置氢Ti-6Al-4V合金室温变形行为及改性机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钛及其合金具有比强度高、高温性能好以及防腐蚀能力强等一系列优异特性,在航空航天、船舶、海洋等领域得到了广泛的应用,是一种理想的金属结构材料。然而,大部分钛合金在室温下塑性低,冷成形容易开裂,限制了钛合金的冷态工艺性。由于室温塑性成形所生产的零件机械性能好、精度高、表面质量好、生产效率高,是制造钛合金零件的最经济手段。所以,有必要进一步开展钛合金室温塑性成形技术的基础研究工作,尽快实现钛合金室温塑性成形技术的应用。钛合金热氢处理技术可以改善钛合金的力学性能,但是氢对钛合金室温塑性变形行为的影响及其机理一直缺乏系统的研究,本文主要针对这个问题进行了深入研究。
     利用光学金相显微镜、X射线衍射仪、扫描电子显微镜、透射电子显微镜等材料分析设备研究了氢含量对Ti–6Al–4V合金微观组织的影响,并对置氢Ti–6Al–4V合金室温压缩变形过程中微观组织的演变进行了研究。结果表明:置氢后,Ti–6Al–4V合金中发现马氏体和氢化物等相。随着氢含量的增加,β相、α''马氏体以及氢化物等相的含量逐渐增加,且氢化物优先沿晶界或相界析出。氢促进了位错的增殖。
     利用INSTRON–5569型材料试验机对合金进行了室温拉伸试验,研究了氢含量对Ti–6Al–4V合金室温拉伸性能的影响。结果表明:置氢后,合金的室温拉伸性能逐渐恶化,表明置氢不利于钛合金的拉伸变形。为了揭示氢对Ti–6Al–4V合金拉伸断裂行为的影响及机理,本文利用原位拉伸试验对合金拉伸变形过程中裂纹的萌生、扩展及断裂的全过程进行实时观察和录像,并利用有限元模拟技术对合金的拉伸过程进行了模拟,分析了拉伸变形过程中合金的应力应变分布规律。
     利用ZWICK/Z100型材料试验机对合金进行了室温静态压缩试验,并利用电磁成形机对合金进行了高速压缩试验,系统研究了氢含量和应变速率对合金室温压缩性能的影响。结果表明:Ti–6Al–4V合金无论是在静态下压缩变形,还是在高速率下压缩变形,合适的氢含量对Ti–6Al–4V合金的压缩性能均存在有益的影响,可以显著提高合金的极限变形率(极限变形率的最大增幅达56.3%),降低对成形设备及模具的要求。
     揭示了置氢钛合金室温塑性变形的改性机理,并建立了理论模型。氢对钛合金室温拉伸和压缩性能的不同影响规律是由合金的氢含量及其受力状态决定的。氢含量的影响可分为由固溶态氢和氢致相变引起的影响。拉应力会加速晶界处裂纹的萌生和扩展,并促进晶间变形。随着氢含量的增加,晶界或相界处氢化物的含量逐渐增加,导致晶界或相界逐渐变弱,使其力学性能逐渐恶化。而压应力可以抑制或削弱裂纹的萌生和扩展,减少合金的晶间变形。当氢含量较低时,固溶态氢和氢化物对压缩性能影响较小,影响压缩性能的主要因素是晶内变形,塑性β相含量的增加导致合金的塑性提高。随着氢含量的增加,氢化物的含量逐渐增加,并聚集于晶界处,导致晶间变形的作用逐渐增加,使合金的塑性下降,此时脆性的氢化物相对合金的压缩性能所起的作用逐渐增强。
     根据热重试验结果制定了置氢Ti–6Al–4V合金的除氢规范,对置氢Ti–6Al–4V合金进行了真空除氢处理,并对除氢合金的微观组织及室温力学性能等进行了研究。结果表明:除氢过程中,置氢Ti–6Al–4V合金中亚稳定相发生分解,转变为稳定的α相和β相,固溶氢及氢化物中的氢完全从合金中逸出,导致组织细化,但是晶粒形貌没有恢复,导致合金的室温力学性能有所恢复,但没有完全恢复。
     利用M–200型摩擦磨损试验机于室温大气中对合金进行干滑动摩擦磨损试验,以研究氢对Ti–6Al–4V合金摩擦磨损性能的影响。利用SEM及其EDS等材料分析方法对磨损试验后的销试样及对磨盘的微观形貌和成分进行了观察和分析,以揭示合金的磨损机理。结果表明:置氢后,合金的磨损率变大。除氢合金的磨损率低于相应的置氢合金的磨损率,但仍高于未置氢合金的磨损率。合金的磨损率是由合金的性质(主要是合金的硬度以及热传导率)决定的。未置氢合金主要呈现氧化磨损特征,置氢合金的磨损以磨粒磨损为主,除氢合金的磨损机理主要是氧化磨损和磨粒磨损。结果表明当除氢合金应用于摩擦磨损领域时,仍需进行表面处理,以提高其抗磨性。
     根据本文的试验结果,制定了置氢Ti–6Al–4V合金的最佳室温塑性成形条件。当利用热氢处理技术使Ti–6Al–4V合金室温塑性成形时,应选择在压应力的作用下塑性成形的方法,而不是拉应力。在本文的试验条件下,当置氢Ti–6Al–4V合金在静态下室温压缩成形时,合金的最佳氢含量为0.6wt.%~0.8wt.%。当利用磁脉冲成形等高速率成形方法时,合金的最佳氢含量为0.1wt.%,放电电压为1.1kV。
Titanium and its alloys are ideal structural materials and widely used in aviation, aerospace, marine and ocean industries because of their specific strength, good hot workability and good corrosion resistance. However, their plasticity is low at room temperature and they are easy to crack during their cold deformation, which restrict their applications. It need study further about the fundamental research on cold deformation of titanium alloys and its application, because cold deformation is one of the most economic methods to form titanium alloys, and the parts deformed at room temperature have good mechanical properties, high accuracy, good surface quality and high efficient. Thermohydrogen processing (THP) can enhance the mechanical properties of titanium alloys. However, the influence of hydrogen on the deformation behavior of titanium alloys at room temperature and its mechanism still lack systematic study. This paper systematically studied the problem.
