Ti-6Al-4V-0.1B合金显微组织演变规律和力学行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钛合金具有较高的比强度和比刚度,优异的耐蚀性能、高温性能和加工性能,被广泛应用于航空航天、石油化工、舰船、汽车、医疗文体等领域,成为一种重要的结构材料和功能材料。但是,由钛合金的原材料成本及加工成本所构成的钛合金的使用成本远高于铝合金和钢材,限制了钛合金在更广泛领域的应用。因此,研制低成本钛合金对扩大应用具有十分重要的意义。
     本文在Ti-6Al-4V基础上添加0.1wt%B,系统地研究了Ti-6Al-4V-0.1B合金显微组织演变规律和力学行为,并对该合金低成本加工工艺进行了探索性研究,结果如下:
     论文系统地研究了铸态Ti-6Al-4V-0.1B合金组织特征及其形成机制,结果表明,采用两次真空自耗熔炼获得的Ti-6Al-4V-0.1B合金铸态组织由α相、β相与TiB相组成,TiB相为针状,表面十分光滑、平直,主要分布在原始p晶界处,在晶粒内部分布较少,铸态组织的原始β晶粒以及α相集束较Ti-6Al-4V合金明显细化。铸态组织形成过程中α相、p相与TiB相存在:(112)β//(010)TiB,(111)β//(1120)α,(001)TiB//(1010)α取向关系。部分β相以TiB相为核心长大,更多的形核核心导致了a集束的细化。
     对Ti-6Al-4V-0.1B合金的热变形特征及组织演变规律进行研究发现,该合金是一种对变形温度和应变速率均敏感的材料,随着变形温度的降低和应变速率的提高,流动应力提高。铸态组织单相区变形时,材料的变形机制以动态回复为主,个别变形条件下发生不完全再结晶,组织得到细化;两相区变形时,材料的变形机制为连续动态再结晶,片层状组织因动态再结晶而球化。魏氏组织两相区变形时,随着应变量增加,组织得到细化,片层状组织也因为发生连续的动态再结晶而球化,低应变速率下变形时,变形时间的延长促进了动态再结晶后的晶粒长大。TiB相在变形过程中发生断裂,并沿着加工流线分布,TiB相的存在促进了再结晶的发生,提高了组织的球化率。
     热处理对两相区轧制的Ti-6Al-4V-0.1B合金棒材的组织及动静态性能的影响进行了研究,结果表明:经过简单退火、两相区退火和单相区退火处理分别获得等轴组织、双态组织和魏氏组织。相变点以上热处理冷却过程中,α相从p相基体和TiB相处形核长大,TiB相作为α相的形核过程的附加形核位置,有助于α相的析出。在拉伸变形时:魏氏组织的强度高于双态组织和等轴组织,但塑性明显低于后者。退火冷却方式对合金的性能有较大的影响,水冷获得的强度最高,塑性最差,空冷和炉冷的强度接近,塑性最好。在高速冲击载荷的作用下:等轴组织和双态组织比魏氏组织可承载更高应变速率的压缩变形,三种组织绝热剪切敏感性,从不敏感到敏感的顺序依次为:双态组织、等轴组织、魏氏组织,双态组织中初生α相比例在50%-55%的合金动态性能最优。两相区退火不同冷却速度下,炉冷组织动态性能最仕,空冷次之,水冷最差。0.1wt%B添加对Ti-6A1-4V合金变形组织的平均动态流变应力影响不大,但能够降低材料的动态变形塑性,降低程度由大到小的排序为:魏氏组织>等轴组织>双态组织。TiB相相的存在不改变Ti-6A1-4V合金不同组织的绝热敏感性规律,处在绝热剪切带上的TiB相不是合金发生绝热剪切效的直接原因。
     对铸锭两相区直接轧制的低成本钛合金制备工艺进行探索研究,结果表明,0.1wt%B添加后Ti-6A1-4V合金铸锭的热工性能得到了明显的改善,两相相区直接轧制的最大变形量可达70%。随着变形量的增加合金的的组织得到了明显的细化。铸锭经过β+β相相区形变热处理后获得了具有一定比例片层状初生α相的双态组织。相同变形量的两火次轧制比一火次轧制获得的组织更为细碎,板材性能更为优异。采用低成本加工工艺制备的钛合金板材经过920℃/1h,FC热处理后动静态性能与传统方法制备的Ti-6A1-4V相相当。铸态组织两相区直接轧制生产低成本钛合金工艺可行。
Titanium alloys with high specific strength and specific stiffness, excellent corrosion resistance, high temperature properties and processing properties, are widely used in the areas of aerospace, petrochemical, marine, automotive, medical and sports, and have become the important structure material and functional material. But the raw material costs and processing cost of titanium alloy are far higher than the aluminum alloys and steels, which limits the wider use of the titanium alloys. Therefore, it has critical significance to develop low-cost titanium alloys.
