小白菜低硝酸盐积累品种筛选及其生理特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着人们对食品安全重视程度的增加,蔬菜作为日常生活中大量消费的食物种类之一,其品质安全也得到广泛关注。蔬菜尤其是叶菜类蔬菜是一种容易积累硝酸盐的作物,加上近几十年来为追求高产大量施用氮肥更加剧了叶菜类蔬菜中硝酸盐的积累。硝酸盐本身对人体无害,但过量摄入的硝酸盐可在细菌作用下反应生成对人体有毒害的物质,增加人体患甲状腺和肠胃系统疾病的可能。小白菜是武汉地区种植密度高,食用量大的叶菜类蔬菜,且品种繁多,从中筛选硝酸盐高、低积累品种,并对品种间硝酸盐吸收、转运、同化差异,硝酸盐吸收代谢的时间动态变化以及氮、钼响应差异进行了研究,现主要研究结果如下:
     1.武汉地区小白菜硝酸盐积累现状及品种筛选
     对武汉地区广泛种植的168个小白菜品种硝酸盐含量和生物量进行研究,不同批次种植的小白菜硝酸盐含量和产量存在差异,第二批和第三批的硝酸盐含量和单株产量最高。以我国提出的蔬菜硝酸盐限定标准3100mg/kg为限,三批筛选中分别有24.4%、97.6%和100%的品种超标。结合硝酸盐含量和产量,得到高硝高产品种7个,高硝低产品种9个,低硝高产品种7个,低硝低产品种2个。小白菜不同部位间硝酸盐含量差异较大,叶柄硝酸盐含量是叶片的1.69-2倍。由于品种间叶片硝酸盐含量差异较叶柄大,且叶片硝酸盐含量对外界环境较为敏感,选择叶片为最适宜的采样部位,确定品种96号为叶片硝酸盐高积累品种,品种18号为叶片硝酸盐低积累品种。
     2.小白菜品种间硝酸盐积累的差异机制
     以田间筛选获得的叶片硝酸盐高积累品种96号(High nitrate accumulator, H96)和低积累品种18号(Low nitrate accumulator, L18)为试验材料,在水培条件下研究两个品种硝酸盐吸收、转运和同化过程的差异。H96较L18具有较高的硝酸盐吸收能力,根系形态参数—根长、根表面积和根体积分别比L18高18.0%、31.6%和46.5%。根系NRT1.1、NRT2.1相对表达量分别比L18高41.6%和269.6%。硝酸盐转运过程中,两个品种叶片NRT1.1、NRT2.1相对表达量结果与根中相反,表现为L18较H96高279.2%、80.0%。此外,L18叶片硝酸盐同化能力显著高于H96。L18叶片硝酸盐代谢相关酶-NR和GS活性,及其基因-NIA.Glnl、Gln2表达量分别比H96高234.0%、43.9%、105.4%、331.5%和124.8%。同时,L18叶片具有较高的叶绿素含量和较强的光合同化能力,叶片中硝酸盐代谢产物含量,包括氨基酸组分和可溶性蛋白,均显著高于H96。以上结果说明,品种L18叶片硝酸盐含量显著低于H96,受到硝酸盐吸收、转运和同化三个部分共同影响,比较这三个过程对硝酸盐积累影响的贡献,转运和同化过程对硝酸盐含量的影响起决定性作用。
     3.两个小白菜品种对氮素供应的时间响应差异
     在营养液栽培条件下对两个小白菜品种L18和H96硝酸盐吸收、转运、同化过程的时间动态变化进行研究,根系对硝酸盐的供应响应最迅速,NRT1.1和NRT2.1表达量急剧增加,5N累积速率最快,含量也显著高于地上部。其中,H96根系表现出对硝酸盐供应的快速响应,NRT1.1和NRT2.1表达量显著高于L18,各处理时间内15N含量也均显著高于L18。同时H96表现出较强的向地上部的转运能力,地上部15N含量显著高于L18。但叶片中L18NRTl.l和NRT2.1表达量分别在12h和24h达到峰值,显著高于H96。在硝酸盐同化过程,两个小白菜品种NR活性及其基因表达受到硝酸盐的强烈诱导,根系和叶片中除12h外,L18NR活性和NIA表达量均显著高于H96,说明L18叶片NR更易受到硝酸盐诱导,具有较强的硝酸盐同化能力。因此,H96具有较强的根系硝酸盐吸收和向地上部转运能力,但L18叶片内硝酸盐再利用以及同化能力相对较强,因而导致了品种间硝酸盐积累的差异。
     4.两个小白菜品种对氮水平响应差异
     氮缺乏显著降低两个小白菜品种叶片和叶柄中硝酸盐积累并缩小品种和部位间的差异。高氮处理中,L18和H96叶柄硝酸盐含量是叶片的5.3和2.3倍,H96叶片硝酸盐含量较L18高92.5%,缺氮时部位间和品种间差异均不显著。在不同氮水平下,两个小白菜品种硝酸盐的吸收存在差异。高氮时,H96吸收速率和吸收量显著高于L18,而低氮时,结果相反。同样的结果出现在根系硝酸根转运子表达量上。高氮时,H96根系NRT1.1和NRT2.1表达量较L18高41.7%和264.7%,而低氮时,L18NRT2.1较H96高117.8%,NRT1.1品种间无显著差异。说明品种间硝酸盐吸收差异的反转是由根系转运子,尤其是NRT2.1对氮素的响应来实现的。在高氮水平时,L18叶片具有较强硝酸盐转运能力,NRT1.1和NRT2.1表达量是H96的3.8倍和1.8倍,而在低氮水平时,H96NRT2.1表达量是L18的3倍,因而能将更多的硝酸盐运输进入叶片中进行同化。氮缺乏降低两个品种NR和GS活性,但对品种间差异影响不大。缺氮条件下,尽管L18叶片具有较高的NR活性,但GS活性低于H96,且在硝酸盐代谢产物-可溶性蛋白含量上,H96显著高于L18,说明低氮条件下H96具有较强的硝酸盐同化能力。
     5.两个小白菜品种对钼水平响应差异
     钼缺乏显著提高两个小白菜品种根系对硝酸盐的吸收,降低叶片的转运以及同化能力,显著提高硝酸盐含量,但不同品种对于钼水平的响应并不一致。硝酸盐高积累品种H96对钼缺乏较低积累品种L18敏感,表现为硝酸盐吸收、根系NRT1.1、 NRT2.1表达量在缺钼时增加幅度(195.9%、44.2%和52.1%)较L18(146.9%、5.0%和10.3%)高;硝酸盐转运过程,叶片NRT1.1、NRT2.1表达量变化幅度(1252.0%、4181.3%)较L18(702.0%、4024.5%)高;NR和GS活性在钼存在条件下提高47.1倍和64.6%,远高于L18(11.0倍和36.3%)。但L18叶片硝酸盐含量显著低于H96。此外,H96全氮含量也显著高于L18,这与硝酸盐吸收的结果一致。在生物量上,H96受到Mo水平影响较大,缺钼时地上部生物量显著下降,而L18并无明显变化。比较钼缺乏条件下硝酸盐吸收、转运和同化对于两个品种硝酸盐积累的贡献,硝酸盐的同化过程,尤其是硝酸还原酶的差异,决定了硝酸盐积累水平的高低。L18因其具有较强的Mo吸收和利用能力,缺Mo对硝酸盐积累造成的影响较小。
     综上所述,根系吸收与地上部同化的不一致性是造成小白菜叶片硝酸盐的大量积累的重要原因。其中,H96根系较强的硝酸盐吸收能力是叶片中硝酸盐大量积累的根本原因,L18较强的硝酸盐地上部转运和同化能力是叶片低积累的关键原因。在氮缺乏时,品种间根系吸收、地上部积累和代谢差异缩小,但两个品种硝酸盐吸收出现逆转,这种现象由硝酸根转运子表达量差异造成,由转运子对低氮响应机制不同导致。钼缺乏时,品种的钼利用能力决定硝酸盐吸收、转运、同化过程受到钼缺乏的影响程度,低积累品种因其具有较高的NR活性和较高的钼含量,硝酸盐积累受到影响较小。
Vegetable, as large consumed food in daily life, its qulity and safty were paid attention by Chinese peple. Leaf vegetables are classified as high nitrate accumulation crops and this phenomenon is aggravated by high nitrogen fertilizer application in vegetable production. Nitrate itself is not harmful to human, while its reductant may increase risks of thyroid and gastric illnesses. Widly planted of Chinese cabbage [Brassica campestris L. ssp. Chinensis (L.)] in Wuhan and high consumption force us to mininise any adverse effects on human health. Based on various cultivars in Chinese cabbge, we have conducted high and low nitrate accumulate cultivars screening and studied nitrate uptake, translocation and assimilation differences between cultivars. Differences of nitrate uptake and assimilation between cultivars in response to nitrate and molybdenum were also examined. The main results are as follow:
     1. Nitrate accumulation in Chinese cabbage in Wuhan and nitrate accumulators screening experiments
     The nitrate content and biomass of168Chinese cabbage cultivars in Wuhan have been studied. The experimental results show that there were differences in nitrate concentration and biomass were observed in cultivars. The highest nitrate concentration and biomass were observed in the third and second screening experiments respectively. Nitrate concentration exceeding3100mg/kg were observed in24.4%,97.6%and100%of the cultivars in the three screening experiments respectively. On the basis of nitrate content and biomass, we choosed7cultivars defined as high nitrate high biomass cultivars,9cultivars defined as high nitrate low biomass cultivars,7cultivars defined as low nitrate high biomass cultivars and2cultivars defined as low nitrate low biomass cultivars. Nitrate content in different plant tissues were also determined. Petiole nitrate content in the third and fourth experiments were1.69and2times higher than in leaves. Due to high sensitivity, leaves were considered to be the best tissues for evaluating nitrate accumulation in plant. L18was defined as a low nitrate leaf accumulatior and H96was defined as a high leaf nitrate accumulator.
