乙羧氟草醚和乙草胺对葡萄的危害原因探究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
葡萄园杂草控制是土壤管理的一个重要方面。近年来由于劳动力紧缺以及缺乏对果园生草的认知,除草剂的使用日趋普及和常规。正因为如此,有关除草剂药害的报道也越来越多。2009年调查中发现山东省曲阜市常年喷施高浓度复合除草剂的巨峰葡萄园中叶片变黑,植株生长势较弱,以此为背景,本文通过大田和盆栽两种方式验证了除草剂对葡萄的伤害,并探究了乙羧氟草醚和乙草胺这两种单剂对葡萄伤害的生理机制以及导致葡萄叶片变黑的原因。主要研究结果如下:1.复合除草剂对田间巨峰葡萄叶片光合作用伤害的验证
     在山东省曲阜市,与人工除草的巨峰葡萄园相比,2009年使用除草剂(百草枯、乙草胺和乙羧氟草醚复合)的葡萄园叶片净光合速率(Pn)明显降低,光系统II(PSII)最大光化学效率(Fv/Fm)和性能指数PIABS降低,快速叶绿素荧光诱导动力学曲线中J点和K点荧光上升,表明叶片PSII反应中心和放氧复合体(OEC)受到了损伤。此外,使用除草剂的葡萄园,落叶后枝条可溶性糖、淀粉、游离氨基酸和可溶性蛋白含量较低。
     2010年选择使用除草剂但未发生药害的巨峰葡萄园,证实喷施低浓度除草剂(百草枯+乙草胺+乙羧氟草醚复合)降低了前期葡萄中部叶片Pn;而使用复合高浓度除草剂不仅降低了整个生长季中部叶片Pn,而且降低了葡萄果实可溶性固形物和花青素含量以及落叶后枝条中游离氨基酸和可溶性蛋白含量。2.乙草胺和乙羧氟草醚单剂对葡萄叶片光合作用的影响
     基质盆栽巨峰葡萄中部叶片Pn随着处理时间延长呈下降趋势,且随着乙草胺和乙羧氟草醚单剂浓度的升高而降低。第30天时,不同部位叶片Pn也均随除草剂浓度的升高而降低,大田推荐最大用量乙草胺处理的上、下部叶Pn显著低于清水对照,而大田推荐最大用量乙羧氟草醚处理的仅中部叶Pn显著降低;高于大田推荐最大用量除草剂处理不同部位叶片Pn均降低,当浓度为田间推荐最大用量10倍时,Pn降低幅度最大。
     沙培巨峰叶片光合功能对乙草胺和乙羧氟草醚单剂(浓度均为田间最大推荐用量5倍)均有明显的时空响应效应。喷施初期(处理后第13天),上部叶片对乙草胺反应明显,Pn、Gs、Fv/Fm和实际光化学效率(ΦPSII)显著下降;J点和K点荧光显著上升,PIABS、反应中心吸收的光能用于电子传递的量子产额(φEo)和反应中心捕获的激子中用来推动电子传递的效率(φo)显著下降,这表明PSII反应中心和OEC受损伤,电子传递能力降低,且程度显著高于中部叶片,但随着处理时间的延长,受损伤的程度减轻;在后期(处理后第60天),上部叶与中部叶各指标之间的差距变小;下部叶片对除草剂的响应时间滞后,后期时PSII反应中心和OEC受损伤程度以及电子传递受抑制程度高于中上部叶片。乙羧氟草醚处理对叶片光合作用的影响小于乙草胺处理。
     3.乙羧氟草醚和乙草胺单剂对巨峰葡萄叶片颜色的影响
     乙羧氟草醚(浓度为田间最大推荐用量5倍)处理后第60天时,沙培巨峰葡萄中、上部叶片变黑,色素含量显著增加,其中上部叶色素含量增加与钙和铁含量增加以及叶绿体数目增多呈显著正相关。而乙草胺(浓度也为田间最大推荐用量5倍)处理后第60天时,中、上部叶片明显变黄,色素含量降低,其中上部叶色素含量降低与锌含量降低呈显著正相关。
     4.乙羧氟草醚和乙草胺单剂对巨峰葡萄叶片细胞超微结构的影响
     (1)乙羧氟草醚(浓度为田间最大推荐用量5倍)处理后第13天时,沙培巨峰新叶出现褐色斑点,电镜观察结果表明其细胞内膜结构有溶解现象,有一些叶绿体内部基粒和片层结构清晰,还有一些内部模糊;叶绿体、淀粉粒显著减少,且淀粉粒较小。第60天时,细胞膜较完整,而线粒体膜、核膜都较模糊。中部叶大部分叶绿体片层垛叠为基粒,清晰可见,而有少数叶绿体片层间隙很大,叶绿体、淀粉粒显著增多且前者明显变大;上部叶片的叶绿体内部片层间隙较大,叶绿体增多且长度显著增加,但淀粉粒仍较少。
     透射电镜观察2011年超高浓度乙羧氟草醚处理巨峰葡萄重新萌芽后的畸形叶片,发现深绿色部位细胞膜结构完整,与同等大小对照叶片相比,叶绿体、淀粉粒和基粒显著增多,且淀粉粒明显变大,而片层数较少,但这些指标除叶绿体长宽外其余均显著高于黄色部位;黄色部位有一些叶绿体片层较清晰,但片层间隙明显变大,还有一些叶绿体内部有溶解的现象,叶绿体和片层与对照相比显著减少,而淀粉粒和基粒显著增多,叶绿体增大变圆,淀粉粒也增大。
     (2)乙草胺(浓度为田间最大推荐用量5倍)处理后第60天时,沙培巨峰中部叶细胞内膜结构受损,叶绿体内片层间隙变大,淀粉粒显著增多;上部叶叶绿体内部模糊,且叶绿体膜开口。中部叶叶绿体宽和上部叶叶绿体长分别比对照小21.4%和16.2%。
     5.乙草胺和乙羧氟草醚单剂对葡萄叶片抗氧化系统的影响
     (1)超高浓度的乙草胺和乙羧氟草醚处理加快了土培巨峰叶片超氧阴离子产生速率,导致膜脂过氧化程度加剧,产物丙二醛增加,这可能与其较低的超氧化物歧化酶、过氧化氢酶、过氧化物酶和抗坏血酸过氧化物酶活性有关。
     (2)高浓度乙羧氟草醚处理后,谷胱甘肽还原酶、抗坏血酸氧化酶活性以及上/中部叶片的谷胱甘肽转移酶、单脱氢抗坏血酸还原酶(MDHAR)活性升高,而下部叶MDHAR和上部叶脱氢抗坏血酸还原酶(DHAR)活性仅在14天时升高,中/下部叶DHAR活性在14天和80天时显著升高。这些酶活性的变化导致叶片中抗坏血酸和谷胱甘肽含量发生相应的变化。
     6.乙羧氟草醚和乙草胺单剂对葡萄生长的影响
     低于除草推荐浓度的乙羧氟草醚(9.4g ai ha-1)和乙草胺(1123g ai ha-1)显著促进霞多丽/SO4的新梢生长;而高于除草推荐最大用量的乙羧氟草醚(187g ai ha-1)和乙草胺(11230g ai ha-1)降低了根系活力,抑制了新梢的生长,第50天时新梢长度分别比对照低86.6%、70.6%,前者新梢中IAA含量显著降低,而ABA含量显著升高。
     高浓度的乙羧氟草醚(187g ai ha-1)和乙草胺(11230g ai ha-1)降低了沙培巨峰葡萄植株总生物量,但仅前者与对照差异显著;乙羧氟草醚处理后,根重显著低于对照,植株根冠比降低;而乙草胺处理后,植株根冠比升高。
     7.除草剂的后效
     在使用较高浓度复合除草剂的葡萄园改为人工除草的情况下,巨峰葡萄上、中、下部叶片的Pn与相邻长期人工除草的葡萄园相比降低幅度仍然高达34.9%、28.5%和61.2%,说明除草剂有较长时期的残效作用;盆栽试验也证明,除草推荐上限浓度或更高浓度的乙羧氟草醚处理后,巨峰植株翌年生长受到明显抑制,特别是超高浓度处理的植株,翌年发芽后叶片畸形且不能恢复正常。因此建议严格控制除草剂的使用浓度,有条件的地方采用葡萄园生草。
Weed control is one important aspect of soil managements in vineyard. In recent years,due to labour shortage and lack of knowledge on grass cover in orchards, herbicidesapplication becomes increasingly universal and general in vineyards. Just because of that,there are more and more reports about herbicide phytotoxicity. In the survey of Qufu city,Shandong province in2009, the grape leaves in vineyard became dark green, and plantgrowth power was weak. Upon this background, our study verified the damage of herbicidesto grapevines through field and pot experiments, and explored the damage physiologicalmechanisms of acetochlor and fluoroglycofen to grapevines, so the reasons of grape leavesbecoming dark green. The results were as follows:
     1. Verification the combined herbicide reduced photosynthesis in grape leaves of vineyard
     In Qufu city, Shandong province, compared with the artificial weeding, the leaf netphotosynthesis rate (Pn) in vineyards applied with combined herbicide (paraquat, acetochlorand fluoroglycofen) in2009decreased significantly; the maximum photochemical efficiencyof PSII (Fv/Fm) and performance index (PIABS) also decreased; however, the relative variablefluorescence in the J step and K step increased, which indicated the PSII reaction center andoxygen-evolving complex (OEC) were damaged. Besides, the soluble sugar, starch, freeamino acids and soluble protein content in branches were lower.
