中具有重要研究价值的两类基本曲线.其中,等距线的近似有理表示、逼近误差估计、低次曲线逼近,以及过测地线的有理曲面、可展曲面设计和调控由于直接关系到几何设计系统、工程技术应用、工业生产加工的功能、质量、精度及效率等而成为当前的研究热点.然而它们迄今未有令人满意的解决方案.本文围绕这些问题展开深入研究,建立起一系列方便高效的几何算法,取得了以下丰富的创新性理论成果:
     (1)提出一种能够精确等距圆弧的高精度、高连续阶的等距逼近新算法.基于对现有各种等距逼近算法局限性的深入剖析,提炼出按算法几何意义、逼近误差精度、逼近曲线形式、等距常用曲线等原则来评价等距逼近方法优劣的一个基本准则;并以此为目标,借助基圆重新参数化的等距逼近思想,采用独特的参数化函数,创造出一种全新的等距逼近算法:无需预先识别就能精确等距圆弧这类常用曲线,在高精度要求下比现有等距逼近算法产生更少的分段数和控制顶点数,且将逼近连续阶由一般情况的G~1提高到C~1;从而一举克服了现有算法中不能精确等距圆弧、高度依赖于点采样、全局误差难以有效控制等种种弊病,特别适合应用于几何设计系统中,在压缩数据存储量、提高计算效率、改善曲线整体光滑性效果方面有特别重要的现实意义.
     (2)对基于基圆重新参数化的等距逼近算法进行了透彻的误差估计.着眼于误差产生来源,发现并阐述了基圆重新参数化等距逼近算法与基圆逼近算法之间的对偶性;揭示出前者的误差来源于近似等距方向与基曲线法向之间的偏角,并指出近似等距曲线与基曲线上对应点之间的距离向量其模长恒为已知等距距离但其方向却偏离基曲线法向,只有彻底研究偏角的几何内涵及代数形式才能精确估计等距逼近误差;基于这种发现,摒弃了常用的对应参数点误差估计方式,巧用几何信息,提出并成功地实现了用Hausdorff距离来计算近似等距曲线与精确等距曲线上对应点之间误差的新方法:从而在极大程度上完善了基圆重新参数化这一等距逼近算法的理论研究,并为该算法和其他各类算法的比较提供了理论依据.
     (3)提出了一种快速实现易于造型、兼容于不同几何设计系统的低次等距逼近的新算法.通过改进传统的向量值Padé逼近方法,结合曲线细分、中点展开等技术,构造出可以达到预设精度的任意次的有理等距逼近,从而消除了现有的低次等距逼近算法中大多采用点采样技术,缺乏稳定性且误差估计不便等局限性;利用线性方程组求解,使得算法敏捷,误差估计方便,为低次等距几何逼近提供了一个崭新工具.
     (4)给出了过给定测地线且兼具某些几何特征的一类参数曲面的设计和调控技术,解决了以往曲面造型中仅有一般设计原理,无法具体进行曲面表示和调整的问题,为服装鞋帽类的变型设计自动化开辟了一个新途径.与此同时,鉴于计算机辅助设计和制造系统对曲面表示和数据交换的需要,实现了过给定测地线的有理曲面设计,给出了常用的三次有理曲面的设计算法,充分考虑到设计中调整曲面形状的需要,采用变分优化技术,便于对曲面直接操作,直观便捷,且兼顾到曲面造型和光顺的需要.
     (5)提出了全新的可展曲面设计思路.基于将曲面看作动曲线上的点沿局部坐标架在空间中运动所得轨迹的观点,得到了过给定曲线的一张可展曲面的充分必要条件.受鞋衣制造业的启发,特别考虑了给定曲线为所求曲面上一条测地线的情况.根据可展曲面的类型,把给定曲线作相应分类,使得算法在工程中的应用与实现能够十分方便而有效.此外,给出了可展曲面的多项式表示,使得算法效率进一步提高.
     (6)讨论了广泛应用于工程、能精确表示双曲线、悬链线等超越曲线的H-Bézier曲线的奇异点情况.利用活动控制顶点技术,刻划曲线奇异点与活动控制顶点分布的对应情况,并就判别曲线的类型比较了三次H-Bézier曲线、Bézier曲线、有理Bézier曲线及C-Bézier曲线,并指出了这种曲线刻划方法的重要应用.