     The effects of hydrogen content on microstructural evolution of Ti–6Al–4V alloy were investigated by optical microscope (OM), X-ray diffraction (XRD), scanning electron microscope (SEM) and transmission electron microscope (TEM). Microstructural evolution of hydrogenated Ti–6Al–4V alloy during compressive deformation was also studied. Results show that martensites and hydride appear after hydrogenation. The amounts ofβphase,α'' martensite and hydride phase increase with an increase in the hydrogen content, and hydride prefers to precipitate along grain/phase boundaries. Hydrogen can promote the increment of dislocation.
     Tensile tests were carried out at room temperature through INSTRON-5569 matrials tester to study the influence of hydrogen content on the tensile properties of Ti–6Al–4V alloy at room temperature. Results show that hydrogen deteriorates the tensile properties, indicating hydrogen has disadvantage on the tensile deformation of titanium alloys at room temperature. In order to investigate the influence of hydrogen on fracture behavior of Ti–6Al–4V alloy and its mechanism, the whole process of crack initiation, propagation and failure during tensile deformation was observed and recorded in real time by in-situ tensile tests, and the distributions of stress and strain during tensile deformation were analysed through finite element method (FEM).
     In order to study the influence of hydrogen content and strain rate on the compressive properties of Ti–6Al–4V alloy at room temperature, compressive tests were carried out at room temperature through ZWICK-Z100 matrials tester and electromagnetic forming (EMF). Results show that hydrogen has favorable effets on the compressive proerties of Ti–6Al–4V alloy, can enhance the ultimate compression (the maximum increases 56.3%) under quasi-static compression and EMF, and can reduce the demand for equipment and die.
     The modification mechanisms about the effects of hydrogen content on the tensile and compressive properties were disclosured, and its model was built. The dissimilar effects of hydrogen content on the tensile and compressive properties are caused by the hydrogen content and stress state. The effects of hydrogen content include hydrogen in solid solution and hydrogen-induced phase transformation. As hydrogen content increases, the tensile properties decrease gradually. Intergranular deformation dominates at the tensile state, which is caused by the increased hydrogen atoms in solid solution and hydrides at grain/phase boundaries. While at the compressive state, intragranular deformation dominates at lower hydrogen content. The increased amount of plasticβphase improves the ultimate compression with the increasing hydrogen content. The intergranular deformation plays an increasing role during compressive deformation with the increasing hydrogen content because of the increased amounts of hydrogen atoms in solid solution and hydrides and leads to the degradation of compressive properties.