     In2010, Kyoho (Vitis vinifera×V. labrusca) vineyard which used herbicides but did nothappen phytotoxicity was selected. Lower concentration of combined herbicides (paraquat,acetochlor and fluoroglycofen) reduced Pn of middle-node leaves in the earlier treatment time;while the higher level reduced Pn through the growing season, so the soluble solid andanthocyanin content of grapes, the free amino acid and soluble protein content of branchesafter defoliation.
     2. Effects of acetochlor and fluoroglycofen on photosynthesis in grape leaves
     In the soil pot experiments, the Pn in middle-node leaves of Kyoho decreased along withthe processing time, besides, acetochlor and fluoroglycofen reduced Pn in a dose-dependentmanner. In the30thday, Pn in different nodes of leaves also decreased along with acetochlorand fluoroglycofen concentration increased. Under the field maximum recommended dose,acetochlor reduced Pn in upper-and middle-node leaves, while fluoroglycofen only reduced itin middle-node leaves; higher concentration of herbicides significantly reduced Pn in all nodeleaves, which caused the greatest reduction under ten times of field maximum recommendeddose.
     The photosynthetic function in Kyoho leaves grown in sand shown obvious time-andspace-effect responding to acetochlor and fluoroglycofen (the concentrations were both fivetimes of field maximum recommended dose). In the earlier treatment time (13thday aftertreatment), the upper-node leaves showed significant responses to acetochlor, the Pn and Gsdecreased significantly, so the Fv/Fm and quantum yield of PSII electron transport; therelative variable fluorescence in the J step and K step of the chlorophyll fluorescencetransients increased obviously, while the PIABS, φEoand φodecreased markedly, whichindicated that the PSII reaction center and OEC were damaged, meanwhile the electrontransport ability decreased; furthermore the damage and reduction were severer than inmiddle-node leaves, but the degree of damage was alleviated along with the treatment time.However, the differences of the photosynthetic and chlorophyll fluorescence parametersbetween upper-and middle-node leaves diminished in the later stage (60thday after treatment).The bottom-node leaves appeared later responses to herbicides than that of theupper-/middle-node leaves; in the later stage, the damaged extent of PSII reaction center andOEC, and the inhibition of electron transport ability were much higher than that ofupper-/middle-node leaves. The effects of fluoroglycofen on photosynthetic apparatus wereless than acetochlor.
     3. Effects of fluoroglycofen and acetochlor on colour of Kyoho leaves
     In the60thday after fluoroglycofen (the concentrations was five times of field maximumrecommended dose) treatment, the middle-and upper-node leaves became dark green, and thepigments increased obviously. Positive correlations between the increase of Ca, Mg content,chloroplast number and rise of pigment content were observed.
     However, in the60thday after acetochlor (the concentrations was also five times of fieldmaximum recommended dose) treatment, the middle-and upper-node leaves of grapevinesgrown in sand became yellow, and the pigments decreased significantly. There was a positivecorrelation between the reduction of Zn content and decrease of pigment contents.
     4. Effects of fluoroglycofen and acetochlor on cell ultrastructure of Kyoho leaves
     (1) In the13thday after fluoroglycofen (the concentration was five times of fieldmaximum recommended dose) treatment, brown spots appeared in the young leaf ofgrapevines grown in sand. The membrane dissolved, but grana and lamellaes were clear insome chloroplasts with increased gap between lamellaes; while the inside of somechloroplasts became fuzzy. Not only the chloroplast and starch grain number was reducedobviously, but also the starch grains were smaller. In the60thday after treatment, the cellmembrane and chloroplast membrane was integrated, while the mitochondria and nuclearmembrane were impaired. In the middle-node leaves, the grana and lamellae were clear inmost chloroplasts, while the gap between lamellaes in few ones increased; not only thechloroplast and starch grain number per cell increased obviously, but also the size ofchloroplasts enhanced. The chloroplasts of upper-node leaves were same to the control ones,but lamellaes with large gap were observed; the number and length of chloroplasts enhanced;but the starch grain number was still less than that of control.
