MEMS IMU/GNSS超紧组合导航技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
21世纪是信息技术高速发展的时代,牵引并依赖于信息技术的精确制导技术也将进一步加速发展。20世纪末发展成熟的精确制导技术在21世纪将发展成为实用化技术。目前,低成本导航与制导技术是发展实用化精确制导技术的首要内容。MEMS IMU/GNSS组合导航系统具有成本低、体积小、重量轻、功耗低等优点,因此在汽车定位、精细农用机械车辆导航、林区防火的无人机、精确制导武器、卫星探测等方面具有非常重要的应用价值。
     受2008年上海航天技术研究院科研基金的资助,本文作者开展了高动态GNSS/INS组合导航快速初始对准技术的研究,并对组合导航系统进行了设计。结合新一代组合制导系统的研制现状和发展趋势,为进一步提高GNSS动态性能、抗干扰能力以及其和MEMS IMU集成的组合系统定位能力,本文进行了更深入的MEMS IMU/GNSS组合导航技术研究。
     由于载体对象的高动态特点,其上装载的GNSS接收机在捕获信号和跟踪定位上面临很大的挑战,因此致使GNSS/INS组合系统的定位效果受到严重影响。本论文以MEMS IMU/GNSS超紧组合为研究目标,并以MEMS IMU环路辅助的GNSS/INS紧组合技术为研究重点,深入研究了MEMS IMU辅助的GNSS信号捕获、MEMS IMU辅助的GNSS信号跟踪、MEMS IMU辅助的GNSS/INS紧组合导航定位算法和基于矢量跟踪结构的GNSS/INS超紧组合算法,旨在改善MEMS IMU/GNSS组合导航系统在卫星信号衰减场合中的性能。主要的研究思路和工作体现在以下五个方面:
     1.调研分析国内外GNSS/INS组合导航技术以及基于MEMS的GNSS/INS组合制导系统的服役现状,结合课题的技术需求和工程可实现性,确定MEMS惯性器件环路辅助的GNSS/INS紧组合研究内容和基于矢量跟踪结构的GNSS/MEMS INS组合研究方案。
     2.针对高动态运动所带来的GNSS信号捕获时间变长的问题,从机理上分析IMU速度辅助GNSS接收机的信号捕获方法和流程,建立衡量信号捕获性能的指标,着重研究MEMS IMU辅助时影响捕获性能的载体多普勒误差和由其导致的捕获搜索区间,定量评估比较GNSS接收机在MEMS IMU辅助前后的捕获性能,开展捕获实验。
     3.在信号跟踪误差和抗干扰指标计算的研究基础之上,设计适用于高动态的纯GNSS和IMU辅助的GNSS环路结构、鉴相器类型和环路参数,研究环路带宽门限和最优带宽的设计问题,评估比较MEMS IMU辅助前后接收机的动态跟踪性能和抗干扰性能,开展跟踪实验。
     4.研究组合导航系统的定位性能和系统实现。建立MEMS IMU环路辅助的GNSS/INS紧组合导航物理实现结构,从系统可观性分析的角度设计基于单通道的全维组合滤波器,进而研究降维滤波算法;构建仿真系统和仿真场景实验,验证算法的有效性,全面评估系统的导航精度;着重分析组合导航系统实现的两个时间同步问题,即组合导航Kalman滤波器中MEMS IMU和GNSS量测数据之间的同步,以及由MEMS IMU获取的GNSS环路控制信息和GNSS基带信号之间的数据同步,提出解决方案,研制基于FPGA的时间同步系统,并进行地面验证。
     5.为进一步提高系统的动态性能和抗干扰能力,在GNSS接收机矢量跟踪技术的基础上,研究基于矢量跟踪结构的MEMS IMU/GNSS超紧组合导航技术,分析超紧组合导航结构和系统配置,研究基于定常加速度模型的超紧组合算法和滤波器设计,提出机载一体化MEMS IMU/GNSS超紧组合系统的设计方案。
     本文的关键技术和创新性主要体现在以下四个方面:
     1.构建了MEMS IMU环路辅助GNSS接收机捕获和跟踪性能的评估方法,从而确定了GNSS接收机经MEMS IMU辅助前后的捕获时间、信号跟踪门限、带宽门限和前端抗干扰能力,为满足高动态应用环境需求的MEMS IMU辅助的接收机环路参数和结构设计提供依据,对工程样机的研制具有重要的参考价值。
     2.设计了一种适用于高动态的MEMS IMU辅助GNSS接收机的环路结构(IMU辅助的三阶PLL和PLL辅助的二阶DLL),提出了带宽门限的迭代求解方法,确定了接收机带宽设计范围,从而使接收机可以在要求的载噪比变换范围内稳定跟踪信号,为接收机环路参数的设计提供了便捷、有效的方法。
     3.提出了一种基于双通道星间差分的降维滤波算法,抵消了组合导航滤波器状态变量中接收机钟差和钟漂的影响,不仅减小了微处理器计算负荷、提高了效率,而且在卫星信号状况良好和较差的环境中都可以确保良好的定位精度,对于组合系统工程化发展具有实际应用价值。
     4.提出了一种基于递推Kalman滤波方法的软件同步方案,解决了MEMS IMU获取的GNSS环路控制信息和GNSS基带信号之间的数据同步问题,从而解决了超紧组合技术中的关键问题,对于超紧组合导航系统的开发具有建设性的意义。
     本文的研究结论主要有以下五点:
     1.MEMS IMU辅助接收机环路时,接收机在冷启动下捕获时间缩短30%,在温启动下缩短96%,在热启动下重捕能力提高40%。温启动模式下,惯性辅助对接收机捕获性能的提高最显著。因此,MEMS IMU辅助的捕获技术在民用方面也具有广阔的应用前景。基于MAX2769 GNSS软件接收机平台捕获实验,结果反映接收机冷启动时捕获效率提高了33.8%,验证了评估结论。
     2.为满足10g/s加加速度的高动态应用环境,高动态接收机在环路结构方面需采用三阶PLL环路和PLL辅助的二阶DLL,在鉴相器选型方面需采用二象限反正切型PLL鉴相器和开方后归一化型DLL鉴相器。
     3.在10g/s加加速度的高动态应用环境中,经MEMS IMU辅助后,GNSS接收机三阶PLL的带宽门限由18 Hz降低到1Hz,信号跟踪门限由28dB-Hz降低到21dB-Hz,接收机整体抗干扰性能提高7.4dB。
