膜技术在铜钼分选中的运用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国共伴生矿产资源综合利用率不到20%,矿产资源总回收率只有30%,而国外先进水平均在50%以上,差距分别为30和20个百分点,如何有效地降低消耗的同时提高矿产资源回收率是摆在我们面前急需解决的难题之一。
     本文研究了以膜技术为手段,以铜钼分离浮选为研究背景,针对浮选前旋流器溢流液以及旋流器给矿中钼的回收进行了有益的探讨,分别确定了在采用膜技术处理旋流器溢流液、旋流器给矿的最佳压力、膜通量的变化规律以及膜组件浓缩分离时间,并就采取膜技术与不采用膜技术两种工艺下对浮选药剂量的需求、钼粗精矿的品位和钼的回收率进行了比较试验。研究结果表明:
     采用膜技术对旋流器溢流液中钼的回收时,膜组件的运行压力在20KPa时为宜,膜通量下降的速率逐渐减小并在500mL/min时达到稳定,在膜组件运行180min时溢流液的浓度可达到50%;在运用膜技术对旋流器溢流液进行浓缩分离后,其铜钼浮选分离所需的Na2S用量可以大幅降低,同时钼粗精矿的品位、钼的回收率皆有不同程度的提高,试验还表明运用:膜技术—硫化钠脱药—浮选,这一工艺时药剂用量最小,钼的品位、回收率最高。
     采用膜技术对旋流器给矿中钼的回收时,膜组件的运行压力在30KPa时为宜,膜通量下降的速率逐渐减小并在600mL/min时达到稳定,在膜组件运行60min时溢流液的浓度可达到60%以上,在采用膜技术后对药剂的用量、钼粗精矿品位和钼的回收率也有相同的结论。
     通过粒度分析表明,旋流器溢流液通过膜浓缩分离后,其颗粒尺寸分布明显变窄,主要颗粒尺寸由6.1μm提高到8.7μm,旋流器给矿颗粒粒径则在11μm。这说明钼品位和回收率的高低与颗粒的粒径大小有着很大的关系。
China has comprehensive utilization of mineral resources associated with less than 20 percent, total recovery of mineral resources, only 30 per cent, while foreign advanced water in more than 50 per cent on average, the gap was 30 and 20 percentage points, how to effectively reduce the consumption of mineral at the same time improve Resource recovery is one of the urgent need to resolve problems before us.
     In this paper, a membrane technology as a means to flotation for copper and molybdenum separation research background, in view of flotation of the former Cyclone and Cyclone overflow to the recovery of molybdenum ore a useful discussion were identified in the film taken technology cyclone overflow liquid cyclone to mine the best pressure, the changes of flux concentration, as well as membrane separation time, and on the adoption of membrane technology and do not use membrane technology for two of the flotation reagent in the demand for crude molybdenum and molybdenum concentrate grade of the recovery test were compared.
     Using membrane of the cyclone overflow in the recovery of molybdenum, the operating pressure in the membrane 20 KPa when suitable, the rate of decline in flux gradually decreased and 500 mL/min to achieve stability in the module running 180 min When the concentration of liquid overflow could reach 50% in the use of membrane technology for cyclone overflow of enrichment after the separation of its flotation separation of copper and molybdenum Na2S required dosage can be reduced substantially, while molybdenum concentrate rough grade, Mo varying degrees of recovery both increased use of tests also showed that: membrane technology - from drug sodium sulfide - flotation, this process when the smallest amount of Pharmacy, molybdenum grade, the highest recovery.
     Using membrane of the cyclone to mine in the recovery of molybdenum, the operating pressure in the membrane 30 KPa when suitable, the rate of decline in flux gradually decreased and 600 mL/min to achieve stability in the module running 60 min overflow when the concentration of more than 60% can be achieved in the use of membrane technology for pharmaceutical dosage, molybdenum concentrate rough grade and the recovery of molybdenum have the same conclusion.
     Through particle size analysis shows that cyclone overflow condensed liquid membrane separation through after its apparent narrow particle size distribution, particle size from 6.1μm raised to 8.7μm, cyclone to mine the particle size in 11μm. This shows that the recovery of molybdenum grades and the level of the particle size and particle has a great relationship.