     In this research, the microstructural evolution and mechanical behavior of the Ti-6Al-4V alloy modified with0.1wt%Boron are systematically studied. Additionally, the low cost processing for the Ti-6Al-4V-0.1B alloy is investigated. The results are shown as follows:
     The microstructure character and formation mechanism of as-cast Ti-6Al-4V-0.1B alloy were analyzed firstly. The ingot of Ti-6Al-4V-0.1B alloy obtained through twice consumable melting in vacuum is qualified. The structures of as-cast alloys consist of α,β and TiB phases. The needle-like TiB phase, whose surface appears very smooth and flat, are mainly distributed along the boundaries of the original β phase and less in grains. After the addition of0.1wt%Boron, the original α and β phases with as-cast structures are obviously refined. During the solidification of as-cast alloy, the α,β and TiB phases appear the orientation relationships as (112)β//(010)Ti,(111)β//(1120)α,(001)TiB//(1010)α. The orientation relationships show that a part of a phase nucleates from the TiB phase and more cores for nucleation lead to the refinement of a colony.
     In this paper, the thermoplastic deformation mechanism and microstructure evolution character of the Ti-6Al-4V-0.1B alloy are studied. The results show that, the Ti-6Al-4V-0.1B alloy is sensitive to the deformation temperature and strain rates. The flow stress increased as the deformation temperature reducing and the strain rate increasing. During the deformation of the single-phase region, the main deformation mechanism of the as-cast alloy is dynamic recovery, but incomplete recrystallization occurs under the condition of high temperature, and the organization of the alloys is refined. When deformations occur in the two-phase region, the deformation mechanism of the as-cast alloy is DCRX (dynamic continuous recrystallization), so the lamellar a structure globularized. When deformations occur in the two-phase region, the deformation mechanism of the alloy with Widmannstatten structure is the same to as-cast alloy, and the structure is refined and globularized with the increasing of deformation amount.In low strain rate deformation, the extension of deformation time promotes the grain growth after the dynamic recrystallization. TiB phase reverses in the deformation process and distribute along the processing flow line. The TiB phase promotes the occurrence of the recrystallization and improves the spheroidizing rate of the alloys.