     The dehydrogenation procedure was determined according to the results of TG test of hydrogenated Ti–6Al–4V alloys. The hydrogenated Ti–6Al–4V alloys were dehydrogenated, and their microstructure and mechanical properties at room temperature were studied. Results show that the metastable phases decompose to stableαandβphases during the procedure of dehydrogenation, hydrogen in solid solution and hydride are removed, leading to the refinement of microstructures, but the grain can not be refined because of the heredity of titanium alloys. The mechanical properties can be restored, but can not be fully restored after dehydrogenation.
     The dry sliding wear properties of non-hydrogenated, hydrogenated and dehydrogenated Ti–6Al–4V alloys sliding against GCr15 steel were investigated using an M-200 pin-on-disk tribometer in air at room temperature. The wear mechanisms were investigated by studying the morphology and chemical element of pins and steel using SEM and EDS. Results show that wear rate increases after hydrogenation. Wear rates of dehydrogenated Ti–6Al–4V alloys are higher than those of non-hydrogenated Ti–6Al–4V alloys, although they are lower than those of hydrogenated Ti–6Al–4V alloys. The wear rates are attributed to their hardness and thermoconductivity. The non-hydrogenated Ti–6Al–4V alloy is controlled by oxidative mechanism, hydrogenated Ti–6Al–4V alloys by abrasive mechanism, and dehydrogenated Ti–6Al–4V alloys by oxidative and abrasive mechanisms. Results indicate that the dehydrogenated Ti–6Al–4V alloys should be treated to increase abrasion resistance before they are used.
     The optimal hydrogen content was determined for the cold deformation of hydrogenated Ti–6Al–4V alloys according to the experimental results. The alloy should be formed under compressive stress when hydrogen is applied on its cold deformation, while not under tensile sress. The optimum hydrogen content is the range of 0.6 wt.%~0.8 wt.% when the alloy is deformed under quasi-static compression. While the optimal hydrogen content is 0.1 wt.% when deformed under EMF, and the discharging voltage is 1.1 kV.
引文
1 Bhowmik S, Benedictus R, Poulis JA, Bonin HW, Bui VT. High-performance nanoadhesive bonding of titanium for aerospace and space applications. International Journal of Adhesion and Adhesives. 2009,29(3):259-267
    2 Jackson M, Dring K. Materials perspective - A review of advances in processing and metallurgy of titanium alloys. Materials Science and Technology. 2006,22(8):881-887
    3 Niinomi M. Mechanical biocompatibilities of titanium alloys for biomedical applications. Journal of the Mechanical Behavior of Biomedical Materials. 2008,1(1):30-42
    4 Blackburn JL, Parilla PA, Gennett T, Hurst KE, Dillon AC, Heben MJ. Measurement of the reversible hydrogen storage capacity of milligram Ti-6Al-4V alloy samples with temperature programmed desorption and volumetric techniques. Journal of Alloys and Compounds. 2008,454(1-2):483-490
    5朱峰.医用钛合金材料研究与应用的进展.世界有色金属. 2007,(08):28-30
    6彭艳萍,曾凡昌,王俊杰,章怡宁,夏绍玉.国外航空钛合金的发展应用及其特点分析.材料工程. 1997,(10):3-6
    7 Lian Z, Luo GZ. Research and development of titanium in China. Materials Science and Engineering A. 1998,243(1-2):294-298
    8朱知寿,王新南,童路,曹春晓.中国航空结构用新型钛合金研究.钛工业进展. 2007,24(06):28-32
    9付艳艳,宋月清,惠松骁,米绪军.航空用钛合金的研究与应用进展.稀有金属. 2006,30(06):850-856
    10 Yan ZM, Guo TW, Zhang YM, Li ZC. Dental titanium casting researches in China. Materials Transactions. 2002,43(12):3131-3133