     4.基于星间差分的降维滤波算法和全维滤波算法具有同等的导航性能,其中卫星信号良好时3D位置误差(MRS)约为7m,3D速度误差为0.2 m/s。在微处理器的浮点运算能力上,采用降维滤波算法后,一个滤波周期内的浮点计算时间由0.6MFLOPS缩短到0.4MFLOPS,其复杂度降低了31.1%,提高了滤波器的运算效率。
     5.经地面实验验证,论文研制的基于FPGA的时间同步系统实现了MEMS IMU传感器测量数据与GNSS接收机时间的精确同步,其中同步精度可达600us,满足大多中等精度GNSS/INS组合系统的同步测量要求。
The 21st century is the era of rapid development of information, and precision-guided technology which depends on information will further accelerate the development. In the new century, the late 20th century developed precision-guided technology will become a practical technology. At the present, low-cost navigation and guidance technology is the primary aspect to develop the practical precision guidance technology. The high points of MEMS IMU/GNSS, low-cost, low-size, low-weight and low power consumption, wholly meet the requirements for wide application fields, such as vehicle positioning, fine farm machinery navigation, UAV for forest fire, precision guided munitions and satellite detection. Preliminary research on rapid GNSS/INS alignment technology was funded by the Shanghai Academy of Spaceflight Technology in 2008. On the basis of the preliminary background research of navigation and guided system, this dissertation would give attention to new GNSS/INS technology with ultratight coupling or deep integration so as to enhance GNSS tracking, anti-jamming and positioning. Considering modern target’s characteristic with high dynamic, the ability of GNSS receiver to acquire and track signal is challenged, and thus GNSS/INS integrated navigation capability is badly affected. The objective of this dissertation is to introduce modern IMU to the GNSS receiver’s tracking loops, to analyze GNSS receiver’s improvements in acquisition, tracking and anti-jamming, and to design realizable MEMS IMU/GNSS tight integration with IMU-aided receiver tracking loops and characterize its navigation performance in signal-attenuated applications. Furthermore, the dissertation would like to explore an ultratight coupling navigation system with supreme reliability and integrity to improve system performance and survivability. The primary research contributions and roadmap are summarized as follows:
     1. Collection and summary of all the related literatures and previous works. With this information, and taking into account the technique requirements and project limits, MEMS IMU/GNSS tight integration with IMU-aided receiver tracking loops and ultratight coupling are chosen to be researched.