Offsets and geodesics are two fundamental curves with great importance in researches of computer aided geometric design(CAGD).The offset approximation in terms of rational representation,error estimation,and low-order approximation, as well as the surface design and modification passing through the given geodesic,has become one of the hotspots of investigation,due to the direct relationship with the function,quality,precision and efficiency of geometric design systems,engineering techniques,and processing industries.However,up to now there are still no satisfying solutions to the issues.Centering on those areas,this thesis carries out an in-depth study,and provides a series of convenient and efficient geometric algorithms.The abundant and innovative results are presented as follows:
     (1) Propose a high precision and high-order continuity offset approximation algorithm yielding precise circular offsetting.Based on the thorough analysis of all existing offset approximation methods,we abstract several principles for algorithm evaluation,including geometric interpretation,approximation precision, approximate curve representation and the approximation effect for curves in common use.According to these principles and based on the circle reparametrization theory,we apply a unique parametrization function,and deduce an innovative algorithm for planar offset approximation.The algorithm has the advantages of implementing precise offsetting for circulars without curve identification in advance,generating a much smaller number of curve segmentations and control points in the demand of high precision approximation,and improving the continuity of the resultant curve from G~1 to C~1.So it successfully overcomes different kinds of intrinsic disadvantages of existing methods,which cannot offset circulars precisely,or highly depend on the sampling technique,or cannot achieve global error control.The algorithm has practical significance in saving data storage,raising computing efficiency and improving the whole smoothness, so is especially suitable for geometric design systems.
     (2) Carry out a thorough analysis for error estimation of the offset approximation technique based on circle reparametrization.Focusing on the sourse of the approximation error,we discover and explain the duality of the two offset approximation methods based on circle reparametrization and circle approximation respectively.It reveals that the approximation error of the first method origins from the deflection of the approximate offset direction and the normal direction of the base curve,but the distance between the corresponding points of the approximate offset and the base curve is always equal to the given offset radius. In this sense,no precise offset approximation can be achieved until the thorough researches of the geometric meaning and the algebraic form of the deflection angle. We get rid of the error estimation way of measuring the distance between the corresponding points with the same parameter.By skillfully using the geometric information,Hausdorff distance estimation is proposed and successfully computed between the precise offset and the approximate offset.The discussion perfects the theoretical research on the circle reparametrization method, and provides theoretical basis for the comparison between the method and other algorithms.
     (3) Develop a new algorithm for low-order offset approximation in terms of fast implementation of curve modeling,and good compatibility of different geometric design systems.By improving the traditional vector Padéapproximation method and combining the curve subdivision and expansion technique at the mid-point,the method yielding arbitrary order rational offset approximation and achieving the given precision is obtained.The method avoids the limits of the sampling technique,which leads to unstable results and cannot achieve global error control.Instead it applies the linear system for the final solution,so the computation and error estimation is convenient and fast in implementation.The method provides a new geometric tool for low-order offset approximation.
     (4) Provide a technique for designing and modeling surfaces with the given curve as a geodesic.The previous research only proposed a common principle without the consideration of the surface representation and modification requirements in geometric design systems.Our method solves the problem,developing a new way for design automation in garment manufacture and shoe-making indus- try.Considering the demand of data representation and exchange in computer aided design and computer aided manufacture(CAD/CAM) system,we research the rational surface design,and provide an algorithm for the construction of the cubic rational surface.Variation optimization technique is used,which can be operated directly on the surface in an intuitive way,giving consideration of both surface modeling and smoothing.
     (5) Offer a wholly bran-new idea for developable surface design.Based on the view of regarding a surface as a locus of the moving point of the given curve moving along the local frame in the space,we deduce the sufficient and necessary conditions for the surface passing through the given curve to be developable. Inspired by the practice in garment manufacture and shoe-making industry,we give special attention to the situation when the given curve is a geodesic on the surface.According to the types of developable surfaces,the given curve is characterized in order to make the algorithm more convenient and effective in engineering application.Besides,rational representation is provided,which further improves the computation efficiency.
     (6) Discuss the singularity distribution of H-Bézier curves,which can precisely represent the widely used curves,hyperbola and catenary.Using the moving control point technique,the correspondence between the distribution of the moving control point and the curve singularities is characterized.Comparison in terms of the type of the discriminant curve is provided between the cubic H-Bézier curve,Bézier curve,rational Bézier curve and C-Bézier curve.We also illustrate the application of this curve characterizing method.
引文
[1] Agarwal PK, Har-Peled S, Sharir M and Varadarajan KR. Approximating shortest paths on a convex polytope in three dimensions. Journal of the ACM 1997; 44(4): 567-584.
    [2] Ahn YJ, Kim YS, Shin Y. Approximation of circular arcs and offset curves by Bezier curves of high degree. Journal of Computational and Applied Mathematics 2004; 167(2): 405-416.
    [3] Alfeld P, Schumaker L. The dimension of bivariate spline spaces of smoothness r and degree d≥ 4r+1. Constructive Approximation 1987; 3: 189-197.