    11 Zhou L. Review of titanium industry progress in America, Japan and China. Rare Metal Materials and Engineering. 2003,32(8):577-584
    12 Zong YY, Shan DB, Xu M, Lv Y. Flow softening and microstructuralevolution of TC11 titanium alloy during hot deformation. Journal of Materials Processing Technology. 2009,209(4):1988-1994
    13 Yeom JT, Kim JH, Hong JK, Park NK, Lee CS. Influence of initial microstructure on hot workability of Ti-6Al-4V alloy. International Journal of Modern Physics B. 2009,23(6-7):808-813
    14侯红亮,李志强,王亚军,关桥.钛合金热氢处理技术及其应用前景.中国有色金属学报. 2003,13(03):533-549
    15 Froes FH, Senkov ON, Qazi JO. Hydrogen as a temporary alloying element in titanium alloys: thermohydrogen processing. International Materials Reviews. 2004,49(3-4):227-245
    16 Leyens C, Peters M. Titanium and Titanium Alloys: Fundamental and Applications. Willey-VCH, 2003
    17 (苏)E.A.鲍利索娃.钛合金金相学.陈石卿.国防工业出版社, 1986
    18 Hu D, Huang AJ, Song XP, Wu X. Sulphide/phosphide precipitation associated with carbon saturation in Ti-15V-3Cr-3Sn-3Al-0.2C. Journal of Alloys and Compounds. 2006,413(1-2):77-84
    19 Wang LQ, Lu WJ, Qin JN, Zhang F, Zhang D. Influence of cold deformation on martensite transformation and mechanical properties of Ti-Nb-Ta-Zr alloy. Journal of Alloys and Compounds. 2009,469(1-2):512-518
    20 Wang LQ, Lu WJ, Qin JN, Zhang F, Zhang D. Microstructure and mechanical properties of cold-rolled TiNbTaZr biomedical [beta] titanium alloy. Materials Science and Engineering A. 2008,490(1-2):421-426
    21崔昌军,彭乔.钛及钛合金的氢渗过程研究.稀有金属材料与工程. 2003,32(12):1011-1015
    22 Trefilov VI, Morozov IA, Morozova RA, Dobrovolsky VD, Zaulichny YA, Kopylova EI, Khyzhun OY. Peculiarities of interatomic interaction in titaniumhydrides with different content of hydrogen. International Journal of Hydrogen Energy. 1999,24(2-3):157-161
    23 Zhu TK, Li MQ. Effect of 0.770 wt%H addition on the microstructure of Ti-6Al-4V alloy and mechanism of [delta] hydride formation. Journal of Alloys and Compounds. 2009,481(1-2):480-485
    24 Luo LS, Su YQ, Guo JJ, Fu HZ. Formation of titanium hydride in Ti-6Al-4V alloy. Journal of Alloys and Compounds. 2006,425(1-2):140-144
    25 Zhang Y, Zhang SQ. Hydrogenation characteristics of Ti-6Al-4V cast alloy and its microstructural modification by hydrogen treatment. International Journal of Hydrogen Energy. 1997,22(2-3):161-168
    26 Stumpf R, Bastasz R, Whaley JA, Ellis WP. Effect of adsorbed hydrogen on the stability of titanium atoms on aluminum surfaces. Physical Review B. 2008,77(23):2354131-2354139
    27黄刚,曹小华,龙兴贵.钛-氢体系的物理化学性质.材料导报. 2006,20(10):128-131
    28 Elias RJ, Corso HL, Gervasoni JL. Fundamental aspects of the Ti-H system: theoretical and experimental behaviour. International Journal of Hydrogen Energy. 2002,27(1):91-97
    29 Wang W-E. Thermodynamic evaluation of the titanium-hydrogen system. Journal of Alloys and Compounds. 1996,238(1-2):6-12
    30 Bhosle V, Baburaj EG, Miranova M, Salama K. Dehydrogenation of TiH2. Materials Science and Engineering A. 2003,356(1-2):190-199
    31 Han XL, Wang Q, Sun DL, Zhang HX. First-principles study of the effect of hydrogen on the Ti self-diffusion characteristics in the alpha Ti-H system. Scripta Materialia. 2007,56(1):77-80
    32 Gabidullin ER, Nosov YK, Ilin AA. Kinetic parameters of interaction of hydrogen and titanium. Russian Metallurgy. 1995,(6):61-65