     2. Differences in the mechanism of nitrate accumulation between cultivars
     The high nitrate accumulator-H96and the low nitrate accumulator-L18, from the field screening experiments, were used in a hydroponic culture to investigate genotypic differences in nitrate uptake, translocation and assimilation between the two Chinese cabbage cultivars. H96could uptake more nitrate than L18in the root but had lower transport into leaf cells and assimilation in the leaf. It was show that root morphology parameters (length, surface area and volume) of H96were18.0%,31.6%and46.5%higher than for L18respectively. Nitrate transporters NRT1.l and NRT2.1transcription levels in roots were41.6%and269.6%higher than those of L18respectively. In process of nitrate translocation, NRT1.1and NRT2.1expressions in the leaf blades of the two cultivars were opposite to these in the roots, L18NRT1.1and NRT2.1expressions were279.2%and80.0%higher than H96. In addition, nitrate assimilation capacity of L18was significantly higher than H96in leaves. It was shown that nitrate assimilation enzymes-NR, GS and those gene-NIA、Gln1、Gln2relative expressions of L18were234.0%,43.9%,105.4%,331.5%and124.8%higher than those of H96respectively. Both chlorophyll content and photosynthesis of L18were higher than those of H96. Nitrate assimilation products-Glu, total amino acid, soluble protein content in the leaf of L18were all significantly higher than those of H96. The results above suggested that nitrate accumulation differences were due to differential capacities for uptake, mechanisms for nitrate transport in leaves and assimilation of nitrate. Comparing the contribution of three aspects in nitrate accumulation, the latter two aspects contributed more of low nitrate concentration in the leaf blade.
     3. Genotypic differences of nitrate uptake, translocation and assimilation in response to nitrate provision
     A hydroponic culture experiment was conducted to investigate genotypic difference of nitrate uptake, translocation and assimilation in response to nitrate provision. The results showed that NRT1.1and NRT2.1expressions in roots of the two cultivars were sharply increased in response to nitrate supply.15N accumulate rate and contents in roots was higher than in leaves. Meanwhile NRT1.1and NRT2.1expressions and5N contents in tissueses of H96were significantly higher than for L18. However, the results in leaves were reversed, NRT1.1and NRT2.1expressions in leaves of L18were peaked at12h and24h and significantly higher than those of H96. In process of nitrate reduction, NR activity and NIA expression of two cultivars were induced by nitrate supply, and NR activity and NIA expression of L18were significantly higher than those of H96, except for12h in leaves. It was suggested that nitrate assimilation capacity of L18was stronger than H96.
     4. Genotypic difference of two Chinese cabbage cultivars in response to N levels
     Differences of nitrate concentration between cultivars and in tissues were decreased in response to N deficiency. Nitrate content in tissues decreased under a-N treatment. Nitrate contents in petioles of L18and H96were5.3times and2.3times higher than in leaves. The leaf nitrate content of H96was higher than of L18significantly under the+N treatment, while no significant difference was observed in tissues or between cultivars under the-N treatment. Nitrate uptake was different between the two cultivars under N treatments. Nitrate uptake rate and amount of H96were higher than for L18under+N, while the results were reversed under-N. Similar results were observed in root nitrate transporters expressions. NRT1.1and NRT2.1expressions in roots of H96were41.7%and264.7%higher than those of L18under the+N treatment, while NRT2.1expression of L18was117.8%higher than H96, no significant difference was observed in NRT1.1. It was suggested that differences of nitrate uptake between cultivars was based on NRT2.1expression differences. In the process of nitrate translocation, NRT1.1and NRT2.1expression in leaves of L18were3.8times and1.8times higher than those of H96under the+N treatment, while NRT2.1expression in leaves of H96was3times higher than L18under the-N treatment. Thus, more nitrate were transported into leaves for reduction than for L18. NR and GS activities were decreased by the-N treatment, with no difference between cultivars. NR activity in leaves of L18was significantly higher, but its GS activity and nitrate assimilation production-soluble protein contents were lower than for H96under the-N treatment. These above results suggest that nitrate assimilation capacity of H96was higher than L18under the-N treatment.