     2. To investigate MEMS IMU-aided GNSS receiver acquisition technology. The acquisition capability index including mean acquisition time and signal detection index is developed. Several main factors influencing the acquisition performance with IMU assistance are analyzed. Based on MEMS IMU-aided Doppler accuracy and almanac-based Doppler accuracy in different receiver startup modes, MEMS IMU-aided acquisition time is quantitatively determined and compared with standard GNSS capability, and acquisition experiments are conducted.
     3. To implement MEMS IMU-aided GNSS receiver tracking technology. Based on the analysis of DLL and PLL total tracking errors, the structure and implementation of both high dynamic GNSS receiver and MEMS IMU-aided GNSS receiver are provided, and the design of both optimal bandwidth and bandwidth threshold is given. According to the designed MEMS IMU-aided GNSS receiver tracking loops, the tracking and anti-jamming capability are assessed and compared with designed high dynamic GNSS capability, and tracking experiments are implemented.
     4. To develop MEMS IMU/GNSS integrated navigation technology with IMU-aided GNSS receiver tracking loops. The dissertation designed an EKF-based tightly integrated navigation algorithm trough observability analysis and proposes a reduced navigation algorithm by differencing across satellites. A high-credibility simulation platform of navigation system is constructed for verifying the autonomous navigation accuracy in various signal-attnuated scenarios. In addition, this dissertation draws attention to two time synchronization issues in the implementation of MEMS IMU-aided GNSS/IMU navigation system, and each synchronization scheme is given.
     A flexible low-cost time synchronizer with FPGA is developed, and vehicle experiments are conducted.
     5. To investigate MEMS IMU/GNSS ultratight integration navigation technology based on vector tracking structure in order to imporove the performance of dynamics and anti-jamming. Based on vector-based tracking structure of GNSS receiver, the reduced-dimension filter algorithm by differencing across satellites is designed for integrated navigation filter. Consequently, the schematic design of an ultratight MEMS IMU/GNSS receiver is tentatively proposed.
     The key technology and innovations in the research focus on the following points:
     1. The assessment method on IMU-aided acquisition, tracking and anti-jamming capability is built. The results of GNSS improvements on acquisition time, signal tracking threshold, bandwidth threshold and RF anti-jamming are displayed. The assessment results and method make contributions to both loop design and prototype development of high dynamic IMU-aided receiver.
     2. An IMU-aided third-order PLL structure and PLL-aided second-order DLL structure is proposed to satisfy the high dynamic requirement with 10g/s jitter. An iteration-based bandwidth threshold resolution is proposed to make the receiver stably track the GNSS signal in required carrier-noise-ratio environments.
     3. A novel algorithm based on the differencing pseudorange measurements and Doppler measurements across satellites is proposed so as to eliminate the clock components including receiver clock bias and clock drift. The computational efficiency is improved, and good positioning performance can be kept in various signal-attnuated applications.