    33 Zhang H, Lam TF, Xu JL, Wang SH. The effect of hydrogen on the strength and superplastic deformation of beta-titanium alloys. Journal of Materials Science. 1996,31(22):6105-6111
    34 Clarke CF, Hardie D, Ikeda BM. The effect of hydrogen content on the fracture of pre-cracked titanium specimens. Corrosion Science. 1994,36(3):487-497, 499-509
    35 Takasaki A, Furuya Y, Ojima K, Taneda Y. Hydrogen solubility of two-phase (Ti3Al + TiAl) titanium aluminides. Scripta metallurgica et materialia. 1995,32(11):1759-1764
    36王得明,黄显亚,朱祖芳.用超高压电镜研究钛中氢致破坏机理.稀有金属. 1983,(05):20-25
    37韩明臣.钛合金的热氢处理.宇航材料工艺. 1999,29(01):23-27, 50
    38 Yoshimura H, Nakahigashi J. Ultra-fine-grain refinement and superplasticityof titanium alloys obtained through protium treatment. International Journal of Hydrogen Energy. 2002,27(7-8):769-774
    39张少卿.氢在钛合金热加工中的作用.材料工程. 1992,(02):24-29, 40
    40张少卿.钛合金的氢处理.宇航材料工艺. 1987,(04):1-7
    41 Kerr WR, Smith PR, Rosenblum ME, Gurney FJ, Mahajan YR. Hydrogen as an alloying element in titanium (hydrovac). 4th Inter.Conf.on Titanium. 1980. 2477-2486
    42 Hardie D, Ouyang S. Effect of hydrogen and strain rate upon the ductility of mill-annealed Ti6Al4V. Corrosion Science. 1999,41(1):155-177
    43 Ruales M, Martell D, Vazquez F, Just FA, Sundaram PA. Effect of hydrogen on the dynamic elastic modulus of gamma titanium aluminide. Journal of Alloys and Compounds. 2002,339(1-2):156-161
    44 Sundaram PA, Basu D, Steinbrech RW, Ennis PJ, Quadakkers WJ, Singheiser L. Effect of hydrogen on the elastic modulus and hardness of gamma titanium aluminides. Scripta Materialia. 1999,41(8):839-845
    45林天辉.钛合金中的氢及其对力学性能的影响.北京科技大学博士学位论文. 1990
    46张清,吴引江,汤慧萍,何小松,李来平,段国强,郭福合.不同破碎工艺对钛粉形貌的影响.钛工业进展. 2002,(02):14-17
    47冯颖芳.提高钛粉末冶金制品机械性能的途径.钛工业进展. 2002,(02):22-23
    48 Eliezer D, Serban CE. Hydrogen embrittlement in titanium alloys. Metalurgia International. 2009,14:13-16
    49 Rusli RH. Role of hydrogen environment induced hydrogen embrittlement of Ti-8Al-1Mo-2V alloy. Materials Science and Engineering A. 2008,494(1-2):143-146
    50 Madina V, Azkarate I. Compatibility of materials with hydrogen. Particular case: Hydrogen embrittlement of titanium alloys. International Journal of Hydrogen Energy. 2009,34(14):5976-5980
    51 Evans WJ, Bache MR, McElhone M, Grabowski L. Environmental interactions with fatigue crack growth in alpha/beta titanium alloys. International Journal of Fatigue. 1997,19(93):177-182
    52 Yeh MS, Huang JH. Hydrogen-induced subcritical crack growth in Ti-6Al-4V alloy. Materials Science and Engineering A. 1998,242(1-2):96-107
    53 Ilyin AA, Polkin IS, Mamonov AM, Nosov VK. Thermohydrogen treatment-the base of hydrogen technology of titanium alloys. Titanium'95. 1995,3:2462-2469
    54黄东,南海,吴鹤,赵嘉琪.氢处理技术在钛合金中的应用.金属热处理. 2004,29(06):44-48
    55 Senkov ON, Froes FH. Thermohydrogen processing of titanium alloys. International Journal of Hydrogen Energy. 1999,24(6):565-576
    56 Senkov ON, Jonas JJ, Froes FH. Recent advances in the thermohydrogen processing of titanium alloys. Jom-Journal of the Minerals Metals & Materials Society. 1996,48(7):42-47
    57廖际常.钛合金含氢热加工技术的应用范围和前景.钛工业进展. 2002,(06):11-14
    58 Mamonov AM. Influence of heat and hydrogen treatment on structure, texture and mechanical properties of articles of heat resistant titanium alloy type VT 18 U. Izvestiya Rossiiskaya Akademiya Nauk, Metally(Russia). 1995,6:106-112