    [4] Aumann G. A simple algorithm for designing developable Bezier surfaces. Computer Aided Geometric Design 2003; 20(8-9): 601-16.
    [5] Baker GA, Graves-Morris PR. Pade approximants, part II: Extension and Applications. London: Addison-wesley publishing company, 1981.
    [6] Ball AA. CONSURF, Part 1: Introduction to the conic lofting title. Computer Aided Design 1974; 6(4): 243-249.
    [7] Ball AA. CONSURF, Part 2: Description of the algorithms. Computer Aided Design 1975; 7(4): 237-242.
    [8] Ball AA. CONSURF, Part 3: How the program is used. Computer Aided Design 1977; 9(1): 9-12.
    [9] Barnhill RE, Birkhoff G, Gordon WJ. Smooth interpolation in triangles. Journal of Approximation Theory 1973; 8(2): 114-128.
    [10] Barnhill RE, Gregory JA. Polynomial interpolation to boundary data on triangles. Mathematics Of Computation 1975; 29(131): 726-735.
    [11]Barnhill RE,Riesenfeld RF.Computer Aided Geometric Design.Orlando,FL:Academic Press,1974.
    [12]Berger S,Webster A,Tapia R and Atkins D.Mathematical ship lofting.J Ship Research 1966;10:203-222.
    [13]Bézier P.Définition numérique des courbes et surfaces Ⅰ.Automatisme 1966;Ⅺ:625-632.
    [14]Bézier P.Définition numérique des courbes et surfaces Ⅱ.Automatisme 1967;Ⅻ:17-21.
    115]Bézier P.Procédě de définition numérique des courbes et surfaces non mathématiques.Automatisme 1968;ⅩⅢ(5):189-196.
    [16]Bézier P.Mathematical and practical possibilities of UNISURF.In:Barnhill R,Riesenfeld R,editors.Computer Aided Geometric Design,1974.p.127-152.
    [17]Blaschke W.Differentialgeometrie.Chelsea,1953.Reprint of the original 1923 edition.
    [18]Bodduluri RMC,Ravani B.Design of developable surfaces using duality between plane and point geometries.Computer Aided Design 1993;25(10):621-32.
    [19]Boehm W.Cubic B-spline curves and surfaces in computer aided geometric design.Computing 1977;19(1):29-34.
    [20]Boehm W.Inserting new knots into B-spline curves.Computer Aided Desgin 1980;12(4):199-201.
    [21]Brond R,Jeulin D,Gateau P,Jarrin J,Serpe G.Estimation of the transport properties of polymer composites by geodesic propagation.J Microsc 1994;176(2):167-177.
    [22]Bryson S.Virtual spacetime:an environment for the visualization of curved spacetimes via geodesic flows.IEEE Visualization 1992;291-298.
    [23]Catmull E,Clark J.Recursively generated B-spline surfaces on arbitrary topological meshes.Computer Aided Design 1978;10(6):350-355.
    [24]Celniker G,Welch W.Linear constraints for deformable B-spline surfaces.Proceedings of the 1992 Symposium on Interactive 3D Graphics.Massachusetts:ACM Press.1992.p.165-170.
    [25]Chainkin GM.An algorithm for high speed curve generation.Computer Graphics and Image Processing 1974;3(12):346-349.
    [26]Chalfant JS,Maekawa T.Design for manufacturing using B-spline developable surfaces.Journal of Ship Production 1998;42(3):207-215.
    [27]陈国栋,王国瑾.有理等距曲线的C~2 Hermite插值.工程图学学报 2000;21(3):64-69.
    [28]Chen HY,Pottmann H.Approximation by ruled surfaces.Journal of Computational and Applied Mathematics 1999;102(1):143-156.
    [29]Chen QY,Wang GZ.A class of Bézier-like curves.Computer Aided Geometric Design 2003;20(1):29-39.
    [30]Chen YJ,Ravani B.Offset surface generation and contouring in computeraided design.Journal of Mechanisms,Transmissions and Automation in Design:ASME Transactions 1987;109(3):133-142.
    [31]Cheng M,Wang GJ.Rational offset approximation of rational Bezier curves.Journal of Zhejiang University 2006;7(9):1561-1565.
    [32]Chiang CS,Hoffmann CM,Lynch RE.How to compute offsets without self-intersection.In:Silbermann MJ,Tagare D,editors.Proceedings of SPIE conference on curves and surfaces in computer vision and graphics Ⅱ.Boston,Massachusetts,1991.p.76-87.
    [33]Chu CH,Séquin CH.Developable Bézier patches:properties and design.Computer Aided Design 2002;34(7):511-527.