     4. A synchronization software scheme based on recursion Kalman is proposed to synchronize the IMU-aided NCO information and GNSS baseband measurements, and make contributions to MEMS IMU/GNSS ultratight system development.
     The reseach conclusions are summarized as follows:
     1. With the aid of MEMS IMU, the acquisition capability in cold start and warm start are improved 30% and 96% respectively, and the reacquisition capability in hot start is enhanced 40%. The remarkable enhancenment in warm start shows wide prospect of IMU-aided acquisition technique in civil applications. According to the test of MAX2769-based GNSS SDR, the acquisition capability is examined.
     2. In the design of high dynamic GNSS receiver, third-order PLL and PLL-aided second-order DLL can meet the high dynamic requirement with 10g/s jitter.
     3. With the aid of MEMS IMU, the bandwidth threshold of GNSS third-order PLL is reduced from 18Hz to 1Hz, the signal tracking threshold is reduced from 28dB-Hz to 21dB-Hz, and the mean anti-jamming performance is improved by 7.4dB.
     4. The MRS errors of position and velocity, estimated by proposed navigation algorithm based on differencing across satellites, are 7m and 0.2m/s respectively. Compared with the traditional navigation algorithm, the computational efficiency is enhanced by 31.1%.
     5. The field van test result of the low-cost time synchronizer demonstrate that the synchronizer with FPGA developed in the research can achieve an accuracy of around 600 us between MEMS IMU and GNSS receiver.
引文
[1] Shin, E. Estimation Techniques for Low-Cost Inertial Navigation[D]. University of Calgary 2005.
    [2] Titterton, D. H., Weston, J. L. Strapdown Inertial Navigation Technology[M]. 2nd ed.; IET, London, UK and AIAA, Virginia, USA.: 2004.
    [3] El-Sheimy, N. and Niu, X. The Promise of MEMS to the Navigation Community[J]. Inside GNSS, 2007, March/April, pp 26-56.
    [4] Hopkins, R.E. and Borestein. The Silicon Oscillating Accelerometer: A MEMS Inertial Instrument for Strategic Missile Guidance[A], In AIAA Reprinted with permission from missile Science Conference held in Monterey[C], California, USA, November 7-9, 2000.
    [5] Anderson R.S., Hanson D.S. and Kourepenis A.S. Evolution of Low-Cost MEMS Inertial System Technologies[A], In Proceedings of the 14th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GPS 2001)[C], Salt Lake City, Utah, September 11-14, 2001; pp 1332-1342.
    [6] Poh, E., Koh, A. and Yu, X. Integration of Dead Reckoning Sensors with MEMS IMU[A], In Proceedings of the 15th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GPS 2002)[C], Portland, Oregon, September 24-27, 2002; pp 1148-1152.
    [7] Ford, T., Hamilton, J. and Bobye, M. GPS/MEMS Inertial Integration Methodology and Results[A], In Proceedings of the 17th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GPS 2004)[C], Long Beach, CA, September 21-24, 2004; pp 1587-1597.
    [8] Misra, P. and Enge, P. Global Positioning System Signals, Measurements and Performance[M]. 2nd ed.; United States of America, USA: Ganga-Jamuna Press: 2006.
    [9] Goodman, J. L. A GPS Receiver Upgrade For The Space Shuttle - Rationale And Considerations[A], In 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit[C], Fort Lauderdale, Florida, July 11-14, 2004.
    [10] Goodman, J. L. Application of GPS navigation to space flight[A], In Aerospace, 2005 IEEE Conference[C], 2005; pp 1837-1852.
    [11] Brenner, M.. Integrated GPS/Inertial Fault Detection Availability[A], In Proceedings of the 8th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GPS 1995)[C], Palm Springs CA, 1995; pp 1949-1958.
    [12] Petovello, M.G., Cannon, M.E. and Lachapelle, G. Benefits of Using a Tactical Grade INS for High Accuracy Positioning Navigation[J]. Journal of Institute of Navigation, 2003, 51(1), pp 1-12.
