时标上的抽象线性动态方程
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
德国数学家Hilger于1988年在他的博士论文中创立了时标上的微积分理论.将微分方程与差分方程统一并推广到时标动态方程的理论框架中.时标线性动态方程在许多领域都有应用,本文主要研究时标上的抽象线性动态方程.
     对于时标上的常系数线性矩阵动态方程,我们将矩阵动态方程解的计算转化为对应的纯量线性动态方程求解问题,得到了解的显式表达式.对于时变线性动态方程,利用算子的Riesz函数演算,将时标上的广义实值指数函数推广到一般的Banach代数中.在一定条件下证明,该广义指数函数恰为有单位元的交换Banach代数中时标线性动态方程的解,从而推广了纯量方程的相关结果.本文还在Banach空间中考虑了时标线性动态方程解的存在惟一性问题.找到了一个有界线性算子类,它在一定条件下是保证方程解的存在惟一性不依赖于具体时标的最大算子类.我们在Hilbert空间中刻划了算子类的闭包和内部,描述了该算子类的大小.
     2006年,Bohner和Guseinov提出了复时标上的解析函数概念,将离散、半离散以及经典的解析函数理论统一并推广到时标框架下.本文对复时标上的解析函数进行了初步的研究,主要考虑了复时标上解析函数与经典解析函数之间的关系,得到了几类复时标上解析函数的局部开拓条件.并且对单项式pn(z)=zn在复时标上的解析性进行讨论.
Throughout this paper, R, C, Z and N denote the real numbers, the complex numbers, the integers and the natural numbers respectively. We denote by X a real or complex Banach space, H a complex separable infinite dimensinal Hilbert space. Let B(X)(or B(H)) denote the algebra of all bounded.linear operators on X(or H). Let T always denote a times scales which is defined as an arbitrary nonempty closed subset of R.
     The theory of time scales was introduced by Hilger in his 1988 PhD disserta-tion [51]. The calculus of time scales unifies and extends the fields of discrete and continuous calculus. The delta derivative defined by Hilger [51,52] is equal to f' (the usual derivative) if T=R, and it is equal toΔf(the usual forward difference) if T=Z. So the study of dynamical equations on time scales allows a simultaneous treatment of differential and difference equations. And this field has attracted many researchers'attention [23,26,18,79,20]. In 2002, Atici and Guseinov [9] defined the nabla derivative by replacing the forward jump operatorσby backward jump operator p and researched the V dynamical equations on time scales.
     It is well known that linear systems of differential or difference equations are applied to many fields, such as mechanic systems, electric circuit and biological systems [23,79,10]. So it is meaningful to research the linear dynamical systems on time scales both in theory and applications.
     For linear dynamical equations on time scales, we mainly consider the explicit formula of solutions in matrix algebra and Banach algebra, and explor the existence and uniqueness of solutions in Banach space.
     Let us consider a linear system
     where A(·), X(·) are functions from a time scale T to Mm.
     In the case that T=R or T=Z and A(·)= A, the study of the explicit constructions of solutions to equation (0.1) has attracted many researchers'attention [88,65,78,49,5,83,92]. With the development of dynamical equations on time scales, some results have been obtained in calculating the solutions of equation (0.1) on general time scales. In 1990, Hilger [52] defined a generalized exponential function on time scale and verified that it is the solution to the scalar form of equation (0.1) in the field of real numbers. For matrix equation (0.1) in Mm, Bohner and Peterson [23] defined the solution to equation (0.1) as the generalized matrix exponential function directily. They solved the exponential of a constant matrix on time scales by Putzer algorithm [88]. Then Harris algorithm and Leonard algorithm which were introduced firstly to calculate the matrix exponential eAt were extended to calculate the exponential of a constant matrix on time scales [15,95,96].'In 2007, Verde-Star [92] introduced an elementary method to solve linear matrix differential and difference equations and obtained explicit formulas for the classic exponential of a matrix eAt and An, n∈N.
     In chapter two, we extend the method in paper [92] to solve system (0.1). Let us introduce the calculating algorithm and the explicit constructions of solutions to equation (0.1). Letωbe any monic polynomial that is divisible by the minimal polynomial of A,i.e., where b0=1.