     Then the effect of heat treatment on the microstructure, tensile properties and dynamic properties are discussed and investigated. After simply annealing, β annealing and α+β annealing, the microstructure of rolling bar are transformed to equiaxed, Widmannstatten and bimodal structure respectively. During the cooling process from the temperature above the phase transition point, a phase nucleates and grows up in the β phase matrix and TiB phase. TiB phase as another nucleation position of a phase is conducive for the nucleation and precipitation of a phase. In the tensile deformation process, the strength of the alloys with Widmannstatten structure is higher than those with biomodal structure which have better plasticity however. Annealing cooling method has a greater impact on the properties of the alloy. The highest strength but the worst plasticity of the alloys is obtained by water-cooling. The strength is close comparatively by air-cooling and furnace cooling, and by both of which the alloys have the best plasticity. Under the condition of high-speed impact, the alloys with equiaxed structure and biomodal structure can carry higher strain rate in the process of dynamic compression deformation. The alloys with biomodal structure, equiaxed structure and Widmannstatten structure appear more and more sensitive to the adiabatic shearing in turn. The alloys with biomodal structure, in which the proportion of primary a phase is50%-55%, have the highest amounts of uniform plastic deformation, absorb the most energy in the deformation and show the best dynamic properties. Under different cooling rate (furnace-cooling, air-cooling and water-cooling) after two-phase annealing, the dynamic properties of the alloys perform better and better in turn.0.1wt%Boron addition affects little on the average flow stress of Ti-6Al-4V alloy, but obviously reduces the dynamic deformation plasticity, and the effects on the alloys with Widmannstatten, exquixed and biomodal structure show smaller and smaller in turn. During the dynamic loading process, the TiB phase doesn't alter the principle of the sensitive of the alloys to ABS (Adiabatic Shear Band) and there are no direct corresponding relationship between the TiB phase and the ABS.
     Finally, the process of the preparation of the low-cost Titanium alloy by the method of α+β phase region rolling technology is investigated in this paper. It is indicated that, for the0.1wt%B addition in the Ti-6A1-4V alloy, the hot-working properties of the ingot alloy are critically improved. And the α+β phase region rolling of the alloy becomes possible. With the amount of α+β phase region deformation increasing, the microstructure of the alloy is refined remarkable, and the maximum deformation by direct rolling can reach70%. After α+β phase region thermal deformation processing and heat treatment, the biomodal microstructure with certain proportion of primary lath a phase can be observed. After direct-rolling, the mechanical properties of the alloy meet the requirements of index standard of GB/T3621-2007. The microstructures and mechanical properties of the alloy through two passes rolling are refined well than those through one passes rolling. After920℃/1h, FC of heat treatment which is low cost process for the preparation of titanium alloy plate, the properties of the alloy is equal to Ti-6Al-4V alloy.