     Transmission electron microscope analysis on the deformed leaves of grapevines treatedwith extremely high level of fluoroglycofen (375g ai ha-1) showed that: a) in dark green parts,membrane was integrated; compared with the same size control leaves, the chloroplast, starchgrain and granum were much more, even the starch grain became obviously larger, however,the lamellae number per granum was44.4%less; but all the datas except chloroplast size werehigher than that in yellow parts; b) in yellow parts, the lamellaes in some chloroplasts wereclear, but the gap between them was obviously larger, while inside of some ones appeareddissolved phenomenon. Compared with the control, the numbers of chloroplast per cell andlamellae per granum reduced; however, the numbers of starch grain per cell and granum perchloroplast increased. Chloroplasts went larger and round, starch grains also became larger.
     (2) In the60thday after acetochlor (the concentrations was also five times of fieldmaximum recommended dose) treatment, the cell membrane of middle-node leaves was impaired, the gap between chloroplastic lamellaes and the starch grain number per cellincreased; while in upper-node leaves, the inside of chloroplast became fuzzy with nolamellae, and there was a opening in chloroplastic membrane. The width of chloroplast inmiddle-node leaves and the length of one in upper-node leaves were respectively21.4%,16.2%smaller than that of control.
     5. Effects of acetochlor and fluoroglycofen on antioxidant defense system in Kyoho leaves
     (1) Higher level of acetochlor and fluoroglycofen accelerated the superoxide productionrate, resulted in aggravation of the membrane lipid peroxidation, led to accumulation of MDA,which might be related with lower antioxidant enzyme (superoxide dismutase, catalase,peroxidase and ascorbic acid peroxidase) activities.
     (2) Higher concentration of fluoroglycofen treatment improved the glutathione reductaseand ascorbate oxidase, so the glutathione transferase and monodehydroascorbate reductase(MDHAR) in upper-and middle-node leaves. While the activities of MDHAR in bottom-nodeleaves and dehydroascorbate reductase (DHAR) in upper-node leaves increased only in14thday after treatment, the DHAR activity in middle-and bottom-node leaves increased only inthe14thand80thday. The changes might resulted in relative changes of ascorbic acid andglutathione content.
     6. Effects of fluoroglycofen and acetochlor on shoot growth of grapevines
     Fluoroglycofen (9.4g ai ha-1) and acetochlor (1123g ai ha-1) significantly improved thegrowth of new shoots in Chardonnay/SO4, while187g ai ha-1fluoroglycofen and11230g aiha-1acetochlor reduced root activity and suppressed the growth of shoots, i.e. by86.6%,70.6%respectively in the50thday. Compared with the control, IAA content in187g ai ha-1fluoroglycofen groups was significantly lower than control, while ABA content wassignificantly higher.
     Fluoroglycofen (187.5g ai ha-1) and acetochlor (11230g ai ha-1) reduced the total plantbiomass of Kyoho grapevines grown in sand, but there was significant difference onlybetween the former groups and control. Fluoroglycofen obviously reduced the root weightand root-shoot ratio, while acetochlor caused increase of root-shoot ratio.
     7. Aftereffects of herbicides
     After the artifical weeding instead of higher concentration of combined herbicide application in2010, compared with the adjacent vineyard which used artificial weeding for along time, the reductions in Pn of upper-, middle-and bottom-node leaves were still high(34.9%,28.5%,61.2%respectively). It is indicated that herbicides have a relatively longperiod effects. And in the pot experiments, application of fluoroglycofen under the dose or theones higher than field maximum recommended in first year obviously inhibited the growth ofKyoho in the second year, especially375g ai ha-1fluoroglycofen caused the leaf deformedand could not return to normal situation. It is suggested that the orchardmen should controlthe dosage of herbicide strictly, and adopt green cover in conditional place.