     The solution f of initial values problem
     is called the dynamic solution associated withω, where D denotes theΔderivative operator.
     Defineωk(x)=b0xk+b1xk-1+…+bk(0< k< n+1) be the Horner polynomials ofω. Then the solution of equation (0.1) can be represented by the polynomial of A with coefficients determined by the dynamic solution associated withω. Theorem 0.1 Let A be any square matrix,ωbe a monic polynomial as (0.2) andω0,ω1,…,ωn be the Horner polynomials ofω. If f(t) be the dynamic solution associated withω. Then we have the solution of equation (0.1), i.e., the generalized matrix exponential function as follows
     Note that the dependence on t of eA(t,0) is completely determined by the dynamic solution f(t), which is in turn determined by the polynomialω.
     Next, let us define the basic generalized exponential polynomials on the complex plane
     where ea(t, s) is solution of dynamical equation
     We define a commutative multiplication on{ga,k: a∈C,k∈N}, called the convolution product, as follows.
     where
     We obtain a direct construction of the dynamic solution associated withω. Theorem 0.2 Letω(t) be as in (0.2), and
     Then fωis the dynamic solution associated withω.
     Note that we can use the recurrence relation (0.8) to compute the summands in (0.4) and (0.5). The computation of fωusing (0.8) is a straightforward repeated application of the convolution formula (0.6) and (0.7).
     For V matrix dynamical equation, we can obtain the similar results as equation (0.1).
     It is more difficult to obtain the constructions of solutions of time varying linear dynamic system (0.1). In chapter three we consider the explicit formula of eA(·,s) with time varying function A(t). We extend the definition of generalized exponential function in the set of real numbers to the unital Banach algebra under some conditions.
     Let (?) denote a complex Banach algebra with unityⅠ[39] and A be an element in (?). We define the spectrum of A to be the set
     Let A:T→(?) be rd-continuous. We define the cylinder transformation of operator value function A(t) under some spectral condition.
     Let G be the single-valued and analytic branch of Logz. If the spectrum of A(·) satisfies the following condition
     Then the following cylinder transformation of A(·) is reasonable.
     Therefore, we can define the delta exponential function on time scales in Banach algebra as follows.
     Definition 0.3 Let A= A(t) be a rd-continuous function from a time scale T to a unital Banach algebra B (or a subalgebra of B) and satisfy the spectral conditions (S). Then we can define a delta exponential function of A(·) for T in Banach algebra as follows
     We can verify that the cylinder transformation of A(·), i.e., (0.9), is well defined by Riesz Functional Calculus and Spectral Mapping Theorem.
     For B being a commutative unital Banach algebra, we obtain that, the delta exponential function defined above is just the explicit formula of the solution to system (0.1).
     Theorem 0.4 Let B be a commutative (or a commutative subalgebra of) Banach algebra with unity I. If A(·) is rd-continuous and satisfies the spectral conditions (S), then y(t)= eA(t, s) is the uniqueness solution of equation (0.1).
     Theorem 0.4 extends the result in scalar case to commutative Banach algebra case.
     We also consider the nabla exponential function in unital Banach algebra and obtain the similar results as definition 0.3 and theorem 0.4.
     In chapter four, we consider the existence and uniqueness of global solutions to linear dynamical equations in Hilbert space on time scales from a new point of view.
     where A:T-> B(H), y:T→H and y0∈H.
     we first define a class of operators u as u:={A∈B(H):σ(A)∩R-=(?)).
     Then u is the largest class of operators which ensuring that equation(0.10)has exactly one global solution for any time scale T under some conditions.
     Theorem 0.5 u is the largest one of those classes in B(H) which satisfy the fol-lowing condition(G).
     (G):"for any time scale T,if operator-valued function A(.):T→u is rd-continuous in stong operator opology,then equation(0.10)has exactly one global solution on T."
     Then we also describe the size of the class u on Hilbert space by characterizing its closure and interior.For A∈B(H),denote by N(A)and R(A)the kernel of A and the range of A,respectively.A is called a semi-Fredholm operator,if R(A) is closed and either nulA or nulA* is finite,where nulA:=dimN(A)and nulA* dim N(A*);in this case,ind A:=nulA-nulA* is called the index of A.In particu-lar,if-∞0}.