     5. Genotypic difference of two Chinese cabbage cultivars in response to Mo levels
     Mo deficiency significantly increased nitrate uptake and nitrate transporters-NRT1.1and NRT2.1expressions in roots, decreased nitrate transport into leaves and enzyme (NR, GS) activities which were involved in nitrate assimilation, while genotypic difference of two cultivars were shown in response to Mo treatments. High nitrate accumulator-H96was more sensitive to Mo deficiency. It was shown that increase rate of nitrate uptake, NRT1.1and NRT2.1expressions in root of H96were (195.9%,44.2%and52.1%) higher than for L18(146.9%,5.0%and10.3%) response to Mo deficiency. In the process of nitrate translocation, decreased rates of NRT1.1and NRT2.1expressions in leaves of H96under Mo deficiency (1252.0%,4181.3%) were higher than those of L18(702.0%,4024.5%). NR and GS activities of H96were increased47.1times and64.6%which higher than L18(11.0times and36.3%). Nitrate assimilation, especially NR activity was most impacted by Mo deficiency. In addition, the nitrate content in leaves of L18was lower than for H96. Related to the nitrate uptake result, total N of H96was significantly higher than for L18. Comparing contributions of uptake, translocation and assimilation to nitrate accumulation under conditions of Mo deficiency, uptake and assimilation capacities were determined in nitrate accumulation in leaf. Based on high Mo utilization, the nitrate assimilation capacity of L18, especially NRA, contributed to the low nitrate content in response to Mo deficiency.
     In conclusion, inconsistency between root uptake and shoot assimilation capacity is main reason cause nitrate accumulation in leaf of Chinese cabbage. H96had a great capacity of nitrate uptake in roots, which was a basic reason for nitrate high accumulation in leaves. Nitrate high translocation and assimilation capacities in leaves were a key reason for nitrate low accumulation in leaves. Differences in root nitrate uptake, shoot accumulation and assimilation between the two cultivars were minimized under-N treatment, while the results of root nitrate uptake were reversed. This was caused by nitrate transporter expression changes in the roots. Changes of nitrate uptake, translocation and assimilation in response to Mo deficiency were based on Mo efficiency of two cultivars. Due to high NR activity and Mo efficiency, nitrate concentration in leaves of L18was less impacted by Mo deficiency.
引文
1.艾绍英,李生秀.氮素供应水平对蔬菜硝酸盐累积与分布的影响.华南农业大学学报,2000,21:14-17
    2.鲍士旦.土壤农化分析.北京:中国农业出版社,2008:264-268
    3.陈宝明.蔬菜硝态氮临界含量及其影响因素.[硕士学位论文].武汉:华中农业大学图书馆,2002
    4.陈洁.温度,光强与施肥量和品种互作对不结球白菜硝酸盐积累的影响.[硕士学位论文].武汉:华中农业大学图书馆,2009
    5.陈巍,罗金葵,尹晓明,贾莉君,张攀伟,沈其荣.硝酸盐在两个小白菜品种体内的分布及调配.中国农业科学,2005,38:2277-2282
    6.陈文辉,方淑桂,曾小玲,黄建都.36份萝卜硝酸盐含量基因型差异的初步研究.见中国园艺学会十字花科蔬菜分会第十届学术研讨会论文集.中国园艺学会十字花科蔬菜分会第十届学术研讨会,天津,2012,135-139
    7.陈新平,邹春琴,刘亚萍,张福锁.菠菜不同品种累积硝酸盐能力的差异.植物营养与肥料学报,2000,6:30-34
    8.陈志伟,陆瑞菊,王亦菲,何婷,杜志钊,高润红,邹磊,单丽丽,黄剑华.低氮胁迫下大麦谷氨酰胺酶基因的表达分析.核农学报,2010,24:1182-1184
    9.戴廷波,曹卫星,孙传范,姜东,荆奇.增铵营养对小麦光合作用及硝酸还原酶和谷氨酰胺合成酶的影响.应用生态学报,2003,14:1529-1532
    10.都韶婷,李玲玲,章永松,林咸永.不同基因型小白菜硝酸盐积累差异及筛选研究.植物营养与肥料学报,2008,14:969-975
    11.都韶婷.蔬菜硝酸盐积累机理及其农艺调控措施研究.[博士学位论文].武汉:华中农业大学图书馆,2008
    12.杜应琼,廖新荣,黄志尧,何江华,周晓洪,袁彩庭.硼,钼对花生氮代谢的影响.作物学报,2001,27:612-616
    13.封锦芳,施致雄,吴永宁,吴惠慧,赵云峰.北京市春季蔬菜硝酸盐含量测定及居民暴露量评估.中国食品卫生杂志,2007,18:514-517
    14.冯卓,秦智伟,武涛,何红梅.黄瓜细胞质型谷氨酰胺合成酶基因(GS1)的克隆及其在低氮条件下的表达.中国农业科学,2012,45:3100-3107
    15.付其如,何纪荣.钼对葡萄叶片硝酸还原酶活性及生长发育的影响.四川师范学院学报:自然科学版,1996,17:56-60
    16.傅志坚,罗安程.设施栽培蔬菜硝酸盐积累问题.浙江农业科学,2004,2:80-82
    17.管闪青.甜瓜谷氨酰胺合成酶基因的克隆及其表达分析研究.[博士学位论文].武汉:华中农业大学图书馆,2007
    18.郭培国,陈建军.氮素形态对烤烟光合特性影响的研究.植物学通报,1999,16:262-267
    19.黄彩变,王朝辉,王小英,李生秀.菠菜硝态氮累积和还原与植株生长的关系.农业环境科学学报,2011,30:613-618
    20.黄彩变.叶菜硝态氮吸收,溢泌及还原转化与品种间叶柄硝态氮累积差异的关系.[博士学位论文].武汉:华中农业大学图书馆,2009
    21.黄建国,袁玲.重庆市蔬菜硝酸盐,亚硝酸盐含量及其与环境的关系.生态学报,1996,16:383-388
    22.黄敏,余萃,杨海舟,李静静.武汉市售典型蔬菜硝酸盐和亚硝酸盐污染现状分析.安徽农业科学,2010,6871-6873
    23.贾莉君,范晓荣,尹晓明,曹云,沈其荣.双阻离子选择性微电极测定活体不结球小白菜叶片细胞中硝酸根离子的活度.土壤学报,2005,42:447-452
    24.靳亚忠,何淑平,宫宏亮,廉华,马光恕.几种叶菜叶片硝酸盐含量差异及原因的探究.北方园艺,2010,33-35
    25.李宝珍,王正银,李会合,张浩.叶类蔬菜硝酸盐与矿质元素含量及其相关性研究.中国生态农业学报,2004,12:113-116
    26.李炳焕,武巧争,刁松品.二氧化氯溶液浸泡蔬菜降低亚硝酸盐含量的探讨.华北煤炭医学院学报,2006,7:717-718
    27.李会合.氮钾对酸性菜园土壤莴笋品质的效应及机理研究.[博士学位论文].武汉:华中农业大学图书馆,2005
    28.梁亮.硝酸还原酶活性对小白菜硝酸盐积累及相关代谢调节的研究.[硕士学位论文].武汉:华中农业大学图书馆,2008
    29.廖育林,荣湘民.化学氮肥用量对蔬菜产量,品质及氮肥利用率影响的研究.湖南农业大学报,2004,30:109-111