    59 Kolachev BA. Reversible hydrogen alloying of titanium-alloys. Metal Science and Heat Treatment. 1993,35(9-10):586-591
    60 Kolachev BA, Egorova YB, Talalaev VD. Hydrogen influence on machining of titanium alloys. Advances in the Science and Technology of Titanium Alloy Processing. 1996:339-346
    61 Kolachev BA, Egorova YB. Influence of hydrogen on oxidation of the VT6Ch alloy. Russian Journal of Non-Ferrous Metals. 2008,49(2):115-119
    62 Nosov VK, Kolachev BA, Ovchinnikov AV, Mashkov EI. Effect of phase composition on the resistance of hydrogen-charged Ti-6% al alloy to compressive strain. Metal Science and Heat Treatment. 2003,45(3-4):131-133
    63 Ilyin AA, Skvortsova SV, Mamonov AM, Permyakova GV, Kurnikov DA. Effect of thermohydrogen treatment on the structure and properties of titanium alloy castings. Metal Science and Heat Treatment. 2002,44(5-6):185-189
    64 Ilyin AA, Skvortsova SV, Mamonov AM. Control of the structure oftitanium alloys by the method of thermohydrogen treatment. Materials Science. 2008,44(3):336-341
    65 Kerr WR. The effect of hydrogen as a temporary alloying element on the microstructure and tensile properties of Ti-6Al-4V. Metallurgical and Materials Transactions A. 1985,16(6):1077-1087
    66 Qazi JI. Thermohydrogen processing (THP) of titanium alloy and titanium-aluminum alloys. University of Idaho Ph.D. Dissertation. 2002
    67 Qazi JI, Rahim J, Senkov ON, Froes FH. Phase transformations in the Ti-6Al-4V-H system. Jom-Journal of the Minerals Metals & Materials Society. 2002,54(2):68-71
    68 Qazi JI, Senkov ON, Rahim J, Froes FH. Kinetics of martensite decomposition in Ti-6Al-4V-xH alloys. Materials Science and Engineering A. 2003,359(1-2):137-149
    69 Qazi JI, Senkov ON, Rahim J, Genc A, Froes FH. Phase transformations in Ti-6Al-4V-xH alloys. Metallurgical and Materials Transactions A. 2001,32(10):2453-2463
    70潘峰,张少卿,薛志庠.铸造钛合金的氢处理细化晶粒的研究.航空学报. 1987,8(01):A77-A82
    71 Zhang SQ, Pan F. Hydrogen Treatment of Cast Ti-6Al-4V Alloy. Journal of Materials Science & Technology. 1990,6(3):187-192
    72 Zhang Y, Zhang SQ. Hydrogen effects on high temperature deformation characteristics of a cast Ti-14Al-19Nb-3V-2Mo alloy. Scripta Materialia. 1997,37(9):1315-1321
    73 Zhang Y, Zhang SQ, Tao C. Hydrogenation behavior of Ti-25Al-10Nb-3V-1Mo alloy and effect of hydrogen on its microstructure and hot deformability. International Journal of Hydrogen Energy. 1997,22(2-3):125-129
    74 Zhang SQ, Zhao LR. Effect of hydrogen on the superplasticity and microstructure of Ti-6Al-4V alloy. Journal of Alloys and Compounds. 1995,218(2):233-236
    75 Gong B, Zhang CB, Lai ZH. Improvement of superplastic properties of Ti-6Al-4V alloy by temporary alloying with hydrogen. Journal of Materials Science Letters. 1994,13(21):1561-1563
    76 Niinomi M, Gong B, Kobayashi T, Ohyabu Y, Toriyama O. Fracturecharacteristics of Ti-6Al-4V and Ti-5Al-2.5Fe with refined microstructure using hydrogen. Metallurgical and Materials Transactions A. 1995,26(5):1141-1151
    77 Shan DB, Zong YY, Lu TF, Lv Y. Microstructural evolution and formation mechanism of FCC titanium hydride in Ti-6Al-4V-xH alloys. Journal of Alloys and Compounds. 2007,427(1-2):229-234
    78 Shan DB, Zong YY, Lv Y, Guo B. The effect of hydrogen on the strengthening and softening of Ti-6Al-4V alloy. Scripta Materialia. 2008,58(6):449-452