     We denote by (?) the closure of u and u°the interior of u.
     Theorem 0.6 Let T∈B(H).Then
     (i)T∈(?) if and only if for eachλ≤0 eitherλ∈σlre(T)orλ∈ρs-F(0)(T);
     (ii)T∈u°if and only ifσ(T)n[R-u{0)]=(?).
     It follows from Theorem 0.6 that the class u has interior points.Especially in matrix algebra Mm,one can verify that (?)=Mm.Hence we can deduce that u is a very large class of operators.
     Symmetrically,we discuss the existence and uniqueness of global solutions to nabla linear dynamical equations and obtain the similar results as theorem(0.5)and theorem(0.6)
     In 2006,Bohner and Guseinov[19]unified and extended the concepts of classic and discrete analytic functions to a concept of analytic functions on an arbitrary time scale complex plane T1+iT2 which will be called the△analytic functions, where T1 and T2 are arbitrary time scales.
     In 2007,Sinan[63]extended the results of paper[19]to the case of the V analytic functions.
     In chapter five,We consider the relationship between the△(or (?))analytic functions and the continuous analytic functions and derive the sufficient and nec-essary conditins for local△(or (?))analytic continuation in some cases. We also research the△(or V)analyticity for monomial pn(z)=zn and obtain some results.
     Let a function f:T1+iT2→C be△(or V)analytic on T1+iT2. For z0=x0+iy0∈T1k+iT2k,if there exists a classic analytic function g(z)on a neighborhood Uδ(z0)in the complex plan such that g(z)=f(z) and g'(z)=f△(z) (or g'(z)=f(?)(z))for any z∈Uδ(z0)n(T1k+iT2k).Then the function g(z)is said to be the local analytic continuation of the function f(z) at point z0.If there exists locally analytic continuation of f(z) at any point z0∈T1k+iT2k,then the function f(z) is said to be locally analytic continuable on T1+iT2.
     we derive the sufficient and necessary conditins for local△analytic continuation in some cases.
     Theorem 0.7 Let T1=[a,b] be a closed interval in R(T1 is permitted to be unbounded interval such as[a,+∞),(-∞,b]or(-∞,+∞)),and T2={yk}kN=1 be at most countable and without cluster point,here 2≤N≤+∞.DenoteΓk=[a,b)+i{yk},where k=1,2,3,…,N-1 for N<∞and k=1,2,3, for N=∞.Supppose f:T1+iT2→C be a△analytic function on T1+iT2 and f|Γk=u(x,yk)+ix(x,yx).Then there exists a unique local analytic continuation of f(z) onΓk if and only if the functions u(x,yk)and v(x,yk)are both real analytic function on (a,b),where k=1,2,3,…,N一1 for N<∞and k=1,2,3,…for N=∞.
     We get some results of the△(or V) analyticity for monomial pn(z)=zn,
     especially for n=3,n=4.
     Theorem 0.8 Suppose n∈N and n≥3.Let T1,T2 be two time scales with at least one right-scattered point in T1 and at least n right-dense points in T2.Then there exists a point z0∈T1+iT2 at which pn(z)=zn is not△analytic.
     Theorem 0.9 Let T1,T1 be two time scales,X1 and X2 be sets of all right-scattered points of T1 and T2 separately.Then there exists at most one point z0= x0+iy0 in T1,T2 such that p3(z)=z3 is△analytic at it.Furthermore,if p3(z)=x3 is△analytic at z0 ,thenσ1(x0)=一2x0;σ2(y0)=一2y0 must be satisfied.
     Theorem 0.10 Let T1,T2 be two time scales.If there exists right-scattered point in T1 and T2={yk}k=0∞is a monotonic sequence converging to y0.Then there exists a point z0 in T1+iT2 such that p4(z)=z4 is not△analytic at z0.
     We also obtain the parallel results of△analytic functions for V analytic functions on time scales.
引文
[1]ADAMEC L. A remark on matrix equation xΔ= A(t)x on small time scales [J]. J. Difference Equ. Appl.,2004,10(12):1107-1117.
    [2]AGARWAL R P, Bohner M, O'Regan D, Peterson A. Dynamic equations on time scales:a survey [J]. J. Comput. Appl. Math.,2002,141(1-2):1-26.