    30.林振武.硝酸还原酶的研究动态.植物生理学通讯,1987,6:8-13
    31.林郑和,钟秋生,陈常颂,游小妹,陈志辉.缺氮条件下不同品种茶树叶片光合特性的变化.茶叶科学,2013,
    32.刘丽,甘志军,王宪泽.植物氮代谢硝酸还原酶水平调控机制的研究进展.西北植物学报,2004,24:1355-1361
    33.刘忠.菠菜品种间叶柄硝态氮累积差异的营养生理基础.[博士学位论文].武汉:华中农业大学图书馆,2004
    34.卢华琼,苏智先,严贤春,胡进耀.不同贮藏条件和洗涤方式对蔬菜中亚硝酸盐含量的影响.西北农林科技大学学报(自然科学版),2007,35:172-176
    35.罗金葵,陈巍,张攀伟,沈其荣.小白菜适当增铵下硝酸盐累积机理研究.植物营养与肥料学报,2005,11:800-803
    36.邱贺媛,曾宪锋.漂烫处理对两种蔬菜中硝酸盐亚硝酸盐及VC含量的影响.农产品加工学刊,2005,65-66
    37.沈明珠,翟宝杰,东惠茹,李俊国.蔬菜硝酸盐累积的研究-Ⅰ.不同蔬菜硝酸盐和亚硝酸盐含量评价.园艺学报,1982,9:41-48
    38.宋世威,廖国秀,刘厚诚,孙光闻,陈日远.不同芥蓝品种硝酸盐含量的差异及聚类分析.热带作物学报,2012,33:1440-1443
    39.孙传范.小麦氮素利用效率的生理生态与氮肥调控研究.[博士学位论文].武汉:华中农业大学图书馆,2002
    40.陶正平.大白菜不同品种对硝酸盐积累差异的研究.园艺学报,2005,32:698-700
    41.田园.小白菜硝酸盐积累的基因型差异及生理基础研究.[硕士学位论文].武汉:华中农业大学图书馆,2006
    42.汪李平,王运华.武汉地区夏季蔬菜硝酸盐含量状况及其防治.华中农业大学学报,2000,19:497-499
    43.汪李平,向长萍,王运华.白菜不同基因型硝酸盐含量差异的研究.园艺学报,2004,31:43-46
    44.汪李平.小白菜硝酸盐含量基因型差异及其遗传行为的研究.[博士学位论文].武汉:华中农业大学图书馆,2001
    45.王朝辉,田霄鸿,李生秀,赵向科.蔬菜与小麦硝态氮累积的差异.干旱地区农业研究,1998a,16:3
    46.王朝辉,李生秀,田霄鸿.不同氮肥用量对蔬菜硝态氮累积的影响.植物营养与肥料学报,1998b,4:22-28
    47.王舫,王卫平,华楚衍,陈建文.杭州市场蔬菜硝酸盐含量分析及质量评价.浙江农业学报,2004,16:271-273
    48.王海华.不同菠菜品种硝态氮累积差异的生理机制研究.[硕士学位论文].武汉:华中农业大学图书馆,2007
    49.王立克,洪法水.钼浸种对苜蓿硝酸还原酶活性及营养成分的影响.中国草地,1995,6:37-38,61
    50.王强,钟旭华,黄农荣,郑海波.光,氮及其互作对作物碳氮代谢的影响研究进展.广东农业科学,2006,37-40
    51.王学奎,植物生理生化实验原理和技术.北京:高等教育出版社,2008.122-192
    52.王友保,段红,黄伟.芜湖市蔬菜硝酸盐污染状况及安全处理效果.农村生态环境,2004,20:46-48
    53.肖凯,邹定辉.不同形态氮素营养对小麦光合特性的影响.作物学报,2000,26:53-58
    54.熊国华,林咸永,章永松,郑绍建,周根娣.环境因素对蔬菜累积硝酸盐影响 的研究进展.土壤通报,2004,35:362-365
    55.许长蔼.植物体内N03-可给性对硝酸还原酶活性的调节.植物生理学通讯,1991,27:173-177
    56.杨荣,邱炜红,王朝辉,王小英.硝酸还原酶抑制剂钨酸钠对油菜硝态氮积累的影响.植物生理学报,2012,48:51-56
    57.杨荣.油菜不同品种硝态氮吸收,还原与累积差异的关系.[硕士学位论文].武汉:华中农业大学图书馆,2012
    58.姚春霞,陈振楼,陆利民,许世远,范斌,侯晶.上海市郊菜地土壤和蔬菜硝酸盐含量状况.水土保持学报,2005,19:84-88
    59.余萃.武汉市典型蔬菜硝酸盐污染状况及采后阻控措施研究.[硕士学位论文].武汉:华中农业大学图书馆,2010
    60.张峻松,贾春晓,李炎强,毛多斌,张文叶.烟草中游离氨基酸的自动分析仪测定.烟草科技,2004,26-32
    61.张亚丽.水稻氮效率基因型差异评价与氮高效机理研究.[博士学位论文].武汉:华中农业大学图书馆,2006
    62.张勇.蔬菜硝酸盐积累机理与调控技术的研究.[硕士学位论文].武汉:华中农业大学图书馆,2002
    63.赵首萍,张瑞麟,徐明飞,郑纪慈.不同基因型小白菜硝酸盐积累量差异研究.中国农学通报,2009,25:173-179
    64.赵首萍,张永志,叶雪珠,郑纪慈.小白菜硝酸盐积累量基因型差异机理研究.植物营养与肥料学报,2010,16:381-687
    65.周晚来,刘文科,杨其长.光对蔬菜硝酸盐累积的影响及其机理.华北农学报,2012,26:125-130
    66.周泽义,胡长敏.中国蔬菜硝酸盐和亚硝酸盐污染因素及控制研究.环境科学进展,1999,7:1-13
    67.朱芸,雷国良,林燕语,陈秀玲.元素分析仪-同位素质谱测定全氮含量的方法研究.福建师范大学学报(自然科学版),2013,1:013
    68. Kyaing M S,顾立江,程红梅.植物中硝酸还原酶和亚硝酸还原酶的作用.生物技术进展,2011,1:159-164
    69. Alboresi A, Gestin C, Leydecker M T, Bedu M, Meyer C,Truong H N. Nitrate, a signal relieving seed dormancy in Arabidopsis. Plant Cell Environ, 2005, 28: 500-512
    70. Allen S, Smith J. Ammonium nutrition in Ricinus communis:Its effect on plant growth and the chemical composition of the whole plant, xylem and phloem saps. J Exp Bot,1986,37:1599-1610
    71. Anandacoomaraswamy A, De Costa W, Tennakoon P, Van der Werf A. The physiological basis of increased biomass partitioning to roots upon nitrogen deprivation in young clonal tea(Camellia sinensis (L.) O. Kuntz). Plant Soil, 2002,238:1-9
    72. Baxter I, Muthukumar B, Park H C, Buchner P, Lahner B, Danku J, Zhao K, Lee J, Hawkesford M J, Guerinot M L. Variation in molybdenum content across broadly distributed populations of Arabidopsis thaliana is controlled by a mitochondrial molybdenum transporter (MOT1). PLoS Genet,2008,4:e1000004
    73. Bowsher C G, Long D M, Oaks A, Rothstein S J. Effect of light/dark cycles on expression of nitrate assimilatory genes in maize shoots and roots. Plant Physiol, 1991,95:281-285
    74. Breimer T. Environmental factors and cultural measures affecting the nitrate content in spinach. Fertilizer Research,1982,3:191-292
    75. Brown J, Clark R. Differential response of two maize inbreds to molybdenum stress. Soil Sci Soc Am J,1974,38:331-333
    76. Burns I G, Zhang K, Turner M K, Meacham M, Al-Redhiman K, Lynn J, Broadley M R, Hand P, Pink D. Screening for genotype and environment effects on nitrate accumulation in 24 species of young lettuce. J Sci FoodAgr, 2011,91:553-562
    77. Campbell W H. Nitrate reductase and its role in nitrate assimilation in plants. Physiol Plantarum,1988,74:214-219
    78. Campbell W H. Nitrate reductase structure, function and regulation:bridging the gap between biochemistry and physiology. Ann Rev Plant Biol,1999,50:277-303
    79. Cantliffe D. Nitrate accumulation in vegetable crops as affected by photoperiod and light duration. Amer Soc Hort Sci J,1972, 7 (8):414-418