引文
[1]Hurless B. E., Froes F. Cost of titanium [J]. The AMPTIAC Quarterly,2002,6(2):3-9
    [2]Lutjering G., Williams J. Engineering Materials and Processes:Titanium [M]. New York, USA:Springer-Verlag,2003
    [3]Boyer R., Welsch G., Collings E. W. Materials properties handbook:titanium alloys [M]. OH, USA:ASM Intl,1994
    [4]Donachie M. J. Titanium:a technical guide [M]. OH, USA:Asm Intl,2000
    [5]Everhart J. L. Titanium and titanium alloys [M]. New York, USA:Reinhold Pub. Corp.,1954
    [6]莱茵斯C.,皮特尔斯M.钛与钛合金[M].陈振华.北京:化学工业出版社,2005
    [7]张喜燕,赵永庆,白晨光.钛合金及应用[M].北京:化学工业出版社,2005
    [8]Hericher L. Contribution a la modelisation des transformations de phases dans les alliages de titanes:application a Talliage [beta]-CEZ[D]. Nancy, France; L'institut national polytechnique de Lorraine,2004
    [9]敖宏,惠松骁,叶文君,等.高强度,高韧性,高模量钛合金研究进展[J].金属学报,2009,38(z1):22-24
    [10]许国栋,王凤娥.高温钛合金的发展和应用[J].稀有金属,2009,32(6):774-780
    [11]董和泉,国子明,毛协民,等.低能耗节约型钛及钛合金熔炼技术的发展趋势[J].材料导报,2008,22(5):68-73
    [12]曹春晓,闫渊林,黄旭.我国航空系统钛合金发展现状与展望[J].钛工业进展,2002,(4):26-29
    [13]颜鸣皋,吴学仁,朱知寿.航空材料技术的发展现状与展望[J].航空制造技术,2003,(012):19-25
    [14]张翥.航空航天用先进新型钛合金发展[J].稀有金属,2008,32:67-74
    [15]曹春晓.选材判据的变化与高损伤容限钛合金的发展[J].金属学报,2002,38(z1):4-11
    [16]Nemat-Nasser S., Guo W. G., Nesterenko V. F., et al. Dynamic response of conventional and hot isostatically pressed Ti-6A1-4V alloys:experiments and modeling [J]. Mechanics of Materials,2001,33(8):425-439
    [17]Meyers M. A., Subhash G., Kad B. K., et al. Evolution of microstructure and shear-band formation in α-hcp titanium [J]. Mechanics of Materials,1994,17(2): 175-193
    [18]陈刚,陈忠富,陶俊林,等.TC4动态力学性能研究[J].实验力学,2006,20(4):605-609
    [19]Lee D. G., Lee Y. H., Lee S., et al. Dynamic deformation behavior and ballistic impact properties of Ti-6Al-4V alloy having equiaxed and bimodal microstructures [J]. Metallurgical and Materials Transactions A,2004,35(10):3103-3112
    [20]Lee D. G., Kim Y. G., Nam D. H., et al. Dynamic deformation behavior and ballistic performance of Ti-6Al-4V alloy containing fine α2(Ti3Al) precipitates [J]. Materials Science and Engineering:A,2005,391(1):221-234
    [21]Tamirisa S., Miracle D. An Overview of Titanium Alloys Modified with Boron [A]. 11th world conference on titanium [C]. Sendai, Japan:The Japan Institute of Metals, 2007:737-740
    [22]Bertolini M., Shaw L., England L., et al. The FFC Cambridge Process for Production of Low Cost Titanium and Titanium Powders [J]. Key Engineering Materials,2010, 436:75-83
    [23]Sherman A., Sommer C., Froes F. The use of titanium in production automobiles: potential and challenges [J]. JOM Journal of the Minerals, Metals and Materials Society,1997,49(5):38-41
    [24]黄金昌.日本开发高性能和低成本的Ti-Fe-O-N系列钛合金[J].稀有金属快报,2000,(09):21-22
    [25]Stumpp H., Sick G., Pannen H., et al. Advanced melting and casting plants with the high power electron and plasma beam [J]. Vacuum,1990,41(7):2157-2160
    [26]毛小南.发展中的钛新技术[J].中国金属通报,2008,47:35-37
    [27]Klug K. L., Ucok I., Gungor M. N., et al. The near-net-shape manufacturing of affordable titanium components for the M777 lightweight howitzer [J]. JOM Journal of the Minerals, Metals and Materials Society,2004,56(11):35-41
    [28]王亮,史鸿培.高性能钛合金粉末冶金技术研究[J].宇航材料工艺,2003,3:42-44
    [29]宋继鑫.兵器快报,2005,(22):1
    [30]曹勇家.金属注射成形钛合金[J].粉末冶金技术,2001,19(001):45-48