    [13] Beser J., Alexander S., Crane R., Rounds S. and Wyman J. Trunavtm: A Low-CostGuidance/Navigation Unit Integrating ASAASM-based GPS and MEMS IMU in A Deeply Coupled Mechanization[A], In Proceedings of the 15th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GPS 2002)[C], Portland, Oregon, September 24-27, 2002; pp 545-555.
    [14] Faulkner, N.M., Cooper, S.J. and Jeary, P.A. Integrated MEMS/GPS Navigation System[A], In Position Location and Navigation Symposium, 2002 IEEE Conference[C], Palm Spring CA, 2002; pp 306-313.
    [15] Hide, C.D. Integration of GPS and Low Cost INS Measurements[D]. University of Nottingham 2003.
    [16] Godha S. and Cannon M.E. Integration of DGPS with a Low Cost MEMS-based Inertial Measurement Unit (IMU) for Land Vehicle Navigation Application[A], In Proceedings of the 18th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS 2005)[C], Long Beach, CA, September 13-16, 2005; pp 333-345.
    [17] Niu X. and El-Sheimy, N. Development of a Low-Cost MEMS IMU/GPS Navigation System for Land Vehicles Using Auxiliary Velocity Updates in the Body Frame[A], In Proceedings of the 18th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS 2005)[C], Long Beach, CA, September 13-16, 2005; pp 2003-2012.
    [18] Nassar, S., Syed, Z. and Niu, X. Improving MEMS IMU/GPS Navigation System for Accurate Land-Based Navigation Applications[A], In ION NTM 2006[C], Monterey, CA, January 18-20, 2006; pp 523-529.
    [19] Abdel-Hamid W. Accuracy Enhancement of Integrated MEMS-IMU/GPS System for Land Vehicular Navigation Applications[D]. University of Calgary 2005.
    [20] Noureldin A., Karamat T.B., Eberts M.D. and El-Shafie A.. Performance enhancement of MEMS-based INS/GPS integration for low-cost navigation applications[J]. IEEE Trans. on Vehicular Technology, 2009, 58(3), pp 1077-1096.
    [21] Knight, D.T. Rapid Development of Tightly Coupled GPS/INS Systems[J]. IEEE Aerospace and Electronic System, 1999, 12(2), pp 14-18.
    [22] Yang Y. Tightly Coupled MEMS INS/GPS Integration with INS Aided Receiver Tracking Loops[D]. University of Calgary 2008.
    [23] Petovello, M.G. and Lachapelle, G.. Comparison of Vector-Based Software Receiver Implementations with Application to Ultra-Tight GPS/INS Integration[A], In Proceedings of the 19th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS 2006)[C], Fort Worth, Texas, September 26-29, 2006; pp 1790-1799.
    [24] Petovello, M.G., Sun, D., Lachapelle, G. and Cannon, M.E. Performance Analysis of an Ultra-Tightly Integrated GPS and Reduced IMU System[A], In Proceedings of the 20th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS 2007)[C], Fort Worth, Texas, September 25-28, 2007; pp 602-609.
    [25] Soloviev A., Grass, F.V. and Gunawardena, S. Implementation of Deeply Integrated GPS/Low-Cost IMU for Acquisition and Tracking of Low CNR GPS signals[A], In ION NTM 2004[C], San Diego, CA, January 26-28, 2004; pp 923-935
    [26] Soloviev A., Gunawardena S. and Graas F.V. Deeply Integrated GPS/Low-cost IMU for low CNR Signal Processing: Concept Description and In-flight Demonstration[J]. Journal of the Institute of Navigation, 2008, 55(1), pp 1-13.
    [27] Soloviev A., Graas F. V. and Gunawardena S. Deeply Integrated GPS/Low-Cost IMU for Low CNR GPS Signal Processing: Flight Test Results and Real Time Implementation[A], In Proceedings of the 17th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GPS 2004)[C], Long Beach, CA, September 21-24, 2004; pp 1598-1608.