    79 Zong YY, Shan DB, Lu Y, Guo B. Effect of 0.3 wt%H addition on the high temperature deformation behaviors of Ti-6Al-4V alloy. International Journal of Hydrogen Energy. 2007,32(16):3936-3940
    80 Zong YY, Shan DB, Lu Y, Guo B. Hydrogen-induced hot workability in Ti-6Al-4V alloy. Transactions of Nonferrous Metals Society of China. 2006,16:S2072-S2076
    81 Zong YY, Shan DB, Luo YS. Precipitation behavior and microstructural characteristics of hydrogenated [beta]-Ti40 alloys. International Journal of Hydrogen Energy. 2009,34(11):4900-4905
    82 Wang Q, Han X, Li ZH, Wu T, Sun DL. Hydrogenation and its effect on behavior of hot deformation for Ti-6Al-4V alloy. Materials Forum. 2005,29:318-322
    83 Han XL, Wang Q, Sun DL, Sun T, Guo Q. First-principles study of hydrogen diffusion in alpha Ti. International Journal of Hydrogen Energy. 2009,34(9):3983-3987
    84 Su YQ, Wang L, Luo LS, Jiang XH, Guo JJ, Fu HZ. Deoxidation of Titanium alloy using hydrogen. International Journal of Hydrogen Energy. 2009,34(21):8958-8963
    85 Feng JC, Liu H, He P, Cao J. Effects of hydrogen on diffusion bonding of hydrogenated Ti6Al4V alloy containing 0.3 wt% hydrogen at fast heating rate. International Journal of Hydrogen Energy. 2007,32(14):3054-3058
    86 Liu H, Cao J, He P, Feng JC. Effect of hydrogen on diffusion bonding of commercially pure titanium and hydrogenated Ti6Al4V alloys. International Journal of Hydrogen Energy. 2009,34(2):1108-1113
    87 Liu H, He P, Feng JC, Cao J. Kinetic study on nonisothermal dehydrogenation of TiH2 powders. International Journal of Hydrogen Energy. 2009,34(7):3018-3025
    88 Liu HJ, Zhou L, Liu P, Liu QW. Microstructural evolution and hydride precipitation mechanism in hydrogenated Ti-6Al-4V alloy. International Journal of Hydrogen Energy. 2009,34(23):9596-9602
    89 Liu HJ, Zhou L, Liu QW. Microstructural evolution mechanism of hydrogenated Ti-6Al-4V in the friction stir welding and post-weld dehydrogenation process. Scripta Materialia. 2009,61(11):1008-1011
    90林莺莺,潘洪泗,李淼泉.钛合金的氢处理技术及其对超塑性的影响.材料工程. 2005,(05):60-64
    91宁兴龙.钛合金的可逆氢合金化.钛工业进展. 1995,(01):19-20
    92 Malkov AV, Kolachev BA. Favorable effect of hydrogen on the plasticity ofβtitanium alloys. Materials Science. 1977,13(1):1-4
    93 Ilyin AA, Nosov VK, Kollerov MY, Krastilevsky AA, Scvortsova SV, Ovchinnikov AV. Hydrogen technology of semiproducts and finished goods production from high-strength titanium alloys. Advances in the Science and Technology of Titanium Alloy Processing. 1996:517-523
    94 Sha W, McKinven CJ. Experimental study of the effects of hydrogen penetration on gamma titanium aluminide and Beta 21S titanium alloys. Journal of Alloys and Compounds. 2002,335(1-2):L16-L20
    95 Zhang CB, Kang Q, Lai ZH, Ji R. The microstructural modification, lattice defects and mechanical properties of hydrogenated dehydrogenated alpha-Ti. Acta Materialia. 1996,44(3):1077-1084
    96 Senkov ON, Jonas JJ. Effect of phase composition and hydrogen level on the deformation behavior of titanium-hydrogen alloys. Metallurgical and Materials Transactions A. 1996,27(7):1869-1876
    97徐振声,宫波,张彩碚,赖祖涵.氢对TC4钛合金高温拉伸行为的影响.稀有金属. 1993,17(03):205-208
    98徐振声,宫波,张彩碚,赖祖涵.氢对Ti-6Al-4V合金的高温增塑作用.金属学报. 1991,27(04):A270-A273
    99 Yang K, Edmonds DV. Effect of hydrogen as a temporary alloying element on the microstructure of a Ti3Al intermetallic. Scripta metallurgica etmaterialia. 1993,28(1):71-76