引文
曹保芹,牛润民,樊庆军,张明春,王善志.果园生草对果树生态环境及果品品质和产量的影响.山西果树,2008,5:10–11
    陈坤明,宫海军,王锁民.植物抗坏血酸的生物合成、转运及其生物学功能.西北植物学报,2004,24(2):329–336
    单正军,陈祖义.除草剂对非靶植物(农作物)的危害影响及控制技术.农药科学与管理,2007,28:50–54
    党建友,张定一,裴雪霞,王姣爱.除草剂对优质小麦品质和旗叶保护酶的调控效应.应用与环境生物学报,2008,14(1):18–23
    董晓雯,王金信,毕建杰,刘迎,张晓岚.不同玉米品种对烟嘧磺隆的敏感性差异.植物保护学报,2007,34:182–186
    董新纯,王彦文,孟庆伟.草甘膦胁迫下桑树叶片伤害与叶片内类黄酮的关系研究.河北农业大学学报,2006,29:20–23
    冯存良,陈建平,张林森.生草栽培对富士苹果园生态环境的影响.西北农业学报,2007,16(4):134–137
    冯文新,韩占芳,王玉国,李彩霞.钙浸种对小麦幼苗保护酶活性及膜功能的影响.麦类作物学报,1997,17(3):31–33
    付志坤.除草剂药害产生原因及防治对策.北方园艺,2009,5:170
    高中超,匡恩俊,黄春艳,马星竹,张喜林,刘峰.氯嘧磺隆埋藏不同深度对甜菜生长发育的影响.中国甜菜糖业,2010,1:19–22
    耿兰霞.长残效除草剂使用现状及其对后作的安全性.现代农业科技,2011,1:174
    何亦昆,代庆阳,苏学辉.雁来红叶色转变与超微结构及色素含量的关系.四川师范学院学报(自然科学版),1995,16(3):195–197
    黄河,熊治廷.镉和乙草胺、苄嘧磺隆对水稻吸收能力的影响.环境科学与技术,2010a,33:23–28
    黄河,熊治廷.镉和乙草胺及苄嘧磺隆对水稻种子萌发的影响.安徽农业科学,2010b,38(31):17549–17552
    姬浩,陈勇,秦玉川,潘鹏亮,马彦永.新疆伊犁河谷地区葡萄园生草对有机红地球葡萄主要病虫害的影响.新疆农业科学,2011,48:1089–1097
    蒋红梅.稻田用除草剂解毒剂及解毒机理.农药,2001,40(8):5–6
    焦蕊,赵同生,贺丽敏,许长新,郝宝峰,于丽辰.自然生草和有机物覆盖对苹果园土壤微生物和有机质含量的影响.河北农业科学,2008,12(12):29–30,48
    李德全,高辉远,孟庆伟主编.植物生理学[M].中国农业科学技术出版社,2003
    李国怀,伊华林.生草栽培对柑橘园土壤水分与有效养分及果实产量、品质的影响.中国生态农业学报,2005,13(2):161–163
    李国怀,章文才.我国果园土壤管理制度的发展及评述.四川果树,1997,(3):32–34
    李华,惠竹梅,房玉林,张振文.葡萄园生草对葡萄与葡萄酒质量的影响.果树学报,2005,22(6):697–701
    李晓薇.不同吸附剂对除草剂在土壤中吸附/解吸行为的影响[D].哈尔滨:东北农业大学,2009
    李雪梅,陆国芳,王振英,彭永康.微管解聚剂和光合作用抑制型除草剂诱导的黑麦和玉米中蛋白质组分变化的比较研究.植物研究,2007,27(6):694–701
    李雪梅,张维佳,王艳,王振英,彭永康. PSⅡ抑制型除草剂Atrazine诱导白菜幼苗叶绿体蛋白质组的变化.作物学报,2008,34(2):238–242
    李志强,袁沛元,邱燕萍,蔡长河,凡超.地膜覆盖对荔枝果园土壤表面含水量的影响及其对减少裂果的作用研究初报.广东农业科学,2011,11:61–62,77
    廖聪学,欧毅,谢永红.几种除草剂对土壤养分供应和柑橘植株吸收的影响.西南园艺,2004,32:17–19
    林明极.草甘膦对果树产生的不良反应及解决对策.中国林副特产,2009,2:107–108
    蔺经,李晓刚,颜志梅,杨青松,盛宝龙,常有宏.生草覆盖对梨园土壤理化性状的影响.江西农业学报,2007,19:72–74
    刘宝生,高俊凤,刘亦学,王宝升,张双喜,李秀晨.乙草胺对小麦出苗及幼苗生长的安全性评价.天津农业科学,2006,12:34–36
    刘桂琴,程景胜,彭永康.有机磷除草剂草甘膦(GPS)对作物细胞遗传学毒性效应的研究.农业环境科学学报,2004,23(4):387–391
    刘忠林,孙桂华.内吸型除草剂对果树的药害及避免措施.植保技术与推广,2000,20:35–36
    娄国强,吕文彦,职明星. MCPA对小麦幼苗生长及生理性状的影响.麦类作物学报,2006,26(5):143–145
    罗永藩.我国少耕与免耕技术推广应用情况与发展前景.耕作与栽培,1991,(2):1–7
    马丰蕾,贾克功.果园杂草的栽培学分类研究.中国农业科技导报,2007,9:134–138
    马剑英,陈发虎,夏敦胜,孙惠玲,王刚.荒漠植物红砂(Reaumu ria soongorica)叶片元素和水分含量与土壤因子的关系.生态学报,2008,28:983–992
    葡萄生长季节,慎用除草剂. http://www.hami.gov.cn/10018/10018/00002/2010/79343.htm
    朴仁哲,赵洪颜,金玉姬,林昊.百草枯胁迫对地黄叶片膜脂过氧化相关生理指标的影响.北方园艺,2008,10:45–48
    秦檬,师淑亮,徐登华,胡志鹏.河北秦皇岛大面积桃树和核桃树新梢萎蔫调查.中国果树,2011,4:67–69
    丘银清,侯任昭,江如蓝.水稻对丁草胺和乙草胺抗性的比较研究.华南师范大学学报(自然科学学报),2001,4:79–83
    冉梦莲,陈友荣,肖敬平.乙草胺对不同品种水稻萌发生长期间呼吸代谢的影响.华南农业大学学报,1999,20(1):68–72
    申继忠.农药对高等植物次生代谢的影响及其生态学意义.农药译丛,1998,20(1):41–42
    师淑亮,胡志鹏.除草剂对果树危害的调查与建议.山西果树,2010,134:37–38
    宋润刚,艾军,李晓红,杨义明,沈育杰.2,4-D丁酯除草剂对山葡萄药害致因及补救措施.北方园艺,2010,12:61–64
    苏少泉.长残留除草剂对后茬作物安全性问题.农药,1998,37:4–7
    苏少泉.除草剂概论[M].科学出版社,1989
    苏少泉.影响茎叶处理除草剂效果的因素.世界农药,2009,31:7–11
    隋标峰,王金信,彭学岗,丁君,刘迎.麦田不同杂草对苯磺隆敏感性差异的分子机制.植物保护学报,2007,34:204–208
    孙倩.镉与乙草胺复合污染对玉米幼苗生理特性的影响[D].济南:山东师范大学,2011
    谈建中,刘美娟,张国英,丁悦.桑树叶色突变体类型与特性的初步研究.蚕业科学,2003,29(3):286–289
    谭效松,贺红武.除草剂的作用靶标与作用模式.农药,2005,44(12):533–538
    汤洪,金刚,文宗振,周瑞阳,关和新.草甘膦对烟草叶片超微结构的影响.广西农业生物科学,2008,27(4):421–424
    唐梁楠,杨秀瑗编著.苹果园土壤管理与节水灌溉技术[M].北京:金盾出版社,2000
    佟志红.用过除草剂葡萄“很受伤”. http://www.tianshannet.com.cn/news/content/2008-06/21/content_2652671.htm
    王光勇,刘迪秋,葛锋,方松刚,田荣欢,丁元明. GSTs在植物非生物逆境胁迫中的作用.植物生理学通讯,2010,46:890–894
    王险峰,关成宏.植物对苗后除草剂的吸收与传导及影响药效的因素.现代化农业,2002,3:7–9
    王鑫,原向阳,郭平毅,姚满生,王宏富.除草剂土壤处理对绿豆生长发育及产量的影响.杂草科学,2006,1:26–27
    王振英,李学平,李雪梅,彭永康.光系统Ⅱ抑制型除草剂Atrazine诱导小麦幼苗叶绿体蛋白质组变化分析.农业环境科学学报,2010,29(6):1039–1043
    韦建东.东兰县除草剂的使用、药害现状及问题思考.广西植保,2010,23:41-43.