    [34] Celniker C, Gossard D. Deformable curve and surface finite-elements for free-form shape design. Computer Graphics 1991; 25(4): 257-266.
    [35] Cobb ES. Design of sculptured surfaces using the B-spline representation. Ph.D. Dissertation, University of Utah, USA, Jun, 1984.
    [36] Cohen E, Lyche T, Riesenfeld R. Discrete B-splines and subdivision techniques in computer aided geometric design and computer graphics. Comp. Graphics and Image Process 1980; 14(2): 87-111.
    [37] Cohen S, Elber G, Bar Yehuda R. Matching of freedom curves. Computer Aided Design 1997; 29(5): 369-378.
    [38] Coquillart S. Computing offsets of B-spline curves. Computer Aided Design 1987; 19(6): 305-309.
    [39] Coons S. Graphical and analytical methods as applied to aircraft design. J. of Eng. Education 1947; 37(10).
    [40] Coons SA. Surfaces for computer aided design of space Figures. MIT Project MAC-TR-255, 1964.
    [41] Coons SA. Surfaces for computer aided design of space forms. MIT Project MAC-TR-41, 1967.
    [42] Cox M. The numerical evaluation of B-splines. Journal of the Institute of Mathematics and Its Applications. 1972; 10: 134-149.
    [43] Curry H. Review. Mathematical Tables and Other Aids to Computation. 1947; 2: 167-169, 211-213.
    [44] de Boor C. On Calculating with B-splines. Journal of Approximation Theory 1972; 6(1): 50-62.
    [45] de Casteljau P. Outillages methodes calcul, Technical Report, A. Citioon, Paris, 1959.
    [46] de Casteljau P. Courbes et surfaces a poles. Technical report, A. Citroen, Paris, 1963.
    [47] de Casteljau P. Formes a Poles. Hermes, Paris, 1985.
    [48] Doo D, Sabin M. Behavior of recursive division surfaces near extraordinary points. Computer Aided Design 1978 10(6): 356-360.
    [49] Duhamel du Monceau HL. Elements de l'Architecture Navale ou Traite Pratique de la Construction des Vaissaux. Paris, 1752.
    [50] Dyn N, Gregory JA, Levin D. A 4-point interpolatory subdivision scheme for curve design. Computer Aided Geometric Design 1987; 4(4): 257-268.
    [51] Dyn N, Levin D, Gregory JA. A butterfly subdivision scheme for surface interpolation with tension control. ACM Transactions on Graphics 1990; 9(2): 160-169.
    [52] Edge WL. The Theory of Ruled Surfaces. Cambridge Univ. Press, Cambridge, UK, 1931.
    [53] Elber G, Cohen E. Error bounded variable distance offset operator for free form curves and surfaces. International Journal of Computational Geometry and Application 1991; 1(1): 67-78.
    [54] Elber G, Cohen E. Offset approximation improvement by control points perturbation. In: Lyche T, Schumaker LL, editors. Mathematical methods in computer aided geometric design II, 1992. p. 229-237.
    [55] Elber G, Lee IK, Kim MS. Comparing offset curve approximation method. IEEE Computer Graphics and Application 1997; 17(3):62-71.
    [56] Fang L, Gossard DC. Fitting 3D curves to unorganized data points using deformable curves. In: Tosiyasu LK, editor. Visual Computing. 1992. p. 535-543.
    [57]Farin G.Bézier polynomials over triangles and the construction of piecewise C~r polynomials.Technical Report TR/91,Brunel University,Uxbridge,England,1980.
    [58]Farin G.Design C~1 surfaces consisting of triangular cubic patches.Computer Aided Design 1982;14(5):253-256.
    [59]Farin G.Algorithms for rational Bézier curves.Computer Aided Design 1983;15(2):73-77.
    [60]Farin G.Triangular Bernstein-Bézier patches.A Survey and New Results,Computational Geometry and Computer Aided Design,NASA Publication,1985.
    [61]Farin G.Triangular Bernstein-Bézier patches.Computer Aided Geometric Design 1986;3(2):83-127.
    [62]Farin G.Curves and surfaces for Computer Aided Geometric Design,2nd Edition.Academic Press,1990.
    [63]Farin G.Curves and surfaces for computer aided geometric design,4th Edition.San Diego:Academic Press,1997.
    [64]Farouki RT.The approximation of non-degenerate offset surfaces.Computer Aided Geometric Design 1986;3(1):15-43.
    [65]Farouki RT,Neff CA.Analytic properties of plane offset curves.Computer Aided Geometric Design 1990;7(1-4):83-99.