    100 Lu JQ, Qin JN, Lu WJ, Chen YF, Zhang D, Hou HL. Hot deformation behavior and microstructure evaluation of hydrogenated Ti-6Al-4V matrix composite. International Journal of Hydrogen Energy. 2009,34(22):9266-9273
    101 Portnoi VK, Novikov II, Ilin AA, Fedotov IL, Sirina YV, Mamonov AM. Effect of hydrogen on superplasticity of the VT6 alloy sheets. Russian Metallurgy. 1995,(6):77-81
    102高文,张少卿.氢对TC11钛合金超塑性能的影响.稀有金属. 1992,16(03):227-230
    103 Kolachev BA, Ilyin AA, Nosov VK. Hydrogen technology as new perspective type of titanium alloy processing. Advances in the Science and Technology of Titanium Alloy Processing. 1996,(2):331-338
    104 Kolachev BA, Talalaev VD, Egorova YB, Kravchenko AN. Effect of hydrogen on the machinability of VT5-1 alloy by cutting. Materials Science. 1996,32(6):753-759
    105张旻炜,高操,丁月霞,陶杰,汪涛.大尺寸钛合金易切削热氢处理技术进展与展望.材料导报. 2007,21(08):76-79
    106 Kerr WR, Gurney FJ, Martorell IA. Pilot Plant Forging of Hydrogenated Ti-6Al-4V. AFWAL-TR-80-4026Air Force Wright Aeronautical Labs., Wright-Patterson AFB, OH.1980
    107 Levin L, Vogt RG, Eylon D, Froes FH. Method for refining microstructures of titanium alloy castings. U.S. Patent 4612066, 1986
    108阿·阿·依里因,阿·姆·马莫诺夫,朱荃芳.铸造钛合金的热氢处理.材料工程. 1992,(01):14-16
    109杜忠权,王高潮,陈玉秀,张志方.渗氢处理细化Ti-10V-2Fe-3Al合金组织及改善其超塑性性能的效果.航空学报. 1994,15(07):882-886
    110 Fang TY, Wang WH. Microstructural features of thermochemical processing in a Ti-6Al-4V alloy. Materials Chemistry and Physics. 1998,56(1):35-47
    111 Bokshtein SZ, Ginzburg SS, Kishkin ST, Moroz LM. Investigation of the distribution of hydrogen in metals and alloys by the electron microscopic autoradiographic method. Metal Science and Heat Treatment.1969,11(5):396-399
    112朱磊,张麦仓,董建新,庞克昌. TC11合金本构关系的建立及其在盘件等温锻造工艺设计中的应用.稀有金属材料与工程. 2006,35(02):253-256
    113赵文娟,张亚玲,丁桦,曹富荣,王耀奇.线性回归法建立Ti6Al4V合金超塑变形本构关系.材料与冶金学报. 2008,7(03):201-205
    114徐文臣,单德彬,吕炎.利用BP神经网络预测BT20钛合金的流动应力.兵器材料科学与工程. 2007,30(03):33-36
    115 Teter DF, Robertson IM, Birnbaum HK. The effects of hydrogen on the deformation and fracture of [beta]-titanium. Acta Materialia. 2001,49(20):4313-4323
    116 Akmoulin IA, Niinomi M, Kobayashi T. Dynamic fracture-behavior of Ti-6Al-4V alloy with various stabilities of beta-phase. Metallurgical and Materials Transactions A. 1994,25(8):1655-1666
    117 Ogawa T, Yokoyama Ki, Asaoka K, Sakai Ji. Distribution and thermal desorption behavior of hydrogen in titanium alloys immersed in acidic fluoride solutions. Journal of Alloys and Compounds. 2005,396(1-2):269-274
    118 Liu XQ, Tan CW, Zhang J, Hu YG, Ma HL, Wang FC, Cai HN. Influence of microstructure and strain rate on adiabatic shearing behavior in Ti-6Al-4V alloys. Materials Science and Engineering A. 2009,501(1-2):30-36
    119 Thomas M, Turner S, Jackson M. Microstructural damage during high-speed milling of titanium alloys. Scripta Materialia. 2010,62(5):250-253
    120 Xue Q, Meyers MA, Nesterenko VF. Self-organization of shear bands in titanium and Ti-6Al-4V alloy. Acta Materialia. 2002,50(3):575-596
    121王海玲.置氢钛合金TC4切削加工仿真研究.南京航空航天大学硕士学位论文. 2008
    122韩潇.氢处理对TC4钛合金组织和热变形行为的影响.哈尔滨工业大学硕士学位论文. 2004
    123 Molinari A, Straffelini G, Tesi B, Bacci T. Dry sliding wear mechanisms of the Ti6Al4V alloy. Wear. 1997,208(1-2):105-112
    124 Budinski KG. Tribological properties of titanium alloys. Wear. 1991,151(2):203-217

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700