    [3]AGARWAL R P, Bohner M. Basic calculus on time scales and some of its applications [J]. Results Math.,1999,35(1-2):3-22.
    [4]AHLBRANDT C D, MORIAN C. Partial differential equations on time scales [J]. J. Comput. Appl. Math.,2002,141(1-2):35-55.
    [5]AHLBRANDT C D, RIDENHOUR J. Floquet theory for time scales and Putzer representations of matrix logarithms [J]. J. Difference Equ. Appl.,2003,9(1):77-92. In honour of Professor Allan Peterson on the occasion of his 60th birthday, Part II.
    [6]AKTAN N, SARiKAYA M Z, ILARSLAN K, Y1LD1R1M H. Directional (?)-derivative and curves on n-dimensional time scales [J]. Acta Appl. Math.,2009,105(1):45-63.
    [7]ANDERSON D, BULLOCK J, ERBE L, PETERSON A, TRAN H. Nabla dynamic equations on time scales [J]. Panamer. Math. J.,2003 13(1):1-47.
    [8]APOSTOL C, MORREL B B. On uniform approximation of operators by simple models [J]. Indiana Univ. Math. J.,1977,26(3):427-442.
    [9]ATICI F M, GUSEINOV G SH. On Green's functions and positive solutions for boundary value problems on time scales [J]. J. Comput. Appl. Math.,2002,141(1-2): 75-99.
    [10]ATICI F M, UYSAL F. A production-inventory model of HMMS on time scales [J]. Appl. Math. Lett.,2008,21(3):236-243.
    [11]AULBACH B, HILGER S. Linear dynamic processes with inhomogeneous time scale [C]. Nonlinear dynamics and quantum dynamical systems. Math. Res., vol.59, Gaus-sig,1990. Berlin:Akademie-Verlag,1990:9-20.
    [12]AULBACH B, HILGER S. A unified approach to continuous and discrete dynamics [C], Qualitative theory of differential equations. Colloq. Math. Szeged,1988. Soc. Janos Bolyai, Amsterdam:North-Holland,1990,53:37-56.
    [13]BEN TAHER R, RACHIDI M. Linear matrix differential equations of higher-order and applications [J]. Electron. J. Differential Equations,2008, (95):12.
    [14]BENJAMINI I, LOVASZ L. Harmonic and analytic functions on graphs [J]. J. Geom., 2003,76(1-2):3-15.
    [15]BODINE S, LUTZ D A. Exponential functions on time scales:their asymptotic be-havior and calculation [J]. Dynam. Systems Appl.,2003,12(1-2):23-43.
    [16]BOHNER M, GUSEINOV G SH. Improper integrals on time scales [J]. Dynam. Sys-tems Appl.,2003,12(1-2):45-65.
    [17]BOHNER M, GUSEINOV G SH. Partial differentiation on time scales [J]. Dynam. Systems Appl.,2004,13(3-4):351-379.
    [18]BOHNER M, GUSEINOV G SH. Multiple integration on time scales [J]. Dynam. Systems Appl.,2005,14(3-4):579-606.
    [19]BOHNER M, GUSEINOV G SH. An introduction to complex functions on products of two time scales [J]. J. Difference Equ. Appl.,2006 12(3-4):369-384.
    [20]BOHNER M, GUSEINOV G SH. Line integrals and Green's formula on time scales [J]. J. Math. Anal. Appl.,2007,326(2):1124-1141.
    [21]BOHNER M, GUSEINOV G SH. The convolution on time scales [J]. Hindawi Pub-lishing Corporation, Abstr. Appl. Anal.2007, Art. ID 58373:24
    [22]BOHNER M, LUTZ D A. Asymptotic expansions and analytic dynamic equations [J]. ZAMM Z. Angew. Math. Mech.,2006,86(1):37-45.
    [23]BOHNER M, PETERSON A. Dynamic equations on time scales, An introduction with applications [M]. Boston, MA:Birkhauser Boston Inc,2001.
    [24]BOHNER M, PETERSON A. First and second order linear dynamic equations on time scales [J]. J. Differ. Equations Appl.2001,7(6):767-792. On the occasion of the 60th birthday of Calvin Ahlbrandt,
    [25]BOHNER M, PETERSON A. A survey of exponential function on times scales [J]. Cubo Mat. Educ,2001,3(2):285-301.