    武叶叶,何红波,冯慧敏,徐会娟,张旭东.农田黑土中不同浓度乙草胺对玉米苗期生长的影响.土壤通报,2008,39:953–956
    徐汉虹主编.植物化学保护学[M].北京:中国农业出版社.2006
    徐天宇.千山区3万株果树出现叶片卷曲现象.2009-05-19http://press.idoican.com.cn/detail/articles/20090519641B18
    徐雄,张健,张猛,廖尔华.果–草人工生态系统中土壤微生物、土壤酶与土壤养分的关系.水土保持学报,2005,19(6):178–181
    徐永琪.应用条件对除草剂药效的影响.现代农业科技,2010,3:216,218
    薛素萍.玉米田封闭除草剂的种类及对葡萄的危害.果农之友,2008,8:37
    燕树锋,陈进红,梅磊,周童童,赵日峰,祝水金.市售草甘膦除草剂对转基因抗草甘膦棉花幼苗生长的影响.棉花学报,2011,23:408–413
    杨隆华.乙草胺、氟磺胺草醚对大豆根瘤固氮和碳代谢的影响[D].哈尔滨:东北农业大学,2010
    叶蕙,刘伟,陈建勋,陈巧玲.乙草胺对水稻的伤害及CGA123407对其伤害的保护作用.华南农业大学学报,2000,21:61–63
    尹凤英,江帆,彭永康.除草剂APM对小麦野二燕1号染色体结构和蛋白质组分的影响.华北农学报,2008,23(1):32–35
    余保文,朱诚.丁草胺对镉胁迫条件下水稻生长、镉积累及活性氧代谢的影响.环境科学学报,2008,28:1878–1886
    袁帅.水稻与大豆对氯磺隆、胺苯磺隆胁迫的生化响应[D].扬州:扬州大学,2009
    岳泰新,惠竹梅,孙莹,张振文,南海龙,成宇峰.行间生草对葡萄园土壤微生物学特征的影响.西北农林科技大学学报(自然科学版),2009,37(9):100–104
    翟淑美,刘会娟,王晓萍.两种除草剂胁迫对皇冠草生理特性的影响.中国农学通报,2009,25(24):231–235
    张超.生草果园病虫害发生特点及综合防治技术.山西果树,2010,138:20–21
    张成娥,杜社妮,自岗栓,梁银丽.黄土源区果园套种对土壤微生物及酶活性的影响.土壤与环境,2001,10(2):121–123
    张成银.草甘膦对柑桔叶片药害和除草效果试验.中国南方果树,1998,27:28
    张猛,王金信,段敏,彭学岗,郇志博.两种二苯醚类除草剂对花生苗期生长发育及氮素代谢的影响.植物保护学报,2008,35(1):58–62
    张权炳.柑桔苗圃草甘膦药害原因分析.中国南方果树,2006,35:19–20
    张文,朱元姊,李光晨.实用高效的果园土壤管理方法―果园生草法.农业新技术,2003,4:7–8
    赵善欢.植物化学保护[M].北京:中国农业出版社,2000
    赵世杰,史国安,董新纯主编.植物生理学实验指导[M].北京:中国农业科学技术出版社,2002
    赵世杰,许长成,邹琦,孟庆伟.植物组织中丙二醛测定方法的改进.植物生理学通讯,1991,30(3):207-210
    赵祥营.乙草胺除草剂对桑树危害的调查.蚕桑通报,1997,28:44
    赵之峰,陈爱昌,师法萍,陈学贵,赵春磊.改革果园清耕制推广果园生草、覆盖技术.经济林研究,2000,18(2):31
    邹琦主编.植物生理学实验指导[M].北京:中国农业出版社,2000
    Aebi, H.. Catalase in vitro. Methods in Enzymology,1984,105:121–126
    Afonso, J. M., Monteiro, A., Lopes, C. M., Lourenco, J. Enrelvamento do solo em vinha naregi o dos Vinhos Verdes. Três anos de estudo nacasta ‘Alvarinho’ Ciência Téc.Vitisvinifera,2003,18:47–63
    Ahsan, N., Lee, D. G., Lee, K. W., Alam, I., Lee, S. H., Bahk, J. D., Lee, B. H..Glyphosate-induced oxidative stress in rice leaves revealed by proteomic approach.Plant Physiology and Biochemistry,2008,46(12):1062–1070
    Anderson, J. V., Chevone, B. I., Hess, J. L.. Seasonal variation in the antioxidant system ofeastern white pine needles. Plant Physiology,1992,98:501–508
    Arrigoni, O., Dipierro, S., Borraccino, G.. Ascorbate free radical reductase: a key enzyme ofthe ascorbic acid system. FEBS Letters,1981,125:242–244
    Asada, K., Takahashi, M.. Production and scavenging of active oxygen in photosynthesis, in:Kyle DJ, Osmond CD, Arntzen CJ.(Eds.), Photoinhibition, Elsevier Science Publishers,Amsterdam,1987, pp.227–287
    Barrett, P. B., Harwood, J. L.. Effects of pebulate and pebulate sulphoxide on very long chainfatty acid biosynthesis. Phytochemistry,1998,48:441–446
    Bertamini, M., Nedunchezhian N.. Photoinhibition of photosynthesis in mature and youngleaves of grapevine (Vitis vinifera L.). Plant Science,2003,164:635–644
    Bigot, A., Fontaine, F., Clément, C., Vaillant-Gaveau, N.. Effect of the herbicide flumioxazinon photosynthetic performance of grapevine (Vitis vinifera L.). Chemosphere,2007,67:1243–1251
    Bondada, B. R.. Micromorpho-anatomical examination of2,4-D phytotoxicity in grapevine(Vitis vinifera L.) leaves. Journal of Plant Growth Regulation,2011,30:185–198
    Bromilow, R. H., Chamberlain, K., Evans, A. A.. Physicochemical aspects of phloemtranslocation of herbicides. Weed Science,1990,38:305–314
    Cakmak, I., Marschner, H.. Magnesium deficiency and high light intensity enhance activitiesof superoxide dismutase, ascorbate peroxidase, and glutathione reductase in bean leaves.Plant Physiology,1992,98:1222–1227
    Devendra, R. D., Umamahesh. V., Ramachandra Prasad, T. V., Prasad, T. G., Asha, S. T.,Ashok. Influence of surfactants on efficacy of different herbicides in control of Cyperusrotundus and Oxalis latifolia. Current Science,2004,86(8):1148–1151
    Devine, M., Duke, S. O., Fedtke, C.. Inhibition of amino acid biosynthesis. In: Physiology ofherbicide action. Prentice-Hall, New Jersey,1993, pp251–294
    Dixon, D., Skipsey, M., Edwards, R.. Roles for glutathione transferases in plant secondarymetabolism. Phytochemistry,2010,71:338–350
    Dobozi, M., Lehoczky, E., Horvath, S.. Investigation of the effect of soil herbicides on thegrowth and nutrient uptake of potato. Communication in Agricultural and AppliedBiological Sciences,2003,68(4a):441–447
    Dodge, A. D.. Some mechanisms of herbicide action. Science Progress Oxford,1975,62:447–466
    Donahue, J. L., Okpodu, C. M., Cramer, C. L., Grabau, E. A., Alscher, R. G.. Responses ofantioxidants to paraquat in pea leaves (Relationships to Resistance). Plant Physiology,1997,113:249–257
    Eker, S., Ozturk L., Yazici, A., Erenoglu, B., R mheld, V., Cakmak, I.. Foliar-appliedglyphosate substantially reduced uptake and transport of iron and manganese insunflower (Helianthus annuus L.) plants. Journal of Agricultural and Food Chemistry,2006,54:10019–10025
    Elstner, E. F., Heupel, A.. Inhibition of nitrite formation from hydroxylammoniumchloride: asimple assay for superoxide dismutase. Analytical Biochemistry,1976,70:616–620
    Franz, J. E., Mao, M. K., Sikorski, J. A.. Glyphosate: a unique global herbicide. ACSmonograph189, American Chemical Society,1997, pp521–615
    Galhanoa, V., Santosa, H., Oliveirab, M. M., Gomes-Laranjoa, J., Peixoto, F.. Changes in fattyacid profile and antioxidant systems in a Nostoc muscorum strain exposed to theherbicide bentazon. Process Biochemistry,2011,46:2152–2162