    [28] Li D.and Wang J. Enhancing the performance of ultra-tight integration of GPS/PL/INS: a federated filter approach[J]. Journal of Global Positioning Systems, 2006, 5(1), pp 96-104.
    [29] Ohlmeyer Ernest J. Analysis of an Ultra-Tightly Coupled GPS/INS System in Jamming[A], In IEEE/ION PLANS 2006[C], 2006; pp 44-53.
    [30] Abbott, A.S. and Lillo, W.E. Global Positioning System and Inertial Measuring Unit Ultratight Coupling Method[P]. United States: 6516021, 2442003.
    [31] Hegg, J. Enhanced space integrated GPS/INS (SIGI)[J]. IEEE Aerospace and Electronic Systems Magazine, 2002, 17 (4), pp 26-33.
    [32] Gebre E. What is the difference between‘loose’,‘tight’,‘ultra-tight’and‘deep’integration strategies for INS and GNSS[J]. Inside GNSS, 2007, 2(1), pp 28-33.
    [33]黄凤钊,彭允祥. GPS/SINS伪距(伪距变化率)组合导航系统实验研究[J].中国惯性技术学报, 1998, 6 (2), pp 1-9.
    [34] Cox, D. B. Integration of GPS with Inertial Navigation Systems[J]. Navigation: Journal of The Institute of Navigation, 1978, 25 (2), pp 236-245.
    [35]慕德俊,俞济祥. GPS/惯性导航组合性能和组合方法的研究[J].西北工业大学学报, 1992, 10 (4), pp 518-525.
    [36]袁信,刘建业.全球卫星定位系统与惯性导航的组合系统研究[J].导航, 1988, (1), pp 13-22.
    [37]王立端.星载GNSS/INS超紧组合导航技术研究[D].上海:上海交通大学精密仪器及机械2010.
    [38]韩军海,谢玲,陈家斌. INS/GPS组合导航方式及应用前景[J].火力与指挥控制, Oct., 2002, 27 (4), pp 66-68.
    [39] Chiou, T.-Y., Alban, S., Atwater, S., et al. Performance Analysis and Experimental Validation of a Doppler-Aided GPS/INS Receiver for JPALS Applications[A], In Proceedings of the 17th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS 2004)[C], Long Beach, California, September 21 - 24, 2004; pp 1609-1618.
    [40] Kaplan, E. D., Hegarty, C. J. Understanding GPS: Principles and Applications [M]. 2nd ed.;Washington, DC: Artech House: 2006.
    [41] Copps, E. M., Geier, G. J., Fidler, W. C., et al. Optimal Processing of GPS Signals[J]. Navigation: Journal of The Institute of Navigation, Fall, 1980, 27 (3), pp 171-182.
    [42]汪锡桢.全球定位系统与惯性导航系统的组合系统[J].系统工程与电子技术, 1989, (8), pp 24-32.
    [43] Tazartes, D. A., Mark, J. G. Integration of GPS Receivers into Exiting Inertial Navigation Systems[J]. Navigation: Journal of The Institute of Navigation, Spring, 1988, 35 (1), pp 105-119.
    [44] Hartman, R. G. An Integrated GPS/IRS Design Approach[J]. Navigation: Journal of The Institute of Navigation, Spring, 1988, 35 (1), pp 121-134.
    [45] Jr., J. J. S. Fundamentals of Signal Tracking Theory. In Global Positioning System: Theory and Applications, Parkinson, B. W., Jr., J. J. S., Axelrad, P., et al., Eds. the American Institute of Aeronautics and Astronautics, Inc.: Washington, DC, 1996; Vol. 1, pp 245-327.
    [46] Sennott, J. W., Senffner, D. Navigation Receiver with Coupled Signal-tracking Channels[P]. United States: 243, Aug. 30, 1994.