    80. Cerezo M, Tillard P, Filleur S, Munos S, Daniel-Vedele F, Gojon A. Major alterations of the regulation of root NO3- uptake are associated with the mutation of Nrt2.1 and Nrt2.2 genes in Arabidopsis. Plant Physiol, 2001,127:262-271
    81. Chen B M, Wang Z H, Li S X, Wang G X, Song H X, Wang X N. Effects of nitrate supply on plant growth, nitrate accumulation, metabolic nitrate concentration and nitrate reductase activity in three leafy vegetables. Plant Sci,2004,167:635-643
    82. Cheng C L, Acedo G N, Cristinsin M, Conkling M A. Sucrose mimics the light induction of Arabidopsis nitrate reductase gene transcription. P Natl Acad Sci,1992, 89:1861-1864
    83. Chopin F, Wirth J, Dorbe M-F, Lejay L, Krapp A, Gojon A, Daniel-Vedele F. The Arabidopsis nitrate transporter AtNRT2.1 is targeted to the root plasma membrane. Plant Physiol Bioch,2007,45:630-635
    84. Crawford N M. Nitrate:nutrient and signal for plant growth. The Plant Cell,1995,7: 859
    85. Cui M, Sun X, Hu C, Di H J, Tan Q, Zhao C. Effective mitigation of nitrate leaching and nitrous oxide emissions in intensive vegetable production systems using a nitrification inhibitor, dicyandiamide. J Soil Sediment,2011,11:722-730
    86. De Angeli A, Monachello D, Ephritikhine G, Frachisse J, Thomine S, Gambale F, Barbier-Brygoo H. The nitrate/proton antiporter AtCLCa mediates nitrate accumulation in plant vacuoles. Nature,2006,442:939-942
    87. De Angeli A, Moran O, Wege S, Filleur S, Ephritikhine G, Thomine S, Barbier-Brygoo H, Gambale F. ATP binding to the C terminus of the Arabidopsis thaliana nitrate/proton antiporter, AtCLCa, regulates nitrate transport into plant vacuoles. J Biol Chem,2009,284:26526-26532
    88. Dechorgnat J, Nguyen C T, Armengaud P, Jossier M, Diatloff E, Filleur S, Daniel-Vedele F. From the soil to the seeds:the long journey of nitrate in plants. J Exp Bot,2011,62:1349-1359
    89. Deng M, Moureaux T, Caboche M. Tungstate, a molybdate analog inactivating nitrate reductase, deregulates the expression of the nitrate reductase structural gene. Plant Physiol,1989,91:304-309
    90. Dodd I, Tan L, He J. Do increases in xylem sap pH and/or ABA concentration mediate stomatal closure following nitrate deprivation? J Exp Bot,2003,54: 1281-1288
    91. Doddema H, Telkamp G. Uptake of nitrate by mutants of Arabidopsis thaliana, disturbed in uptake or reduction of nitrate. Physiol Plantarum,1979,45:332-338
    92. Du S, Zhang Y, Lin X, Wang Y, Tang C. Regulation of nitrate reductase by nitric oxide in Chinese cabbage pakchoi (Brassica chinensis L.). Plant Cell Environ,2008, 31:195-204
    93. Eichholzer M, Gutzwiller F. Dietary Nitrates, nitrites, and N-nitroso compounds and cancer risk:a review of the epidemiologic evidence. Nutri Rev,1998,56:95-105
    94. Evanylo G, Sherony C, Spargo J, Starner D, Brosius M, Haering K. Soil and water environmental effects of fertilizer-, manure-, and compost-based fertility practices in an organic vegetable cropping system. Agr Ecosyst Environ,2008,127:50-58
    95. Fan S C, Lin C S, Hsu P K, Lin S H, Tsay Y F. The Arabidopsis nitrate transporter NRT1.7, expressed in phloem, is responsible for source-to-sink remobilization of nitrate. Plant Cell 2009,21:2750-2761
    96. Farneselli M, Simonne E H, Studstill D W, Tei F. Washing and/or cutting petioles reduces nitrate nitrogen and potassium sap concentrations in vegetables. J Plant Nutr, 2006,29:1975-1982
    97. Filleur S, Dorbe M-F, Cerezo M, Orsel M, Granier F, Gojon A, Daniel-Vedele F. An Arabidopsis T-DNA mutant affected in Nrt2 genes is impaired in nitrate uptake. FEBS Lett,2001,489:220-224
    98. Finnemann J, Schjoerring J K. Post-translational regulation of cytosolic glutamine synthetase by reversible phosphorylation and 14-3-3 protein interaction. Plant J, 2000,24:171-181
    99. Forde B G. Nitrate transporters in plants:structure, function and regulation. BBA Biomembranes,2000,1465:219-235
    100. Forde B G, Clarkson D T. Nitrate and ammonium nutrition of plants:physiological and molecular perspectives. Adv Bot Res,1999,30:1-90
    101.Foyer C, Champigny M, Valadier M, Ferrario S 1996 Partitioning of photosynthetic carbon:The role of nitrate activation of protein kinases. In Proceedings of the Phytochemical Society of Europe, Oxford UK pp.35-51.