    [31]吕成,张立文,牟正君,等.TC4钛合金锻件锻造过程三维热力耦合有限元模拟[J].锻压技术,2007,32(1):28-31
    [32]牟正君,张立文,吕成.TC4钛合金锻件锻造过程数值模拟和工艺优化[J].航空制造技术,2007,(z1):538-541
    [33]薜松,周杰,熊运森,等.TA15钛合金大型整框锻造成形数值模拟与实验研究[J].热加工工艺,2011,40(11):73-75
    [34]孙念)光,杨合,孙志超.大型钛合金隔框等温闭式模锻成形工艺优化[J].稀有金属材料与工程,2009,(007):1296-1300
    [35]史延沛,李淼泉,罗皎.TC4钛合金叶片锻造过程中晶粒尺寸的数值模拟[J].锻压装备与制造技术,2009,44(2):101-104
    [36]熊爱明,林海,李淼泉.TC6钛合金盘等温锻造时晶粒尺寸的数值模拟[J].中国机械工程,2003,14(9):791-794
    [37]吴伏家,尹晓霞,赵长瑞.TC4钛合金等温锻造过程的数值模拟和实验研究[J].锻压技术,2009,34(005):147-150
    [38]Zhou Y., Zeng W., Yu H. An investigation of a new near-beta forging process for titanium alloys and its application in aviation components [J]. Materials Science and Engineering:A,2005,393(1):204-212
    [39]Li M. Q., Xiong A. M. New model of microstructural evolution during isothermal forging of Ti-6Al-4V alloy [J]. Materials Science and Technology,2002,18(2): 212-214
    [40]Prasad Y., Seshacharyulu T. Processing maps for hot working of titanium alloys [J]. Materials Science and Engineering:A,1998,243(1):82-88
    [41]李淼泉,李晓丽,龙丽,等.TA15合金的热变形行为及加工图[J].稀有金属材料与工程,2006,35(9):1354-1358
    [42]Luo J., Li M., Yu W., et al. Effect of the strain on processing maps of titanium alloys in isothermal compression [J]. Materials Science and Engineering:A,2009,504(1): 90-98
    [43]Zhu Y., Zeng W., Feng F., et al. Characterization of hot deformation behavior of as-cast TC21 titanium alloy using processing map [J]. Materials Science and Engineering:A,2011,528(3):1757-1763
    [44]Li M., Zhang W. Effect of hydrogen on processing maps in isothermal compression of Ti-6Al-4V titanium alloy [J]. Materials Science and Engineering:A,2009,502(1): 32-37
    [45]Liying Z., Guanjun Y., Peng G., et al. Processing Map of One Kind of Metastable β Titanium Alloy [J]. Rare Metal Materials and Engineering,2010,39(9):1505-1508
    [46]Kawake Y. Research activities on cost effective metallurgy of titanium alloys in japan [A]. Proc of 9th world conference on titanium [C].1999:1275
    [47]Srinivasan R., Bennett M. D., Tamirisakandala S., et al. Rolling of Plates and Sheets from As-Cast Ti-6Al-4V-0.1B [J]. Journal of materials engineering and performance, 2009,18(4):390-398
    [48]Tamirisakandala S., Bhat R. B., Tiley J. S., et al. Processing, microstructure, and properties of β titanium alloys modified with boron [J]. Journal of materials engineering and performance,2005,14(6):741-746
    [49]Chen Z., Loretto M. Effect of carbon additions on microstructure and mechanical properties of Ti-15-3 [J]. Materials Science and Technology,2004,20(3):343-349
    [50]Liu Huiqi., Yi Danqing. Influence of Matal Sc on Microstructure and Property of As-cast Titanium Alloys [A]. The First China-Korea Bi-lateral Symposium on Light Metals and Nano Materials [C].2003
    [51]Donachie Jr M. J. Introduction to titanium and titanium alloys [J]. American Society for Metals, Titanium and Titanium Alloys Source Book,1982:3-9
    [52]Sweeney D. M. Elevated temperature oxidation of boron modified Ti-6Al-4V [D]. Dayton, OH, USA; Wright State University,2008
    [53]Miracle D., Tamirisa S., Bhat R., et al. Ti-B alloy technology:An Introduction and Overview [A]. Ti-B Alloy Dayton [C].2005
    [54]Hyman M., Mccullough C., Valencia J., et al. Microstructure evolution in TiAl alloys with B additions:Conventional solidification [J]. Metallurgical and Materials Transactions A,1989,20(9):1847-1859