    [47] Leimer, D. Receiver phase-noise mitigation[P]. United States: 992000.
    [48] Gustafson, D., Dowdle, J., Flueckiger, K. A deeply integrated adaptive GPS-based navigator with extended range code tracking[A], In Dowdle, J., Position Location and Navigation Symposium, IEEE 2000[C], 2000; pp 118-124.
    [49] Gustafson, D. E., Dowdle, J. R., Elwell Jr., J. M. Deeply-integrated adaptive INS/GPS navigator with extended-range code tracking [P]. United States: 6630904 2842003.
    [50] Kreye, C., Eissfeller, B., Winkel, J.ó. Improvements of GNSS Receiver Performance Using Deeply Coupled INS Measurements[A], In Proceedings of the 13th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GPS 2000)[C], Salt Palace Convention Center, Salt Lake City, Utah, September 19-22, 2000; pp 844-854.
    [51] Jovancevic, A., Brown, A., Ganguly, S., et al. Ultra Tight Coupling Implementation Using Real Time Software Receiver[A], In Proceedings of the 17th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS 2004)[C], Long Beach, California, September 21-24, 2004; pp 1575-1586.
    [52] Jovancevic, A., Ganguly, S. Real-Time Implementation of a Deeply Integrated GNSS-INS Architecture[A], In Proceedings of the 18th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS 2005)[C], Long Beach, California, September 13-16, 2005; pp 503-511.
    [53] Woessner, W., Noronha, J., Jovancevic, A., et al. A Software Defined Real-time Ultra-tightly Coupled (UTC) GNSS-INS Architecture[A], In Proceedings of the 19th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS 2006)[C], Fort Worth, TX, September 26-29, 2006; pp 2695-2703.
    [54] Kim, H.-S., Bu, S.-C., Jee, G.-I., et al. An Ultra-tightly coupled GPS/INS Integration usingFederated Kalman Filter[A], In Proceedings of the 16th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GPS/GNSS 2003)[C], Portland, Oregon, September 9-12, 2003; pp 2878-2885.
    [55] Li, D., Wang, J. Performance Analysis of the Ultra-Tight GPS/INS Integration Based on an Improved Kalman Filter Design for Tracking Loops[A], In International Global Navigation Satellite Systems Society IGNSS Symposium 2006[C], Holiday Inn Surfers Paradise, Australia, 17 - 21 July, 2006.
    [56] Chiou, T.-Y. GPS Receiver Performance Using Inertial-Aided Carrier Tracking Loop[A], In Proceedings of the 18th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS 2005)[C], Long Beach, California September 13 - 16, 2005; pp 2895-2910.
    [57] Chiou, T.-Y., Gebre-Egziabher, D., Walter, T., et al. Model Analysis on the Performance for an Inertial Aided FLL-Assisted-PLL Carrier-Tracking Loop in the Presence of Ionospheric Scintillation[A], In Proceedings of the 2007 National Technical Meeting of the Institute of Navigation[C], San Diego, California, January 22 - 24, 2007; pp 1276-1295.
    [58] Alban, S., Akos, D. M., Rock, S. M., et al. Performance Analysis and Architectures for INS-Aided GPS Tracking Loops[A], In Proceedings of the 2003 National Technical Meeting of the Institute of Navigation[C], Anaheim, California, January 22 - 24, 2003; pp 611-622.
    [59] Gautier, J. D. GPS/INS Generalized Evaluation Tool (GIGET) for the Design and Testing of Integrated Navigation Systems[D]. Stanford University 2003.
    [60] Yang, Y., El-Sheimy, N. Improving GPS Receiver Tracking Performance of PLL by MEMS IMU Aiding[A], In Proceedings of the 19th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS 2006)[C], Fort Worth, TX, September 26-29, 2006; pp 2192-2201.
    [61] Silva, P. F., Silva, J. S., Caramagno, A., et al. IADIRA: Inertial Aided Deeply Integrated Receiver Architecture[A], In Proceedings of the 19th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS 2006)[C], Fort Worth, TX, September 26-29, 2006; pp 2686-2694.