    Giannopolitis, C. N., Ries, S. K.. Superoxide dismutases: I. Occurrence in higher plants. PlantPhysiology,1977,59:309–314
    Gronwald, J., Fuerst, P., Eberlein, C., Egli, M.. Effect of herbicide antidotes on glutathionecontent, and glutathione S-transferase activity of sorgum shoots. Pesticide Biochemistryand Physiology,1987,29:66–76
    Haldimann, P., Strasser, R. J.. Effects of anaerobiosis as probed by the polyphasie chlorophyllfluorescence rise kinetic in pea (Pisum sativura L.). Photosynthesis Research,1999,62:67–83
    Hara, M., Yatsuzuka, Y., Tabata, K., Kuboi, T.. Exogenously applied isothiocyanates enhanceglutathione S-transferase expression in Arabidopsis but act as herbicides at higherconcentrations. Journal of Plant Physiology,2010,167:643–649
    Harbour, J. D., Messersmith, C. G., Ramsdale, B. K.. Surfactants affect herbicides on kochia(Kochia scoparia) and Russian thistle (Salsola ibefica). Weed Science,2003,51(3):430–434
    Hassan, N., Nemat Alla, M.. Oxidative stress in herbicide-treated broad bean and maizeplants. Acta Physiologiae Plantarum,2005,27:429–438
    Hermans, C., Smeyers, M., Rodriguez, R. M., Eyletters, M., Strasser, R. J., Delhaye, J. P..Quality assessment of urban trees: A comparative study of physiologicalcharacterization, airborne imaging and on site fluorescence monitoring by the OJIP-test.Journal of Plant Physiology,2003,160:81–90
    Herold, A.. Regulation of photosynthesis by sink activity: Themissing link. New Phytologist,1980,86:131–144
    Homann, P. E.. Studies on the manganese of the chloroplast. Plant Physiology,1967,42:997–1007
    Hossain, M. A., Asada. K.. Purification of dehydroascorbate reductase from spinach and itscharacterization as a thiol enzyme. Plant and Cell Physiology,1984,25:85–92
    Hu, T. Z., Qv, X. X., Xiao, G. S., Huang, X. Y.. Enhanced tolerance to herbicide of rice plantsby over-expression of a glutathione S-transferase. Molecular Breeding,2009,24:409–418
    Huang, H., Xiong, Z. T.. Toxic effects of cadmium, acetochlor and bensulfuron-methyl onnitrogen metabolism and plant growth in rice seedlings. Pesticide Biochemistry andPhysiology,2009,94:64–67
    Inderjit, S. K.. Phytotoxicity of selected herbicides to mung bean (Phaseolus aureus Roxb.).Environmental and Experimental Botany,2006,55:41–48
    Kaňa, R., pundová, M., Ilík, P., Lazár, D., Klem, K., Tomek, P., Nau, J., Prá il, O.. Effect ofherbicide clomazone on photosynthetic processes in primary barley (Hordeum vulgareL.) leaves. Pesticide Biochemistry and Physiology,2004,78:161–170
    Kaushik, S.. Effect of herbicides with different modes of action on physiological and cellulartraits of Anabaena fertilissima. Paddy and Water Environment,2010,8:277–282
    Kirkwood, R. C., Hetherington RReynolds, T. L., Marshall, G.. Absorption, localisation,translocation and activity of glyphosate in bamyardgrass (Echinochloa eras-galli(L)Beauv): influence of herbicide and surfactant concentration. Pest Management Science,2000,56:359–367
    Kirkwood, R. C.. Recent developments in our understanding of the plant cuticle as a barrier tothe foliar uptake of pesticides. Pesticide Science,1999,55:69–77
    Kopsell, D. A., Armel, G. R., Abney, K. R., Vargas, J. J., Brosnan, J. T., Kopsell, D. E.. Leaftissue pigments and chlorophyll fluorescence parameters vary among sweet corngenotypes of differential herbicide sensitivity. Pesticide Biochemistry and Physiology,2011,99:194–199
    Kramer, W., Schirmer, U.. Modern crop protection compounds. Weinheim, German:Wiley-VCH Verlag Gmbh&Co. KgaA.2007.132
    Krause, G.H., Virgo, A., Winter, K.. High susceptibility to photoinhibition of young leaves oftropical forest trees. Planta,1995,197:583–591
    Kuk, Y. I., Shin, J. S., Jung, H. I., Guh, J. O., Jung, S., Burgos, N. R.. Mechanism of paraquattolerance in cucumber leaves of various ages. Weed Science,2006,54:6–15
    Kuk, Y. I., Shin, J. S.. Mechanisms of low-temperature tolerance in cucumber leaves ofvarious ages. Journal of the American Society for Horticultural Science,2007,132:294–301
    La Rossa, R. A., Scholoss, J. V.. The Sulfonylurea herbicide sulfometuron methyl is anextremely potent and selective inhibitor of acetolactate synthase in Salmonellatyphimurium. The Journal of Biological Chemistry,1984,259:8753–8757
    Lehoczky, E., Buzsaki, K.. Effect of preemergent herbicides on the growth and nutrientuptake of different rape cultivars. Magyar Gyomkutatas es Technologia,2005,6(1):39–52
    Lei, J., Yang, H.. Prometryne-induced oxidative stress and impact on antioxidant enzymes inwheat. Ecotoxicology and Environmental Safety,2009,72:1687–1693
    Lupinkova, L., Komenda, J.. Oxidative modifications of the Photosystem II D1protein byreactive oxygen species: from isolated protein to cyanobacterial cells. Photochemistryand Photobiology,2004,79:152–162
    Magné, C., Saladin, G., Clément, C.. Transient effect of the herbicide flazasulfuron oncarbohydrate physiology in Vitis vinifera L.. Chemosphere,2006,62:650–657
    Malen i, D. R., Miladinovi, J. A., Popovi, M. T.. Effects of linuron and dimethenamid onantioxidant systems in weeds associated with soybean. Central European Journal ofBiology,2008,3(2):155–160
    Matschke, J., Machá ková, I.. Changes in the content of indole-3-acid and cytokinins inspruce, fir and oak trees after herbicide treatment. Biologia Plantarum,2002,45(3):375–382