    [55]Banerjee R., Collins P., Gene A., et al. Direct laser deposition of in situ Ti-6Al-4V-TiB composites [J]. Materials Science and Engineering:A,2003,358(1): 343-349
    [56]Banerjee R., Genc A., Collins P., et al. Comparison of microstructural evolution in laser-deposited and arc-melted In-Situ Ti-TiB composites [J]. Metallurgical and Materials Transactions A,2004,35(7):2143-2152
    [57]Hanusiak W., Fields J., Hammond V., et al. The prospects for hybrid fiber-reinforced Ti-TiB-matrix composites [J]. JOM Journal of the Minerals, Metals and Materials Society,2004,56(5):49-50
    [58]Saito T., Takamiya H., Furuta T. Hot workability and mechanical properties of a TiB particle reinforced PM beta-titanium matrix composite [A]. Titanium'95:Science and technology [C]. London, UK:The Institute of Materials,1995:2859-2866
    [59]Saito T., Furuta T., Takamiya H. Sintering behavior and thermal stability of a TiB particle reinforced PM beta-titanium matrix composite [A]. Titanium'95:Science and technology [C]. London, UK:The Institute of Materials,1995:2763-2770
    [60]Saito T., Furuta F., Yamaguchi Y. Recent Advances In Titanium Metal Matrix Composites [A]. TMS[C]. TMS,1995:33
    [61]Philliber J. A., Dary F. C., Zok F. W., et al. Strengthening of titanium alloys by in-situ grown fibrous monoborides [A]. Symposium on Recent Advances in Titanium Metal Matrix Composites [C]. Warrendale, PA, USA:TMS,1995:213-224
    [62]Tamirisakandala S., Bhat R. B., Ravi V. A., et al. Powder metallurgy Ti-6Al-4V-xB alloys:Processing, microstructure, and properties [J]. JOM Journal of the Minerals, Metals and Materials Society,2004,56(5):60-63
    [63]Yolton C. F. The pre-alloyed powder metallurgy of titanium with boron and carbon additions [J]. JOM Journal of the Minerals, Metals and Materials Society,2004,56(5): 56-59
    [64]Panda K. B., Ravi Chandran K. S. Titanium-titanium boride (Ti-TiB) functionally graded materials through reaction sintering:Synthesis, microstructure, and properties [J]. Metallurgical and Materials Transactions A,2003,34(9):1993-2003
    [65]Boehlert C. J., Cowen C. J., Tamirisakandala S., et al. In situ scanning electron microscopy observations of tensile deformation in a boron-modified Ti-6Al-4V alloy [J]. Scripta materialia,2006,55(5):465-468
    [66]Philliber J. A., Dary F. C., Zok F. W., et al. Flow and creep behavior of Ti/TiB In-situ Composites[A]. Titanium'95:Science and technology [C]. The Institute of Materials, 1995:2714-2721
    [67]Reed S. EMTEC quarterly meeting on TiB research [J].2006
    [68]Bojarevics V., Pericleous K. Modelling induction skull melting design modifications [J]. Journal of materials science,2004,39(24):7245-7251
    [69]Mitchell A. Recent developments in speciality melting processes [J]. Materials Technology,1994,9:201-206
    [70]Sibum. H. Titanium and Alloys-Fundamentals and Applications [M]. Germany: Wiley-VCH,2003
    [71]Saito T. The automotive application of discontinuously reinforced TiB-Ti composites [J]. JOM Journal of the Minerals, Metals and Materials Society,2004,56(5):33-36
    [72]Abkowitz S., Abkowitz S. M., Fisher H., et al. CermeTi(?) discontinuously reinforced Ti-matrix composites:Manufacturing, properties, and applications [J]. JOM Journal of the Minerals, Metals and Materials Society,2004,56(5):37-41