    [26]BOHNER M, PETERSON A. Advances in dynamic equations on time scales [M]. Boston, MA:Birkhauser Boston Inc,2003.
    [27]BOHNER M, FAN M, ZHANG J M. Existence of periodic solutions in predator-prey and competition dynamic systems [J]. Nonlinear Anal. Real World Appl.2006,7(5): 1193-1204.
    [28]BOHNER M, FAN M, ZHANG J M. Periodicity of scalar dynamic equations and applications to population models [J]. J. Math. Anal. Appl.,2007,330(1):1-9.
    [29]CABADA A, VIVERO D R. Expression of the Lebesgue Δ-integral on time scales as a usual Lebesgue integral:application to the calculus of Δ-antiderivatives [J]. Math. Comput. Modelling,2006,43(1-2):194-207.
    [30]CHANG Y K, LI W T. Existence results for impulsive dynamic equations on time scales with nonlocal initial conditions [J], Math. Comput. Modelling,2006,43(3-4): 377-384.
    [31]CHOI S K, KOO N. On the stability of linear dynamic systems on time scales [J], J. Difference Equ. Appl.,2009,15(2):167-183.
    [32]CHYAN C J. Uniqueness implies existence on time scales [J]. J. Math. Anal. Appl., 2001,258(1):359-365.
    [33]CONWAY J B. A course in functional analysis [M].2nd ed. Graduate Texts in Mathematics, vol.96. New York:Springer-Verlag,1990.
    [34]DACUNHA J J. Transition matrix and generalized matrix exponential via the Peano-Baker series [J]. J. Difference Equ. Appl.,2005,11(15):1245-1264.
    [35]DAVIES P I, Higham N J. A Schur-Parlett algorithm for computing matrix functions [J]. SIAM J. Matrix Anal. Appl.,2003,25(2):464-485.
    [36]DENIZ A, UFUKTEPE U. Lebesgue-Stieltjes measure on time scales [J]. Turkish J. Math.,2009,33(1):27-40.
    [37]DIEUDONNE J. Foundations of modern analysis [M]. Enlarged and corrected print-ing, Pure and Applied Mathematics., Vol.10-Ⅰ. New York:Academic Press,1969.
    [38]DOAN T S, KALAUCH A, SIEGMUND S. Exponential stability of linear time-invariant systems on time scales [J]. Nonlinear Dyn. Syst. Theory,2009,9(1):37-50.
    [39]DOUGLAS R G. Banach algebra techniques in operator theory [M].2nd ed. Graduate Texts in Mathematics, vol.179, New York:Springer-Verlag,1998.
    [40]DUFFIN R J. Basic properties of discrete analytic functions [J], Duke Math. J.,1956, 23:335-363.
    [41]ELAYDI S N, HARRIS, JR. W A. On the computation of An [J]. SIAM Rev.,1998, 40(4):965-971.
    [42]ERBE L, PETERSON A. Oscillation criteria for second-order matrix dynamic equa-tions on a time scale [J]. J. Comput. Appl. Math.,2002,141(1-2):169-185.
    [43]ERBE L, PETERSON A. Some recent results in linear and nonlinear oscillation [J]. Dynam. Systems Appl.,2004,13(3-4):381-395.
    [44]FERRAND J. Fonctions preharmoniques et fonctions preholomorphes [J]. Bull. Sci. Math.,1944,68(2):152-180.
    [45]FERRAND J. Representation conforme et transformations a integrale de Dirichlet bornee [M]. Paris:Gauthier-Villars,1955.
    [46]GUSEINOV G SH. Integration on time scales [J]. J. Math. Anal. Appl.,2003,285(1): 107-127.
    [47]GUSEINOV G SH, KAYMAK(?)ALAN B. Basics of Riemann delta and nabla inte-gration on time scales [J]. J. Difference Equ. Appl.,2002,8(11):1001-1017, Special issue in honour of Professor Allan Peterson on the occasion of his 60th birthday, Part I.
    [48]GUSEINOV G SH, KAYMAKQALAN B. On the Riemann integration on time scales [C]. Proceedings of the Sixth International Conference on Difference Equations (Boca Raton, FL), CRC,2004:289-298.