    102.Galangau F, Daniel-Vedele F, Moureaux T, Dorbe M F, Ley decker M T, Caboche M. Expression of leaf nitrate reductase genes from tomato and tobacco in relation to light-dark regimes and nitrate supply. Plant Physiol,1988,88:383-388
    103.Geelen D, Lurin C, Bouchez D, Frachisse J M, Lelievre F, Courtial B, Barbier Brygoo H, Maurel C. Disruption of putative anion channel gene AtCLC-a in Arabidopsis suggests a role in the regulation of nitrate content. Plant J,2000,21: 259-267
    104.Glass A D, Brito D T, Kaiser B N, Kronzucker H J, Kumar A, Okamoto M, Rawat S, Siddiqi M Y, Silim S M, Vidmar J J. Nitrogen transport in plants, with an emphasis on the regulations of fluxes to match plant demand. J Plant Nutr Soil Sc,2001,164: 199-207
    105.Glass A D, Shaff J E, Kochian L V. Studies of the uptake of nitrate in barley IV. Electrophysiology. Plant Physiol,1992,99:456-463
    106.Guo F Q, Young J, Crawford N M. The nitrate transporter AtNRT1.1 (CHL1) functions in stomatal opening and contributes to drought susceptibility in Arabidopsis. Plant Cell 2003,15:107-117
    107.Guo F Q, Wang R, Chen M, Crawford N M. The Arabidopsis dual-affinity nitrate transporter gene AtNRTl.1 (CHL1) is activated and functions in nascent organ development during vegetative and reproductive growth. Plant Cell, 2001,13: 1761-1777
    108.Harvey P H. Hereditary variation in plant nutrition. Genetics,1939,24:437
    109.Hashimoto K, Yamasaki S I. Effects of molybdenum application on the yield, nitrogen nutrition and nodule development of soybeans. Soil Sci Plant Nutr,1976,22: 435-443
    110.Hermans C, Hammond J P, White P J, Verbruggen N. How do plants respond to nutrient shortage by biomass allocation? Trends Biochem Sci,2006,11:610-617
    111.Hernandez-Ramirez R U, Galvdn-Portillo M V, Ward M H, Agudo A, Gonzalez C A, Onate-Ocana L F, Herrera-Goepfert R, Palma-Coca O, Lopez-Carrillo L. Dietary intake of polyphenols, nitrate and nitrite and gastric cancer risk in Mexico City. Int J Cancer,2009,125:1424-1430
    112.Hille R. The mononuclear molybdenum enzymes. Chem Rev,1996,96:2757-2816
    113.Ho C H, Lin S H, Hu H C, Tsay Y F. CHL1 functions as a nitrate sensor in plants. Cell,2009,138:1184
    114.Hoelzle I, Finer J J, McMullen M D, Streeter J G. Induction of glutamine synthetase activity in nonnodulated roots of Glycine max, Phaseolus vulgaris, and Pisum sativum. Plant Physiol,1992,100:525-528
    115.Hoff T, Truong H N, Caboche M. The use of mutants and transgenic plants to study nitrate assimilation. Plant Cell Environ,1994,17:489-506
    116.Huang C, Wang Z, Li S, Malhi S S. Nitrate in leaf petiole and blade of spinach cultivars and its relation to biomass and water in plants. J Plant Nutr,2010,33: 1112-1123
    117.Huber J L, Huber S C, Campbell W H, Redinbaugh M G. Reversible light/dark modulation of spinach leaf nitrate reductase activity involves protein phosphorylation. Arch Biochem Biophys,1992,296:58-65
    118.1de Y, Kusano M, Oikawa A, Fukushima A, Tomatsu H, Saito K, Hirai M Y, Fujiwara T. Effects of molybdenum deficiency and defects in molybdate transporter MOT1 on transcript accumulation and nitrogen/sulphur metabolism in Arabidopsis thaliana. J Exp Bot,2011,62:1483-1497
    119. Jackson R, Caldwell M. The scale of nutrient heterogeneity around individual plants and its quantification with geostatistics. Ecology,1993,74:612-614
    120.Kohler B, Wegner L H, Osipov V, Raschke K. Loading of nitrate into the xylem: apoplastic nitrate controls the voltage dependence of X-QUAC, the main anion conductance in xylem-parenchyma cells of barley roots. Plant J,2002,30:133-142
    121.Kaiser W, Weiner H, Huber S. Nitrate reductase in higher plants:a case study for transduction of environmental stimuli into control of catalytic activity. Physiol Plantarum,1999,105:384-389
    122.Kaiser W M, Spill D, Brendle-Behnisch E. Adenine nucleotides are apparently involved in the light-dark modulation of spinach-leaf nitrate reductase. Planta,1992, 186:236-240
    123.Kichey T, Hirel B, Heumez E, Dubois F, Le Gouis J. In winter wheat (Triticum aestivum L.), post-anthesis nitrogen uptake and remobilisation to the grain correlates with agronomic traits and nitrogen physiological markers. Field Crop Res,2007,102: 22-32
    124.Lam H M, Coschigano K, Oliveira I, Melo-Oliveira R, Coruzzi G. The molecular-genetics of nitrogen assimilation into amino acids in higher plants. Ann Rev Plant Biol,1996,47:569-593
    125.Lark R, Milne A, Addiscott T, Goulding K, Webster C, O'Flaherty S. Scale-and location-dependent correlation of nitrous oxide emissions with soil properties:an analysis using wavelets. Eur J Soil Sci,2004,55:611-627
    126.Li J Y, Fu Y L, Pike S M, Bao J, Tian W, Zhang Y, Chen C Z, Zhang Y, Li H M, Huang J. The Arabidopsis nitrate transporter NRT1.8 functions in nitrate removal from the xylem sap and mediates cadmium tolerance. Plant Cell,2010,22: 1633-1646
    127.Li W, Wang Y, Okamoto M, Crawford N M, Siddiqi M Y, Glass A D. Dissection of the AtNRT2.1:AtNRT2.2 inducible high-affinity nitrate transporter gene cluster. Plant Physiol,2007,143:425-433
    128.Lillo C, Meyer C, Lea U S, Pro van F, Oltedal S. Mechanism and importance of post-translational regulation of nitrate reductase. J Exp Bot,2004,55:1275-1282
    129.Lin S H, Kuo H F, Canivenc G, Lin C S, Lepetit M, Hsu P K, Tillard P, Lin H L, Wang Y Y, Tsai C B. Mutation of the Arabidopsis NRT1.5 nitrate transporter causes defective root-to-shoot nitrate transport. Plant Cell,2008,20:2514-2528
    130.Liu H, Hu C, Hu X, Nie Z, Sun X, Tan Q, Hu H. Interaction of molybdenum and phosphorus supply on uptake and translocation of phosphorus and molybdenum by Brassica napus. J Plant Nutr,2010a,33:1751-1760