    [66]Farouki RT,Sakkalis T.Pythagorean hodographs.IBM Journal of Research and Development 1990;34(5):736-752.
    [67]Farouki RT,Sakkalis T.Pythagorean hodographs space curves.Advances in Computational Mathematics 1994;2(1),41-66.
    [68]Farouki RT,Sederberg TW.Analysis of the offset to a parabola.Computer Aided Geometric Design 1995;12(7):639-645.
    [69] Faux I, Pratt M. Computational Geometry for Design and Manufacture. Chichester: Ellis Horwood, 1979.
    [70] Ferguson JC. Multivariable curve interpolation, Report No. D2-22504. The Boeing Co., Seattle, Washington, 1963.
    [71] Ferguson JC. Multivariable curve interpolation. Journal ACM 1964; 11(2): 221-228.
    [72] Ferris LW. A standard series of developable surfaces. Marine Technology 1968; 5(1): 53-62.
    [73] Floater M. An O(h~(2n)) Hermite approximation for conic sections. Computer Aided Design 1997; 14(2): 135-151.
    [74] Forrest AR. Curves and surfaces for computer-aided design. Ph. D. Thesis, Cambridge, 1968.
    [75] Forsey DR, Bartels RH. Hierarchical B-spline refinement. Computer Graphics 1988; 22(4): 205-212.
    [76] Frank Chuang S, Kao C. One-sided arc approximation of B-spline curves for interference-free offsetting. Computer Aided Design 1999; 31(2): 111-118.
    [77] Ge QJ. Kinematics-driven geometric modeling: a framework for simultaneous NC tool-path generation and sculptured surface design. Proceedings of the 1996 13th IEEE International Conference on Robotics and Automation. Minneapolis, MN, 1996. p. 1819-1824.
    [78] Goldenberg R, Kimmel R, Rivlin E, Rudzsky M. Fast geodesic active contours. IEEE Transactions on Image Processing 2001; 10(10): 1467-1475.
    [79] Goodman TNT, Said HB. Shape preserving properties of the generalized Ball basis. Technical Reprot M6/88, School of Mathematical and Computer Sciences, universitiSainsmalaysia, Penang, Malasia, 1988.
    [80]Gordon WJ,Riesenfeld RF.Bernstein Bézier methods for the Computer Aided Geometric Design of free-form curves and surfaces.Journal of ACM 1974;21(2):293-310.
    [81]Gordon WJ,Riesenfeld RF.B-spline curves and surfaces.In:Barnhill R,Riesenfeld R,editors.Computer Aided Geometric Design,1974.p.95-126.
    [82]Graves-Morris PR,Jenkins CD.Vector valued rational interpolants Ⅲ.Constr.Approx.1986,2:263-289.
    [83]Grundig L,Ekert L,Moncrieff E.Geodesic and semi-Geodesic line algorithms for cutting pattern generation of architectural textile structures.In Lan TT,editor.Proceedings of Asia-Pacific Conference on Shell and Spatial Structures.Beijing,1996.
    [84]Han Xuli.Cubic trigonometric curves with a shape parameter.Computer Aided Geometric Design 2004;21(6):535-548.
    [85]Hansen A,Arbab F.An algorithm for generating NC tool paths for arbitrarily shaped pockets with islands.ACM Transactions on Graphics 1992;11(2):152-182.
    [86]Har-Peled S.Approximate shortest-path and geodesic diameter on convex polytopes in three dimensions.Discrete & Computational Geometry 1999;21(2):217-231.
    [87]Haw RJ.An application of geodesic curves to sail design.Computer Graphics Forum 1985;4(2):137-139.
    [88]Haw RJ,Munchmeyer RC.Geodesic curves on patched polynomial surfaces.Computer Graphics Forum 1983;2(4):225-232.
    [89]Held M.On the computational geometry of pocket machining.Berlin:Springer-Verlag,1991.
    [90]Hoschek J.Liniengeometrie,Bibliograph.Institut,Zurich,1971.
    [91]Hoscheck J.Spline approximation of offset curves.Computer Aided Geometric Design 1988;20(1):33-40.
    [92]Hoscheck J,Wissel N.Optimal approximate conversion of spline curves and spline approximation of offset curves.Computer Aided design 1988;20(10):475-483.
    [93]Hu SM,Wang GJ,Sun JG.A type of triangular Ball surface and its properties.Journal of Computer Science and Technology 1998;13(1):63-72.
    [94]Hu SM,Wang GZ,Jin TG.Properties of two types of generalized Ball curves.Computer Aided Design 1996;28(2):125-133.
    [95]江平,檀结庆.Wang-Said型广义Ball曲线的降阶.软件学报2006;17(增刊):93-102.