    [49]HARRIS, JR. W A, FILLMORE J P, SMITH D R. Matrix exponentials-another approach [J]. SIAM Rev.,2001,43(4):694-706.
    [50]HERRERO D A. Approximation of Hilbert space operators. Vol.1 [M],2nd ed. Pit-man Research Notes in Mathematics Series, vol.224, Harlow:Longman Scientific & Technical,1989.
    [51]HILGER S. Ein masskettenkalkul mit anwendung auf zentrumsmannigfaltigkeiten [D], Ph.D. thesis, Universitat Wurzburg,1988.
    [52]HILGER S. Analysis on measure chains-a unified approach to continuous and dis-crete calculus [J]. Results Math.,1990,18(1-2):18-56.
    [53]HILGER S. Differential and difference calculus-unified! [C]. Proceedings of the Second World Congress of Nonlinear Analysts, Part 5 (Athens,1996), vol.30,1997: 2683-2694.
    [54]HILGER S. Special functions, Laplace and Fourier transform on measure chains [J]. Dynam. Systems Appl.,1999,8(3-4):471-488.
    [55]HOFFACKER J. Basic partial dynamic equations on time scales [J]. J. Difference Equ. Appl.,2002,8(4):307-319, In honor of Professor Lynn Erbe.
    [56]HOFFACKER J, TISDELL C C. Stability and instability for dynamic equations on time scales [J]. Comput. Math. Appl.,2005,49(9-10):1327-1334.
    [57]HORN R A, JOHNSON C R. Matrix analysis [M], Cambridge:Cambridge University Press,1985.
    [58]HOVHANNISYAN G. Asymptotic stability for dynamic equations on time scales [J]. Adv. Difference Equ.,2006, Art. ID 18157,17.
    [59]ISAACS R P. A finite difference function theory [J]. Univ. Nac. Tucuman. Revista A.,1941,2:177-201.
    [60]ISAACS R P. Monodiffric functions. Construction and applications of conformal maps [C]. Proceedings of a symposium (Washington, D. C.), National Bureau of Standards, Appl. Math. Ser., U. S. Government Printing Office,1952, (18):257-266.
    [61]JACKSON B. Partial dynamic equations on time scales [J]. J. Comput. Appl. Math., 2006,186(2):391-415.
    [62]JIANG C L, WANG Z Y. Structure of Hilbert space operators [M], Hackensack, NJ: World Scientific Publishing Co. Pte. Ltd.,2006.
    [63]SINAN K, Analytic functions on time scales [D]. Master thesis, University of IZMIR, 2007.
    [64]KAYMAK(?)ALAN B. Lyapunov stability theory for dynamic systems on time scales [J]. J. Appl. Math. Stochastic Anal.,1992,5(3):275-281.
    [65]KELLEY W G, PETERSON A C. Difference equations:An introduction with appli-cations [M]. Boston, MA:Academic Press Inc.,1991.
    [66]KENYON R. Conformal invariance of domino tiling [J]. Ann. Probab.,2000,28(2): 759-795.
    [67]KIRCHNER R B. An explicit formula for eAt [J]. Amer. Math. Monthly,1967,74: 1200-1204.
    [68]KISELMAN C O. Functions on discrete sets holomorphic in the sense of Ferrand, or monodiffric functions of the second kind [J]. Sci.China Ser. A,2008,51(4):604-619.
    [69]KISELMAN C O. Functions on discrete sets holomorphic in the sense of Isaacs, or monodiffric functions of the first kind [J]. Sci. China Ser. A,2005,48(suppl):86-96.
    [70]KONG Q K, WANG Q R, ZHU Z Q. Kamenev-type oscillation criteria for second-order matrix dynamic equations on time scales [J]. Dynam. Systems Appl.,2009, 18(3-4):423-439.
    [71]KUROWSKI G J. Semi-discrete analytic functions [J]. Trans. Amer. Math. Soc., 1963,106:1-18.
    [72]KUROWSKI G J. On the convergence of semi-discrete analytic functions [J]. Pacific J. Math.,1964,14:199-207.