    131.Liu H, Hu C, Sun X, Tan Q, Nie Z, Hu X. Interactive effects of molybdenum and phosphorus fertilizers on photosynthetic characteristics of seedlings and grain yield of Brassica napus. Plant Soil,2010b,326:345-353
    132.Liu K H, Huang C Y, Tsay Y F. CHL1 is a dual-affinity nitrate transporter of Arabidopsis involved in multiple phases of nitrate uptake. Plant Cell,1999,11: 865-874
    133.Liu K H, Tsay Y F. Switching between the two action modes of the dual-affinity nitrate transporter CHL1 by phosphorylation. EMBO J,2003,22:1005-1013
    134.Luo J, Qin J, He F, Li H, Liu T, Polle A, Peng C, Luo Z B. Net fluxes of ammonium and nitrate in association with H+ fluxes in fine roots of Populus popularis. Planta, 2013,237:919-931
    135.Luo J, Sun S, Jia L, Chen W, Shen Q. The mechanism of nitrate accumulation in pakchoi [Brassica campestris L. ssp. Chinensis (L.)]. Plant and soil,2006,282: 291-300
    136.Martin Y, Navarro F J, Siverio J M. Functional characterization of the Arabidopsis thaliana nitrate transporter CHL1 in the yeast Hansenula polymorpha. Plant Mol Biol, 2008,68:215-224
    137.Martinoia E, Heck U, Wiemken A. Vacuoles as storage compartments for nitrate in barley leaves. Nature,1981,289:292-294
    138.McParland R, Guevara J, Becker R, Evans H. The purification and properties of the glutamine synthetase from the cytosol of Soy-bean root nodules. Biochem J,1976, 153:597-606
    139.Mendel R R. The Molybdenum Cofactor. JBiol Chem,2013,288:13165-13172
    140.Mendel R R, Hansch R. Molybdoenzymes and molybdenum cofactor in plants. J Exp Bot,2002,53:1689-1698
    141.Miflin B J, Habash D Z. The role of glutamine synthetase and glutamate dehydrogenase in nitrogen assimilation and possibilities for improvement in the nitrogen utilization of crops. J Exp Bot,2002,53:979-987
    142.Miller A, Cramer M. Root nitrogen acquisition and assimilation. Plant Soil,2004, 1-36
    143.Miller A, Shen Q, Xu G. Freeways in the plant:transporters for N, P and S and their regulation. Curr Opin Plant Biol,2009,12:284-290
    144.Miyazaki J, Juricek M, Angelis K, Schnorr K M, Kleinhofs A, Warner R L. Characterization and sequence of a novel nitrate reductase from barley. Mol Gen Genet,1991,228:329-334
    145.Moureaux T, Cherel I, Boutin J-P, Caboche M. Effects of nitrogen metabolites on the regulation and circadian expression of tobacco nitrate reductase. Plant Physiol Bioch, 1991,29:239-247
    146.Okamoto M, Vidmar J J, Glass ADM. Regulation of NRT1 and NRT2 gene families of Arabidopsis thaliana:responses to nitrate provision. Plant Cell Physiol,2003,44: 304-317
    147.Olday F C, Barker A V, Maynard D, N. A physiological basis for different patterns of nitrate accumulation in two spinach cultivars. J Am Soc Hort Sci,1976,101:217-219
    148.Orsel M, Filleur S, Fraisier V, Daniel-Vedele F. Nitrate transport in plants:which gene and which control? J Exp Bot,2002,53:825-833
    149.Ortega J L, Temple S J, Sengupta-Gopalan C. Constitutive overexpression of cytosolic glutamine synthetase (GS1) gene in transgenic alfalfa demonstrates that GS1 may be regulated at the level of RNA stability and protein turnover. Plant Physiol,2001,126:109-121
    150.Paulsen I T, Skurray R A. The POT family of transport proteins. Trends Biochem Sci, 1994,19:404
    151.Prasad S, Chetty A A. Nitrate-N determination in leafy vegetables:Study of the effects of cooking and freezing. Food Chem,2008,106:772-780
    152.Rao K P, Rains D W. Nitrate absorption by barley I. Kinetics and energetics. Plant Physiol,1976,57:55-58
    153.Reinink K, Eenink A. Genotypical differences in nitrate accumulation in shoots and roots of lettuce. Sci Hortic,1988,37:13-24
    154.Remans T, Nacry P, Pervent M, Filleur S, Diatloff E, Mounier E, Tillard P, Forde B G, Gojon A. The Arabidopsis NRT1.1 transporter participates in the signaling pathway triggering root colonization of nitrate-rich patches. P Natl Acad Sci,2006,103: 19206-19211
    155.Richard-Molard C, Krapp A, Brun F, Ney B, Daniel-Vedele F, Chaillou S. Plant response to nitrate starvation is determined by N storage capacity matched by nitrate uptake capacity in two Arabidopsis genotypes. J Exp Bot,2008,59:779-791
    156.Santamaria P. Nitrate in vegetables:toxicity, content, intake and EC regulation. J Sci Food Agr,2006,86:10-17
    157.Santamaria P, Elia A, Serio F, Todaro E. A survey of nitrate and oxalate content in fresh vegetables. J Sci Food Agr,1999,79:1882-1888
    158.Schiltz S, Munier-Jolain N, Jeudy C, Burstin J, Salon C. Dynamics of exogenous nitrogen partitioning and nitrogen remobilization from vegetative organs in pea revealed by 15N in vivo labeling throughout seed filling. Plant Physiol,2005,137: 1463-1473
    159.Schrader L, Ritenour G, Eilrich G, Hageman R. Some characteristics of nitrate reductase from higher plants. Plant Physiol,1968,43:930-940
    160.Shaner D L, Boyer J S. Nitrate reductase activity in maize (Zea mays L.) leaves I. Regulation by nitrate flux. Plant Physiol, 1976,58:499-504
    161.Shelp B. The composition of phloem exudate and xylem sap from Broccoli (Brassica oleracea) supplied with NH4+, NO3- or NH4NO3. J Exp Bot,1987,38: 1619-1636
    162.Siddiqi M, Glass A. An evaluation of the evidence for, and implications of, cytoplasmic nitrate homeostasis. Plant Cell Environ,2002,25:1211-1217
    163.Siebrecht S, Herdel K, Schurr U, Tischner R. Nutrient translocation in the xylem of poplar-diurnal variations and spatial distribution along the shoot axis. Planta,2003, 217:783-793
    164.Simpson R J, Lambers H, Dalling M J. Nitrogen redistribution during grain growth in wheat (Triticum aestivum L.) IV. Development of a quantitative model of the translocation of nitrogen to the grain. Plant Physiol,1983,71:7-14