    [96]Juhász Imre.On the singularity of a class of parametric curves.Computer Aided Geometric Design 2006;23(2):146-156.
    [97]科赫.膜结构建筑.大连:大连理工大学出版社,2007.
    [98]Kimmel R,Bruckstein AM.Shape offsets via level sets.Computer Aided Design 1993;25(3):154-162.
    [99]Kimmel R,Sethian J.Computing geodesic paths on manifolds.Proceedings of National Academy of Sciences,USA 1998;95(15):8431-8435.
    [100]Klass R.An offset spline approximation for plane cubic splines.Computer Aided Design 1983;15(4):297-299.
    [101]Klingenberg W.A course in Differential Geometry.Translated by Hoffman D.New York:Springer-Verlag,1978.
    [102]Kuragano T,Sasaki N,Kikuchi A.The FRESDAM system for designing and manufacturing free form objects.In:Martin R,editor.USA-Japan Cross Bridge.Flexible Automation,1988.2:p.931-938.
    [103]Lee IK,Kim MS,Elber G.Planar curve offset based on circle approximation.Computer Aided Design 1996;28(8):617-630.
    [104]Lee IK,Kim MS,Elber G.New approximation methods of planar offset and convolution curves.In:Strasser W,Klein R,Rau R,editors.Geometric Modeling:Theory and Practice,1997.p.83-101.
    [105]Lee IK,Kim MS,Elber G.Polynomial/rational approximation of Minkowski sum boundary curves.Graphical Models and Image Processing 1998;60(2):136-165.
    [106]Li YM,Cripps RJ.Identification of inflection points and cusps on rational curves.Computer Aided Geometric Design 1997;14(5):491-497.
    [107]Li YM,Hsu VY.Curve offsetting based on Legendre series.Computer Aided Geometric Design 1998;15(7):711-720.
    [108]Liming R.Practical analytical geometry with applications to aircraft.Macmillan,1944.
    [109]刘利刚,王国瑾.基于控制顶点偏移的等距曲线最优逼近.软件学报 2002;13(3):398-403.
    [110]刘松涛,刘根洪.广义Ball样条曲线及三角域上曲面的升阶公式和转换算法.应用数学学报 1996;19(2):243-253.
    [111]Liu XZ,Yong JH,Zheng GQ,Sun JG.An offset algorithm for polyline curves.Computers in Industry 2007;58(3):240-254.
    [112]Loop C.Smooth subdivisioin surfaces based on triangles.Master's Thesis,Department of Mathematics,University of Utah,1987.
    [113]Lü Wei.Offset-rational parametric plane curves.Computer Aided Geometric Design 1995;12(6):601-616.In:Lyche T,Schumaker LL,editors.Mathematical methods in computer aided geometric design Ⅱ,1992.p.549-558.
    [114]Lü Wei.Rational parameterization of quadrics and their offsets.Computing 1996;57(2):135-147.
    [115]Lü YG,Wang GZ,Yang XN.Uniform hyperbolic polynomial B-spline curves.Computer Aided Geometric Design 2002;19(6):379-393.
    [116]Maekawa T.An overview of offset curves and surfaces.Computer Aided Design 1999;31(3):165-173.
    [117]Manocha D,Canny JF.Detecting cusps and inflection points in curves.Computer Aided Geometric Design 1992;9(1):1-24.
    [118]Martin RR.Principal patches-a new class of surface patch based on differential geometry.In:Hagen PJ,editer.Proceeding of Eurographics' 83,North-Holland,Amsterdam,1983.
    [119]Mazure ML.Chebyshev-Bernstein bases.Computer Aided Geometric Design 1999;16(7):649-669.
    [120]Mehlum E,Sorenson P.Example of an existing system in the shipbuilding industry:the AUTOKON system.Proc.Roy.Soc.London.1971;A.321:219-233.
    [121]Memoli F,Sapiro G.Fast computation of weighted distance functions and geodesics on implicit hyper-surfaces.Journal of Computational Physics 2001;173(2):730-764.
    [122]Meek DS,Walton DJ.Shape determination of planar uniform cubic B-spline segment.Computer Aided Design 1990:22(7):434-441.
    [123]Mereton HP,Séqin CH.Functional optimization for fair surface design.Computer Graphics 1992;26(2):167-176.
    [124]Monterde J.Singularities of rational Bézier curves.Computer Aided Geometric Design 2001;18(8):805-816.
    [125]Novotni M,Klein R.Computing geodesic paths on triangular meshes.In:Proc.WSCG'2002,2002,pp.341-348.
    [126]Nowacki H.Splines in shipbuilding.Proc.21st Duisburg colloquium on marine technology.2000.