    [73]KUROWSKI G J. On the general solution of the three-dimensional viscoelastic Navier's equations for commutative systems [J]. J. Soc. Indust. Appl., Math.,1964, 12:630-633.
    [74]KUROWSKI G J. Further results in the theory of monodiffric functions [J]. Pacific J. Math.,1966,18:139-147.
    [75]KUROWSKI G J. A convolution product for semi-discrete analytic functions [J]. J. Math. Anal. Appl.,1967,20:421-441.
    [76]KUROWSKI G J. The semidiscrete Riemann function [J]. SIAM J. Numer. Anal., 1967,4:489-498.
    [77]KWAPISZ M. The power of a matrix [J]. SIAM Rev.,1998,40(3):703-705.
    [78]LEONARD I E. The matrix exponential [J]. SIAM Rev.,1996,38(3):507-512.
    [79]刘爱莲.时标动态方程的定性和稳定性分析[D].博士论文,中山大学,2005.
    [80]LIZ E. A note on the matrix exponential [J]. SIAM Rev.,1998,40(3):700-702.
    [81]LOVASZ L. Discrete analytic functions:an exposition [C]. Surveys in differential geometry. Vol. IX, Surv. Differ. Geom., Somerville, MA:IX, Int. Press,2004:241-273.
    [82]MOLER C, VAN LOAN C. Nineteen dubious ways to compute the exponential of a matrix [J]. SIAM Rev.,1978,20(4):801-836.
    [83]MOLER C, VAN LOAN C. Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later [J]. SIAM Rev.,2003,45(1):3-49.
    [84]NAKAMURA A, ROSENFELD A. Digital calculus [J]. Inform. Sci.,1997,98(1-4): 83-98.
    [85]M OZKAN U, KAYMAK(?)ALAN B. Basics of diamond-a partial dynamic calculus on time scales [J]. Math. Comput. Modelling,2009,50(9-10):1253-1261.
    [86]OZYILMAZ E. Directional derivative of vector field and regular curves on time scales [J]. Appl. Math. Mech. (English Ed.),2006,27(10):1349-1360, Chinese translation appears in Appl. Math. Mech.,2006,27(10):1182-1192.
    [87]PETERSON A C, RAFFOUL Y N. Exponential stability of dynamic equations on time scales [J]. Adv. Difference Equ.,2005,(2):133-144.
    [88]PUTZER E J. Avoiding the Jordan canonical form in the discussion of linear systems with constant coefficients [J]. Amer. Math. Monthly,1966,73:2-7.
    [89]SAILER S. Riemann-stieltjes integrale auf zeitmengen, (schriftliche hausarbeit, vorgelegt bei:Prof. dr. b. aulbach) [D]. Ph.D. thesis, University Augsburg,1992.
    [90]TIAN Y, GE W G. Existence and uniqueness results for nonlinear first-order three-point boundary value problems on time scales [J]. Nonlinear Anal.,2008,69(9):2833-2842.
    [91]VERDE-STAR L. Functions of matrices [J]. Linear Algebra Appl.,2005,406:285-300.
    [92]VERDE-STAR L. On linear matrix differential equations [J]. Adv. in Appl. Math., 2007,39(3):329-344.
    [93]王克,范猛.泛函微分方程的相空间理论及应用[M].北京:科学出版社,2009.
    [94]WANG P G, LI P. Monotone iterative technique for partial dynamic equations of first order on time scales [J]. Discrete Dyn. Nat. Soc.,2008, Art. ID 265609,7.
    [95]ZAFER A. The exponential of a constant matrix on time scales [J]. ANZIAM J., 2006,48:99-106.
    [96]ZAFER A. Calculating the matrix exponential of a constant matrix on time scales [J]. Appl. Math. Lett.,2008,21(6):612-616.
    [97]ZHAN Z D, WEI W. On existence of optimal control governed by a class of the first-order linear dynamic systems on time scales [J]. Appl. Math. Comput.,2009,215(6): 2070-2081.
    [98]ZHANG W P, BI P, ZHU D M. Periodicity in a ratio-dependent predator-prey system with stage-structured predator on time scales [J]. Nonlinear Anal. Real World Appl., 2008,9(2):344-353.
    [99]钟玉泉.复变函数理论[M].第三版,北京:高等教育出版社,2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700