引文
[1]陈从喜,曹苏扬,王静波.矿产资源综合利用与发展循环经济[J].中国工程学,2005,9.(7):143
    [2]潘文灿.我国矿产资源开发利用现状与形势.中国人口、资源与环境.2001,1
    [3]金小燕,赵亚辉.湖南省有色金属矿产资源开发利用效率相关问题的探讨[J].湖南地质,2002,6.21 (2):122~126
    [4]《国土资源“十一五”规划纲要》
    [5] TALESHI MATSUURA.Progress in membrane science and technology for seawater desalination-a review[J].Desal-Ination,2001(134):47~54
    [6]宋皖英.膜分离技术的一项新进展[J].安徽教育学院学报. 2006,11.24(6):78~79
    [7]郭瑞丽,李玲.膜分离技术及其应用简介[J].新疆大学学报(自然科学版). 2003,11.20(4):410~413
    [8]苏金坡,尹连庆,张亚琴等.膜分离技术在环境工程中的应用[J].环境科学与技术,2004(27):166~169
    [9]张琳.膜分离技术处理小麦软膳食纤维废水的研究[D].河南大学,2007
    [10]刘莱娥等.膜分离技术[M].北京:化学工业出版社,1998
    [11]宫美乐.膜分离技术在饮料过滤方面的应用[J].软饮料工业,1997,4.:27~31
    [12]董秉直,曹达文,范瑾初.膜技术应用于净水处理的研究和现状[J].给水排水,1999.25(1):28~32
    [13]周健儿,吴汉阳.无机陶瓷分离膜的研究与应用[J].中国陶瓷,1999,35(3):16~20 [14 ]姜安玺,赵玉鑫,李丽等.膜分离技术的应用与进展[J].黑龙江大学自然科学学报.2002,9.19(3):98~99
    [15]王钦,柱子.中国膜技术产业化路途艰难[J].环境, 2007.(5):72~75
    [16]陈红霞.膜分离及应用展望[J].化工技术与开发,2005,10. 34(5):14~18
    [17]雷贵春.旋流器在德兴铜矿铜钼分离工艺中的应用[J].矿冶,2005,3.l4( l):32~35
    [18]雷贵春.德兴铜矿铜钼分离研究现状及研究方向[J].中国钼业, 1998,8.22(4):53~56
    [19]郭灵敏.德兴铜矿铜钼分离新型分散剂的研究及实践[J].中国钼业,2005,4.29(2)14~16
    [20]戴新宇.西藏某矽卡岩型铜钼矿选矿工艺试验研究[J].矿产综合利用, 2007,10. 7~10
    [21]郭海宁.低品位铜钼矿石铜钼分离选矿工艺试验研究[J].甘肃冶金.2007,8.29(4):33~35
    [22]张军成.铜钼矿石的选矿及铜钼分离工艺[J].矿业快报,2006,8.(8): 13~15
    [23]马晓.金堆城钼业集团公司铜精矿中难选钼的综合回收试验研究[D].西安建筑科技大学,2007
    [24]董允杰.国内外钼矿综合利用概况[J].中国钼业,1997.5:9~12
    [25]宁振茹,董允杰.国内外钼矿综合利用概况及对我国钼矿综合利用的建议[J].中国钼业,1998,22(4):96
    [26]李军年.提高难选铜钼矿石选矿回收率研究[J].有色金属(选矿部分),1999.3:9~10
    [27]周立辉,蒋玉仁,薛玉兰.几种辅助捕收剂对某难选钼矿浮选指标的影响[J].有色矿山,2000,29(3):24
    [28]王淀佐.浮选剂作用原理及应用[M].北京:冶金工业出版社.1982
    [29]杨金平.矿物化学处理及其在辉钼矿选冶工艺中的应用[J].中国钼业,1998,22(3):32
    [30]段体玉,王时麒,Anthony M.Faiia.多钨酸钠超声高速离心法—分离提纯微细矿物的新方法[J].地质与勘探.2001,9.37(5):39~40
    [31] L.Svarosky.固液分离(第二版) [M].北京:化学工业出版社,1990
    [32]刘凡清,范德顺,黄钟.固液分离与工业水处理[M].北京:中国石化出版,2001
    [33] A.Rush,A.S.Ward,R.G.holdich.固液两相过滤及分离技术[M],北京:化学工业出版社,2000
    [34] Robert H.Perry.化学工程手册(第六版)下卷第19篇(液一固系统).北京:化学工业出版社,1993
    [35]丁启圣,王维一.新型实用过滤技术.北京[M].冶金工业出版社.2000
    [36]今井哲男.浮选柱技术的进展[J].国外金属选矿.2000,(8):17~21
    [37]张庆文.在微细矿物回收中浮选柱的应用概述[J].锡业科技.2003,5. 4(2): 72~77
    [38]А.Г.兹韦金采伊,Э.К.雅库科里科,М.А.乌索夫等.在脉冲梯度磁场中磁选矿物的新方法[J].国外金属矿山.1999.(5):59~61
    [39]马雷BM.弱磁性矿石选矿工艺现状和发展前景[J].国外金属矿山.1993,(2):53~56
    [40]张芹,胡定国,周女波,陈铁军.微细粒嵌布铁矿絮凝浮选基础理论研究综述[J].矿业快报.2006,8.(447)8:11~12
    [41] Natarajan KA. etal.Role of bacterial interaction and bioreagents in iron ore flotation[J] .Int.Miner Process, 2001(9):62~143
    [42]郑领英,王学松.膜技术[M].北京:化学工业出版社,2001
    [43]王湛.膜分离技术基础[M].北京:化学工业出版社,2000
    [44]孙福强,崔英德等.膜分离技术及其应用研究进展[J].化工科技,2002,10(4):58~63
    [45]马琳,秦国彤.膜污染的机理和数学模型研究进展[J].水处理技术,2007,6. 33 (6 ):1~4
    [46] Porter. M.C. Concentration Polarization with. membrane ultrafiltration in d.Eng.Chem.Prod.Res[J].Dev.,1972,11:233~248
    [47] Tarlton D.R,Doshi M.R.Limiring flux in ultrafiltration of macromolecular solutions[J] ,Chem.Eng.Commun,1980,4:507~522
    [48] Zydeny A.L,Colton C.K. A concentration Polarization model for the filtration flux in Crossflow microfiltration of particular suspensions,Chem,Eng.Common.,1986,47:l~21
    [49] Drew D.R. The lift force on a small sphere in the presenee of a wall[J],Chem,Eng.Sei.,1998,43:4,769~773
    [50]钟璟,徐南平,时钧.颗粒粒径和膜孔径对陶瓷膜微滤微米级颗粒悬浮液的影响[J].高校化学工程学报.2000,14(13):230~234
    [51]余跃,冯晖,吴沪宁等.膜处理印染废水的研究[J].化工时刊,2004(4):7
    [52]郑成.膜的污染及其防治[J].膜科学与技术,1997(2):5

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700