    [127]Patrikalakis NM,Prakash PV.Free-form plate modeling using offset surfaces.Journal of Offshore Mechanics and Arctic Engineering 1988;110(3):287-94.
    [128]Patrikalakis NM,Gursoy HN.Shape interrogation by medial axis transform.In:Ravani B,editor.Proceedings of the 16th ASME Design Automation Conference:Advances in Design Automation,Computer Aided and Computational Design,1990;23(1):77-88.
    [129]Pérez F,Suárez JA,Femández L.Automatic surface modelling of a ship hull.Computer Aided Desgin.2006;38(6):584-594.
    [130]Peternell M,Pottmann H.A Laguerre geometric approach to rational offsets.Computer Aided Geometric design 1998;15(3):223-249.
    [131]Peternell M,Pottmann H,Ravani B.On the computational geometry of ruled surfaces.Computer Aided Design 1999;31(1):17-31.
    [132]Pham B.Offset approximation of uniform B-splines.Computer Aided Design 1988;20(8):471-474.
    [133]Phien HN,Dejdumrong N.Dfficient algorithms for Bézier curves.Computer Aided Geometric Design 2000;17(3):247-250.
    [134]Piegl LA.Modifying the shape of rational B-splines.Part 2:surfaces.Computer Aided Design 1989;21(9):538-546.
    [135]Piegl L,Tiller W.Curve and surface constructions using rational B-splines.Computer Aided Design 1987;19(9):485-498.
    [136]Piegl L,Tiller W.A menagerie of rational B-spline circles.IEEE Computer Graphics and its Application 1989;9(5):48-56.
    [137]Piegl LA,Tiller W.Computing offsets of NURBS curves and surfaces.Computer Aided Design 1999;31(2):147-156.
    [138]Polthier K,Schmies M.Straightest Geodesics On Polyhedral Surfaces in Mathematical Visualization.In:Hege HC,Polthier HK,editors.Berlin:Springer-Verlag,1998.
    [139]Pottmann H.Rational curves and surfaces with rational offsets.Computer Aided Geometric design 1995;12(2):175-192.
    [140]Pottmann H,Farin G.Developable rational Bézier and B-spline surfaces.Computer Aided Geometric Design 1995;12(5):513-531.
    [141]Pottmann H,Lü W,Ravani B.Rational ruled surfaces and their offsets.Graphical Models and Image Processing 1996;58(6):544-552.
    [142]Pottmann H,Peternell M,Ravani B.Approximation in line space:applications in robot kinematics and surface reconstruction.In:Lenarcis J,Husty M,editors.Advances in Robot Kinematics:Analysis and Control,Kluwer,1998.p.403-412.
    [143]Pottmann H,Wallner J.Approximation algorithm for developable surfaces.Computer Aided Geometric Design 1999;16(6):539-556.
    [144]Powell MJ,Sabin MA.A piecewise quadratic approximations on triangles.ACM Transactions on Mathematical Software 1977;3(4);316-325.
    [145]Ravani B,Chen YJ.Computer-aided design and machining of composite ruled surfaces.J.Mech.Trans.Automat.Design 1986;108(2):217-223.
    [146]Ravi Kumar GVV,Prabha S,Devaraja Holla V,Shastry KG,Prakash BG.Geodesic curve computations on surfaces.Computer Aided Goemetric Design 2003;20(2):119-133.
    [147]Ramshw L.Blossoming:a connect-the-dots approach to splines.Technical report,Digital Systems Research Center,Palo Alto,Ca,1987.
    [148]Redont P.Representation and deformation of developable surfaces.Computer Aided Design 1989;21(1):13-20.
    [149]Rogers D,Satterfield S.B-spline surfaces for ship hull design.Computer Graphics.1980;14(3):211-217.
    [150]Sabin M.Trinomial basis functions for interpolation in triangular regions (Bézier triangles).Technical Reprot,British Aircraft Corporation,1971.
    [151]Said HB.Generalized Ball curve and its recursive algorithm.ACM Transaction on Graphics 1989;8(4):360-371.
    [152]Schoenberg I.Contributions to the problem of approximation of equidistant data by analytic functions.Quarterly Applied Mathematics 1946;4:45-99.
    [153]Sederberg TW,Buehler DB.Offsets of polynomial Bézier curves:Hermite approximation with error bounds.In:Lyche T,Schumaker LL,editors.Mathematical methods in computer aided geometric design Ⅱ,1992.p.549-558.
    [154]Spivak M.A comprehensive introduction to differential geometry(2nd ed.).Berkeley,CA:Publish or Perish Press,1979.