    [73]Tamirisakandala S., Bhat R., Miracle D., et al. Effect of boron on the beta transus of Ti-6A1-4V alloy [J]. Scripta materialia,2005,53(2):217-222
    [74]Tamirisakandala S., Bhat R., Tiley J., et al. Grain refinement of cast titanium alloys via trace boron addition [J]. Scripta materialia,2005,53(12):1421-1426
    [75]Moldovan P., Popescu G. The grain refinement of 6063 aluminum using Al-5Ti-1B and Al-3Ti-0.15 C grain refiners [J]. JOM Journal of the Minerals, Metals and Materials Society,2004,56(11):59-61
    [76]Inkson B., Boothroyd C., Humphreys C. Boron segregation in a (Fe, V, B) TiAl based alloy [J]. Le Journal de Physique Ⅳ,1993,3(C7):7-7
    [77]Godfrey A. B. Birmingham, UK; The University of Birmingham,1996
    [78]Cheng T. T. The mechanism of grain refinement in TiAl alloys by boron addition—an alternative hypothesis [J]. Intermetallics,2000,8(1):29-37
    [79]江治国,陈波,马颖澈,等.添加硼对铸造Ti-46.5Al-8Nb合金组织和性能的影响[J].金属学报,2007,43(005):487-492
    [80]Tamirisakandala S., Bhat R. B., Mceldowney D. J., et al. Microstructural Refinement in Titanium Alloys via Boron Addition [J]. Materials and Manufacturing Directorate, Air Force Research Laboratory,2004,5:1287
    [81]Godfrey T. M. T., Wisbey A., Goodwin P. S., et al. Microstructure and tensile properties of mechanically alloyed Ti-6A1-4V with boron additions [J]. Materials Science and Engineering:A,2000,282(1-2):240-250
    [82]Murray J., Liao P., Spear K. The B-Ti (Boron-Titanium) system [J]. Journal of Phase Equilibria,1986,7(6):550-555
    [83]Fan Z., Miodownik A. P., Chandrasekaran L., et al. The effect of pre-consolidation heat treatment on TiB morphology and mechanical properties of rapidly solidified Ti-6A1-4V-XB alloys [J]. Scripta Metallurgica et Materialia,1995,32(6):833-838
    [84]Tsang H., Chao C., Ma C. Effects of volume fraction of reinforcement on tensile and creep properties of in-situ TiB/Ti MMC [J]. Scripta materialia,1997,37(9):
    [85]Fan Z., Miodownik A. P., Chandrasekaran L., et al. The Young's moduli of in situ Ti/TiB composites obtained by rapid solidification processing [J]. Journal of materials science,1994,29(4):1127-1134
    [86]Saito T., Furuta T., Takamiya H. Sintering behavior and thermal stability of a TiB particle reinforced PM beta-titanium matrix composite [A]. Titanium' 95:Science and Technology [C].1996:2763-2770
    [87]Saito T., Takamiya H., Furuta T. Thermomechanical properties of P/M β titanium metal matrix composite [J]. Materials Science and Engineering:A,1998,243(1): 273-278
    [88]Srivatsan T., Soboyejo W., Lederich R. Cyclic plastic strain response and fracture behavior of a TiB whisker reinforced titanium alloy metal matrix composite [J]. Recent advances in titanium metal matrix composites,1995:225-244
    [89]Wang L., Niinomi M., Takahashi S., et al. Relationship between fracture toughness and microstructure of Ti-6Al-2Sn-4Zr-2Mo alloy reinforced with TiB particles [J]. Materials Science and Engineering:A,1999,263(2):319-325
    [90]Saito T., Furuta T., Yamaguchi T. Development of low cost titanium matrix composite [A]. Symposium on Recent Advances in Titanium Metal Matrix Composites [C]. Warrensdale, PA, USA:TMS,1994:33
    [91]Wang Xizhe, Zhang Zhihui, Hui Songxiao, et al. Development of high elastic modulus and high strength titanium alloys [A]. The 9th word conference on titanium[C].1999: 659-664