    165.Srivastava H. Regulation of nitrate reductase activity in higher plants. Phytochemistry, 1980,19:725-733
    166.Steingrover E, Woldendorp J, Sijtsma L. Nitrate accumulation and its relation to leaf elongation in spinach leaves. J Exp Bot,1986,37:1093-1102
    167.Sun J, Chen S, Dai S, Wang R, Li N, Shen X, Zhou X, Lu C, Zheng X, Hu Z. NaCl-induced alternations of cellular and tissue ion fluxes in roots of salt-resistant and salt-sensitive poplar species. Plant Physiol,2009,149:1141-1153
    168.Tang Y, Sun X, Hu C, Tan Q, Zhao X. Genotypic differences in nitrate uptake, translocation and assimilation of two Chinese cabbage cultivars [Brassica campestris L. ssp.Chinensis (L.)]. Plant Physiol Bioch,2013,70:14-20
    169.Terman G, Allen S. Crop yield-nitrate-N, total N, and total K relationships:Leafy vegetables. Commun Soil Sci Plan,1978,9:813-825
    170.Tsay Y F, Chiu C C, Tsai C B, Ho C H, Hsu P K. Nitrate transporters and peptide transporters. FEBS Lett,2007,581:2290-2300
    171.Tsay Y F, Schroeder J I, Feldmann K A, Crawford N M. The herbicide sensitivity gene CHL1 of Arabidopsis encodes a nitrate-inducible nitrate transporter. Cell, 1993, 72:705-713
    172.Vezina L P, Hope H J, Joy K W. Isoenzymes of glutamine synthetase in roots of pea (Pisum sativum L. cv Little Marvel) and alfalfa (Medicago media Pers. cv Saranac). Plant Physiol,1987,83:58-62
    173.Von der Fecht-Bartenbach J, Bogner M, Dynowski M,Ludewig U. CLC-b-mediated NO3-/H+ exchange across the tonoplast of Arabidopsis vacuoles. Plant Cell Physiol, 2010,51:960-968
    174.Walch Liu P, Filleur S, Gan Y, Forde B G. Signaling mechanisms integrating root and shoot responses to changes in the nitrogen supply. Photosynth Res,2005,83:239-250
    175.Walch Liu P, Forde B G. Nitrate signalling mediated by the NRTJ.1 nitrate transporter antagonises 1-glutamate-induced changes in root architecture. Plant J,2008,54: 820-828
    176. Walker R. Nitrates, nitrites and N-nitrosocompounds:A review of the occurrence in food and diet and the toxicological implications. Food Additives& Contaminants, 1990,7:717-768
    177.Wallsgrove R M, Turner J C, Hall N P, Kendall A C, Bright S W. Barley mutants lacking chloroplast glutamine synthetase-biochemical and genetic analysis. Plant Physiol,1987,83:155-158
    178.Wang Y Y, Hsu P K, Tsay Y F. Uptake, allocation and signaling of nitrate. Trends Biochem Sci,2012,17:458-467
    179. Wang Y Y, Tsay Y F. Arabidopsis nitrate transporter NRT1.9 is important in phloem nitrate transport. Plant Cell,2011,23:1945-1957
    180. Ward M H, Kilfoy B A, Weyer P J, Anderson K E, Folsom A R, Cerhan J R. Nitrate intake and the risk of thyroid cancer and thyroid disease. Epidemiology 2010,21: 389-395
    181.Ward M R, Grimes H D, Huffaker R C. Latent nitrate reductase activity is associated with the plasma membrane of corn roots. Planta,1989,177:470-475
    182.Weissman G S. Influence of ammonium and nitrate nutrition on enzymatic activity in soybean and sunflower. Plant Physiol,1972,49:138-141
    183.Wendler R, Carvalho P, Pereira J, Millard P. Role of nitrogen remobilization from old leaves for new leaf growth of Eucalyptus globulus seedlings. Tree Physiol,1995,15: 679-683
    184.Williams L, Miller A. Transporters responsible for the uptake and partitioning of nitrogenous solutes. Ann Rev Plant Biol,2001,52:659-688
    185.Wirth J, Chopin F, Santoni V, Viennois G, Tillard P, Krapp A, Lejay L, Daniel-Vedele F, Gojon A. Regulation of root nitrate uptake at the NRT2.1 protein level in Arabidopsis thaliana. J Biol Chem,2007,282:23541-23552
    186.Xiong J, Fu G, Yang Y, Zhu C, Tao L. Tungstate:is it really a specific nitrate reductase inhibitor in plant nitric oxide research? JExp Bot,2012,63:33-41
    187.Yu M, Hu C, Sun X, Wang Y. Influences of Mo on nitrate reductase, glutamine synthetase and nitrogen accumulation and utilization in Mo-efficient and Mo-inefficient winter wheat cultivars. Agr Sci China,2010,9:355-361
    188.Yu M, Hu C, Wang Y. Molybdenum efficiency in winter wheat cultivars as related to molybdenum uptake and distribution. Plant Soil,2002,245:287-293
    189.Zhang F C, Kang S Z, Li F S, Zhang J H. Growth and major nutrient concentrations in Brassica campestris supplied with different NH4+/NO3-ratios. J Integr Plant Biol, 2007,49:455-462
    190.Zhang H, Forde B G Regulation of Arabidopsis root development by nitrate availability. JExp Bot,2000,51:51-59
    191.Zhang M, Hu C, Zhao X, Tan Q, Sun X, Cao A, Cui M, Zhang Y. Molybdenum improves antioxidant and osmotic-adjustment ability against salt stress in Chinese cabbage (.Brassica campestris L. ssp. Pekinensis). Plant Soil,2012a,355:375-383
    192.Zhang M, Hu C, Zhao X, Tan Q, Sun X, Li N. Impact of molybdenum on Chinese cabbage response to selenium in solution culture. Soil Sci Plant Nutr,2012b,58: 595-603
    193.Zhao C, Hu C, Huang W, Sun X, Tan Q, Di H. A lysimeter study of nitrate leaching and optimum nitrogen application rates for intensively irrigated vegetable production systems in Central China. J Soil Sediment,2010,10:9-17
    194.Zhao S, Ye X, Zhang Y, Zheng J. The contribution of bnnrtl and bnnrt2 to nitrate accumulation varied according to genotypes in Chinese cabbage. Afr J Biotechol, 2013,9:4910-4917
    195.Zhou Z Y, Wang M J, Wang J S. Nitrate and nitrite contamination in vegetables in China. Food Rev Int,2000,16:61-76
    196.Zhuo D, Okamoto M, Vidmar J J, Glass A D. Regulation of a putative high-affinity nitrate transporter (Nrt2;1At) in roots of Arabidopsis thaliana. Plant J,1999,17: 563-568

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700