    [155]Stone MC,DeRose TD.A geometric characterization of parametric cubic curves.ACM Transactions on Graphics.1989;8(3):147-163.
    [156]苏步青,胡和生等.微分几何.北京:高等教育出版社,1979.
    [157]Su BQ,Liu DY.Computational Geometry:Curve and Surface Modeling.Boston:Academic Press,1989.
    [158]Tang K,Wang CCL.Modeling developable folds on a strip.Journal of Computing and Information Science Engineering 2005;5(1):35-47.
    [159]Terzopoulos D,Platt J,Barr A,and Fleischer K.Elastically deformable models.Computer Graphics 1987;21(4):205-214.
    [160]Terzopoulos D,Qin H.Dynamic NURBS with geometric constraints for interactive sculpting.ACM Transactions on Graphics 1994;13(2):103-136.
    [161]Theilheimer F,Starkweather W.The fairing of ship lines on a high speed computer.Numerical Tables Aides Computation.1961;15:338-355.
    [162]Tiller W,Hanson EG.Offsets of two-dimensional profiles.IEEE Computer Graphics and Application 1984;4(9):36-46.
    [163]Vergeest SM.CAD surface data exchange using STEP.Computer Aided Design 1991;23(1):269-281.
    [164]Versprille K.Computer Aided Design Applications of the Rational B-spline Approximation Form.Ph.D.Thesis,Syracuse U.,1975.
    [165]Volin O,Bercovier M,Matskewich T.A comparison of invariant energies for free-form surface construction.The Visual Computer 1999;15(4):199-210.
    [166]Wang CY.Shape classification of the parametric cubic curve and parametric B-spline cubic curve.Computer Aided Design 1981;13(4):199-206.
    [167]王国瑾.高次Ball曲线及其几何性质.高校应用数学学报1987;2(1):126-140.
    [168]王国瑾.Ball曲线曲面的离散求交.工程数学学报 1989;6(3):56-62.
    [169]王国瑾,汪国昭,郑建民.计算机辅助几何设计.北京:高等教育-施普林格出版社.2001.
    [170]Wang GJ,Tang K,Tai CL.Parametric representation of a surface pencil with a common spatial geodesic.Computer Aided Design 2004;36(5):447-459.
    [171]汪国平,孙家广.平面NURBS曲线及其offset的双圆弧逼近.软件学报 2000;11(10):1368-1374.
    [172]Wang GZ,Chen QY,Zhou MH.NUAT B-spline curves.Computer Aided Geometric Design 2004;21(2):193-205.
    [173]Wang GZ,Yang QM.Planar cubic hybrid hyperbolic polynomial curve and its shape classification.Progress in Natural Science 2004;14(1):41-46.
    [174]王仁宏,朱功勤.有理函数逼近及其应用.北京:科学出版社,2004.
    [175]王文涛,汪国昭.带形状参数的双曲多项式均匀B样条.软件学报 2005;16(4):625-633.
    [176]Wang X,Cheng F,Barsky B.Energy and B-spline interproximation.Computer Aided Design 1997;29(7):485-496.
    [177]Welch W,Watkin A.Variational surface modeling.Computer Graphics 1992;26(2):157-166.
    [178]吴大任.微分几何讲义(第四版).北京:人民教育出版社,1981.
    [179]邬弘毅.两类新的广义Ball曲线.应用数学学报2000;23(2):196-205.
    [180]奚梅成.Ball基函数的对偶基及其应用.计算数学 1997;19(2):147-153.
    [181]肖春霞,冯结青,缪永伟,郑文庭,彭群生.基于Level Set方法的点采样曲面测地线计算及区域分解.计算机学报 2005;28(2):250-258.
    [182]徐献瑜,李家楷,徐国良.Pade逼近概论.上海:上海科学技术出版社,1990.
    [183]Yang QM,Wang GZ.Inflection points and singularities on C-curves.Computer Aided Geometric Design 2004;21(2):207-213.
    [184]杨庆山,姜忆南.张拉索-膜结构分析与设计.北京:科学出版社,2004.
    [185]Zhang JW.C-curves:an extension of cubic curves.Computer Aided Geometric Design 1996;13(3):199-217
    [186]Zhang JW.Two diffferent forms of C-B-splines.Computer Aided Geometric Design 1997;14(1):31-41.
    [187]Zhang JW.C-Bézier Curves and Surfaces.CVGIP:Graphical Models and Image Processing 1999;61(1):2-15.
    [188]Zheng JM.On rational representation of offset curves.Chinese Science Bulletin 1995;40(1):9-10.
    [189]朱翔,胡事民,孙家广.基于外部能量约束的曲面形状修改.计算机辅助设计与图形学学报 2000;12(9):651-655.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700