    [92][92]Gorsse S., Miracle D. Mechanical properties of Ti-6Al-4V/TiB composites with randomly oriented and aligned TiB reinforcements [J]. Acta materialia,2003,51(9): 2427-2442
    [93]Gorsse S., Petitcorps Y. L., Matar S., et al. Investigation of the Young's modulus of TiB needles in situ produced in titanium matrix composite [J]. Materials Science and Engineering:A,2003,340(1):80-87
    [94]Poirier J. P.晶体的高温塑性变形[M].大连;大连理工大学出版社.1989
    [95]洪权,张振祺,杨冠军,等Ti600合金的热机械加工工艺与组织性能[J].金属学报,2002,(z1):135-137
    [96]Xue Q. Spatial Evolution of Adiabatic Shear Localization in Stainless Steel, Titanium and Titanium-aluminum-vanadium Alloy[D]. San Diego; University of California, 2001
    [97]吕维洁,覃业霞,张获,等.原位合成增强体TiB层错的透谢电镜分析[J].上海交通大学学报,2003,37(2):245-247
    [98]Roy S., Suwas S., Tamirisakandala S., et al. Development of solidification microstructure in boron-modified alloy Ti-6Al-4V-0.1 B [J]. Acta materialia,2011:
    [99]吕维杰,张获.原位合成钛合金复合材料的制备、微结构及力学性能[M].北京:高等教育出版社,2005
    [100]徐恒秋.ZTC4钛合金筒形件成形工艺研究[D].太原;中北大学,2006
    [101]Seshacharyulu T., Medeiros S., Frazier W., et al. Microstructural mechanisms during hot working of commercial grade Ti-6A1-4V with lamellar starting structure [J]. Materials Science and Engineering:A,2002,325(1):112-125
    [102]Park C. H., Ko Y. G., Park J. W., et al. Enhanced superplasticity utilizing dynamic globularization of Ti-6Al-4V alloy [J]. Materials Science and Engineering:A,2008, 496(1):150-158
    [103]Semiatin S., Seetharaman V., Weiss I. Flow behavior and globularization kinetics during hot working of Ti-6Al-4V with a colony alpha microstructure [J]. Materials Science and Engineering:A,1999,263(2):257-271
    [104]张志方,刘战胜.关于TC6钛合金α相形态变化行为的研究[J].稀有金属材料与工程,1991,1:32-36
    [105]门菲.TC11钛合金热加工图及组织演变机理研究[D].沈阳;沈阳理工大学,2008
    [106]Furuhara T., Lee H., Menon E. S. K., et al. Interphase boundary structures associated with diffusional phase transformations in Ti-base alloys [J]. Metallurgical and Materials Transactions A,1990,21(6):1627-1643
    [107]陈慧琴,曹春晓,郭灵,等.TC11钛合金片层组织热变形球化机制[J].稀有金属材料与工程,2009,38(003):421-425
    [108]Kaybyshev O. A., Lutfullin R. Y., Saishchev G. A. Influence of superplastic deformation conditions on transformation of platelike microstructure in titanium alloy VT 9 [J]. PHYS METALS METALLOGR,1988,66(6):109-117
    [109]孙新军.钛合金片层组织的等轴化规律及超细晶钛合金超塑性的研究[D].北京;清华大学,1999
    [110]Brooks C. R. Heat treatment, structure and properties of nonferrous alloys [M]. Metals Park, OH, USA:American Society for Metals,1982
    [111]田艳.焊接区断口金相分析[M].北京:机械工业出版社,1991
    [112]崔约贤,金属学,王长利.金属断口分析[M].哈尔滨:哈尔滨工业大学出版社,1998
    [113]Chrysanthou A. New Technologies for the Reactive Processing of Metal-Matrix Composites [J]. Key Engineering Materials,1995,104:381-386
    [114]波特D.A.,伊斯特林K.E.金属和合金中的相变[M].李长海,余永宁译.北京:冶金工业出版社,1988
    [1 15]金云学,曾松岩.硼化物颗粒增强钛基复合材料研究进展[J].铸造,2001,50(12):711-716
    [116]Ferry M., Munroe P. R. Hot Working Behavior of Al-Al2O3 Particulate Reinforced Metal Matrix Composite [J]. Materials Science and Technology,1995,11(7):633-641
    [117]尤振平.钛合金显微组织与动态性能的关系研究[D].北京;北京有色金属研究总院,2010
    [118]刘清华,惠松骁,叶文君,等.不同组织状态TC4ELI钛合金动态力学性能研究[J].稀有金属,2012,36(004):517-522
    [119]曹东风.颗粒增强金属基复合材料动态力学性能预测方法研究[D];武汉理工大学,2006
    [120]余永宁.金属学原理[M].北京:冶金工业出版社,2007

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700