    Mishra, V., Mishra, P., Srivastava, G., Prasad, S. M.. Effect of dimethoate and UV-Birradiation on the response of antioxidant defense systems in cowpea (Vigna unguiculataL.) seedlings. Pesticide Biochemistry and Physiology,2011,100(2):118–123
    Miteva, L., Ivanov, S., Alexieva, V.. Alterations in glutathione pool and some related enzymesin leaves and roots of pea plants treated with the herbicide glyphosate. Russian Journalof Plant Physiology,2010,57(1):131–136
    Monteiro, A., Lopes, C. M. Influence of cover crop on water use and performance of vineyardin Mediterranean Portugal. Agriculture, Ecosystems and Environment,2007,121,336–342
    Moreland, D.E.. Interaction of perfluidone with mitochondrial, thylakoid, and liposomemembranes. Pesticide Biochemistry and Physiology,1981,15:21–31
    Moroslavova, S., Kozlova, L. M., Rogdanovskyya, A. U.. Effect of simazine on themetabolism and growth of Norway spruce plants. Weed Abstract,1981,30(12):513
    Naidu, S.L., Moose, S.P., AL-Shoaibi, A.K., Raines, C.A., Long, S.P.. Cold tolerance of C4photosynthesis in Miscanthus x giganteus: adaptation in amounts and sequence of C4photosynthetic enzymes. Plant Physiology,2003,132:1688–1697
    Nakano, Y., Asada, K.. Hydrogen peroxide is scavenged by ascorbate peroxidase in spinachchloroplasts. Plant and Cell Physiology,1981,22:867–880
    Neales, T. F., Incoll, L. D.. The control of leaf photosynthesis by the level of assimilate in theleaf. Botanical Review,1968,34:107–125
    Nemat Alla, M. M., Badawi, A. H. M., Hassan, N. M., El-Bastawisy, Z. M., Badran, E. G..Herbicide tolerance in maize is related to increased levels of glutathione andglutathione-associated enzymes. Acta Physiologiae Plantarum,2008,30:371–379
    Nemat Alla, M. M., Hassan, N. M., El-Bastawisy, Z. M.. Differential influence of herbicidetreatments on activity and kinetic parameters of C4photosynthetic enzymes from zeamays. Pesticide Biochemistry and Physiology,2007,89:198–205
    Nishiyama, Y., Allakhverdiev, S. I., Yamamoto, H., Hayashi, H., Murata, N.. Singlet oxygeninhibits the repair of photosystem II by suppressing the translation elongation of the D1protein in Synechocystis sp. PCC6803. Biochemistry,2004,43:11321–11330
    Nogushi, T.. Dual role of triplet localization on the accessory chlorophyll in the photosystemII reaction center: photoprotection and photodamage of the D1protein. Plant and CellPhysiology,2002,43:1112–1116
    Orcaray, L., Zulet, A., Zabalza, A., Royuela, M.. Impairment of carbon metabolism inducedby the herbicide glyphosate. Journal of Plant Physiology,2012,169(1):27–33
    Padgette, S. R., Kolacz, K. H., Delannay, X. D., La Vallee, B. J., Tinius, C. N., Rhodes, W. K.,Otero, Y. I., Barry, G. F., Eichholtaz, D. A., Peschke, W. M., Nida, D. L., Taylor, N. B..Development, identification and characterization of a glyphosate tolerant soybean line.Crop Science,1995,35:1451–1461
    Paillotin, G.. Movements of excitations in the photosynthesis domain of photosynthesis II.Journal of Theoretical Biology,1976,58:237–252
    Pechová, R., Kutík, J., Holá, D., Ko ová, M., Haisel, D., Vi ánková, A.. The ultrastructure ofchloroplasts, content of photosynthetic pigments, and photochemical activity of maize(Zea mays L.) as influenced by different concentrations of the herbicide amitrole.Photosynthetic,2003,41(1):127–136
    Peng, Y. K., Zou, L. Z., Wang, Z. Y., Jin, H. Y., Feng, Z. Y.. The effect of triazine herbicideatrazine on the chromosome structure, protein content and compositions in Oryza sativaL. Acta Agronomica Sinica,2006,32(4):497–502
    Qian, H., Chen, W., Sheng, G. D., Xu, X., Liu, W., Fu, Z.. Effects of glufosinate onantioxidant enzymes, subcellular structure, and gene expression in the unicellular greenalga Chlorella vulgaris. Aquatic Toxicology,2008,88:301–307
    Ramel, F., Sulmon, C., Bogard, M., Couee, I., Gouesbet, G.. Differential patterns of reactiveoxygen species and antioxidative mechanisms during atrazine injury andsucrose-induced tolerance in Arabidopsis thaliana plantlets. BMC Plant Biology,2009,9:28-45
    Ray, T. B.. Site of action of chlorsulfuron inhibition of valine and isoleucine biosynthesis inplants. Plant Physiology,1984,75:827–831
    Robertson, N. D., Davis, A. S.. Influence of sulfometuron methyl on American chestnutseedling growth and leaf function. Northern Journal of Applied Forestry,2011,28(1):36–40
    Ruiter, H. D., Kempenaar, C., Blom, G.. Foliar absorption of crop protection agents: influenceof cpa properties, formulation and plant species. Wageningen: Plant researchintemational B. V.2004,1–15
    Rutherford, A.W., Krieger-Liszkay, A.. Herbicide-induced oxidative stress in photosystem II.Trends in Biochemical Science,2001,26:648–653
    Saladin, G., Magné, C., Clément, C.. Impact of flumioxazin herbicide on growth andcarbohydrate physiology in Vitis vinifera L. Plant Cell Reports,2003,21:821–827
    Sanyal, D., Bhowmik, P. C., Reddy, K. N.. Influence of leaf surface micromorphology,waxcontent,and surfactant on primisulfuron droplet spread on bamyardgrass (Echinochloaeras-galli) and green foxtail (Setaria viridis). Weed Science,2006,54:627–633
    Sari, L. L., Cotterman, J. C., Primiani, M. M.. Mechanism of sulfonylurea herbicide resistancein the broadleaf weed, Kochia scoparia. Plant Physiology,1990,93:55–61
    Scarponi, L., Younis, M. E.. Effects of chlorimuron–ethyl, imazethapyr, and propachlor onfree amino acids and protein formation in Vicia faba L. Journal of Agricultural and FoodChemistry,1997,45:3652–3658
    Schaedle, M., Bassham, J. A.. Chloroplast glutathione reductase. Plant Physiology,1977,59:1011–1012
    Sharma, S. D., Singh, M.. Environmental factors affecting absorption and bioefficacy ofglyphosate in Florida beggarweed (Desmodium tortuosum). Crop Protection,2001,20:511–516
    Sherman, T. D., Becerril, J. M., Matsumoto, H., Duke, M. V., Jacobs, J. M., Jacobs, N. J.,Duke, S. O.. Physiological basis for differential sensitivities of plant species toprotoporphyrinogen oxidase-inhibiting herbicides. Plant Physiology,1991,97:280–287
    Sobye, K. W., Streibig, J. C., Cedergreen, N.. Prediction of joint herbicide action by biomassand chlorophyll a fluorescence. Weed Research,2011,51(1):23–32
    Spayd, S. E., Tarara, J. M., Mee, D. L., Ferguson, J. C.. Separation of sunlight andtemperature effects on the composition of Vitis vinifera cv.‘Merlot’ berries. AmericanJournal of Enology and Viticulture,2002,53:171–182
    Srivalli, B., Vishanathan, C., Renu, K. C.. Antioxidant defense in response to abiotic stressesin plants. Journal of Plant Biology,2003,30:121–139
    Srivastava, A., Jiittner, F., Strasser, R. J.. Action of the allelochemical, fischerellin A, onphotosystem II.Biochimica and Biophysica Acta,1998,1364:326–336tajner, D., Popovi, M., tajner, M.. Herbicide induced oxidative stress in lettuce, beans, peaseeds and leaves. Biologia Plantarum,2003,47(4):575–579
    Strasser, R. J., Srivastava, A., Govindjee.. Polyphasic chlorophyll a fluorescence transient inplants and cyanobacteria. Photochemistry and Photobiology,1995,61:32–42
    Strasser, R. J., Srivastava, A., Tsimilli-Michael, M.. The fluorescence transient as a tool tocharacterize and screen photosynthetic samples. In: Yunus M, Pathre U, Mohanty P(eds). Probing Photosynthesis: Mechanism, Regulation and Adaptation. London: Taylorand Francis Press,2000,25:445–483
    Strasser, R. J.. Donor side capacity of photosystem II probed by chlorophyll a fluorescencetransients. Photosynthesis Research,1997,52:147–155
    Sunohara, Y., Shirai, S., Wongkantrakorn, N., Matsumoto, H.. Sensitivity and physiologicalresponses of Eleusine indica and Digitaria adscendens to herbicide quinclorac and2,4-D.Environmental and Experimental Botany,2010,68:157–164
    Tworkoski, T. J., Michael, G. D.. Yeild, shoot and root growth, and physiological responses ofmature peach trees to grass competition. Hortscience,2001,36(7):1214–1218
    van Kooten, O., Snel, J.. The use of chlorophyll fluorescence nomenclature in plant stressphysiology. Photosynthesis Research,1990,25:147–150
    Vaseva-Gemisheva, I., Lee, D., Karanov, E.. Response of Pisum sativum cytokininoxidase/dehydrogenase expression and specific activity to drought stress and herbicidetreatments. Plant Growth Regulation,2005,46:199–208
    Veen, B. W.. Photosynthesis and assimilate transport in potato with top-roll disorder causedby the aphid Macrosiphum euphoribae. Annals of Applied Biology,1985,107:319–323
    Wagner, G., Nadasy, E.. Influence of nitrogen and herbicide treatments on the nitrogen uptakeon pea and Chenopodium album L. Acta Agronomica Hungarica,2010,58(2):123–132
    Wang, C. J., Liu, Z. Q.. Foliar uptake of pesticides-present status and future challenge.Pesticide Biochemistry and Physiology,2007,87:1–8
    Watanabe, K., Ohori, Y., Sato, Y., B ger, P., Wakabayashi, K.. Changes in fatty acidcomposition of neutral lipid in mung bean cotyledons by oxyfluorfen-inducedperoxidation. Pesticide Biochemistry and Physiology,2001,69:166–173
    Wu, G.L., Cui, J., Tao, L., Yang, H.. Fluroxypyr triggers oxidative damage by producingsuperoxide and hydrogen peroxide in rice (Oryza sativa). Ecotoxicology,2010,19:124–132
    Wu, J., Hwang, I., Hatzios, K. K.. Effects of chloroacetanilide herbicides on membrane fattyacid desaturation and lipid composition in rice, maize, and sorghum. PesticideBiochemistry and Physiology,2000,66:161–169
    Yoon, J. Y., Shin, J. S., Shin, D. Y., Hyun, K. H., Burgos, N. R., Lee, S., Kuk, Y. I.. Toleranceto paraquat-mediated oxidative and environmental stresses in squash (Cucurbita spp.)leaves of various ages. Pesticide Biochemistry and Physiology,2011,99:65–76
    Zheleva, D., Tsonev, T., Sergiev, I., Karanov, E.. Protective effect of exogenous polyaminesagainst atrazine in pea plants. Journal of Plant Growth Regulation,1994,13:203–211
    Zobiole, L. H. S., Bonini, E. A., Oliveira, Jr. R. S., Ferrarese-Filho, O.. Glyphosate affectslignin content and amino acid production in glyphosate-resistant soybean. ActaPhysiologiae Plantarum,2010a,32:831–837
    Zobiole, L. H. S., Kremer, R. J., Oliveira, Jr. R. S., Constantin, J.. Glyphosate affectschlorophyll, nodulation and nutrient accumulation of "second generation"glyphosate-resistant soybean (Glycine max L.). Pesticide Biochemistry and Physiology,2011,99(1):53–60
    Zobiole, L. H. S., Oliveira, Jr. R. S., Kremer, R. J., Muniz, A. S., Oliveira, Jr. A.. Nutrientaccumulation and photosynthesis in glyphosate-resistant soybeans is reduced underglyphosate use. Journal of Plant Nutrition,2010b,33(12):1860–1873

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700