    [62]郑谔.卫星-惯性-星光最优组合导航系统在航天飞机导航中的应用[J].航空学报, Oct., 1988, 9 (10), pp 448-453.
    [63]郑谔,倪世宏. GPS/捷联惯性组合导航系统的性能研究[J].西北工业大学学报, 1990, 8 (1), pp 27-34.
    [64]秦永元,俞济祥.惯导速度辅助下GPS接收机码环的噪声响应和动态跟踪性能分析[J].航空学报, 1990, 11 (12), pp 564-569.
    [65]俞济祥,张更生. GPS/惯性组合方式讨论与导航精度分析[J].航空学报, 1991, 12 (5), pp 227-293.
    [66]曹福祥,袁建平,俞济祥.基于精确伪距率观测模型的GPS/SINS组合导航系统研究[J].航天控制, 1999, (3), pp 58-64.
    [67]袁信,刘建业.分布式卡尔曼滤波器在GPS/INS组合导航系统中的应用研究[J].南京航空航天大学学报, 1989, 21 (4), pp 112-116.
    [68]安东,任思聪,郑谔. GPS的码跟踪误差检测器与伪距测量的预处理[J].西北工业大学学报, Aug., 1994, 12 (3), pp 402-406.
    [69]安东. GPS/INS深组合系统的设计理论与仿真研究[D].西安:西北工业大学自动控制系1992.
    [70]安东,郑谔,任思聪.一种新型深组合GPS/INS系统的设计与性能仿真研究[J].中国惯性技术学报, 1995, 3 (1), pp 7-15.
    [71]胡德风.一种提高低动态GPS接收机动态适应能力的方法[J].导弹与航天运载技术, 1995, (6), pp 17-21.
    [72]陈家斌,袁信.惯性速度辅助下GPS/捷联惯导组合系统性能研究[J].南京航空航天大学学报, 1994, 26 (6), pp 730-736.
    [73]陈家斌,袁信.伪距解除相关法在GPS/SINS紧组合系统中的应用研究[J].航空学报, 1995, 16 (6), pp 707-710.
    [74]董绪荣.一种低成本GPS组合导航定位系统[J].装备指挥技术学院学报, 2000, 11 (5), pp 6-10.
    [75]张贵明,黄顺吉. GPS/SINS全组合系统确定SAR卫星的轨道和姿态[J].系统工程与电子技术, 2002, 24 (5), pp 65-59.
    [76]黄凤钊,彭允祥. GPS/SINS伪距(伪距变化率)组合导航系统实验研究[J].中国惯性技术学报, 1998, 6 (2), pp 1-9.
    [77]王艳东,黄继勋,范跃祖. GPS/INS组合导航系统半实物仿真研究[J].北京航空航天大学学报, 1999, 25 (3), pp 299-301.
    [78] YE, P., ZHAO, H., ZHAN, X., et al. Estimation Error of GNSS/SINS In-Flight Alignment through Observability Analysis[A], In International Symposium on GPS/GNSS 2010[C], Taipei,Taiwan, October 25-30, 2010; pp 227-231.
    [79]黄铭媛,战兴群,张炎华.星载SINS/GPS自主组合导航系统仿真研究[J].测控技术, 2008, 27 (3), pp 79-81,87.
    [80]周坤芳,孔键,周湘蓉.紧耦合GPS/INS组合导航能力的分析[J].中国惯性技术学报, 2005, 13 (6), pp 50-53.
    [81]杨艳娟,卞鸿巍,田蔚风, et al.一种新的INS/GPS组合导航技术[J].中国惯性技术学报, Apr., 2004, 12 (2), pp 23-26.
    [82] YE, P., ZHAI, C. , ZHAN, X., et al. High Fidelity Simulation Analysis on EKF Based Tightly Coupled GPS/INS[A], In International Symposium on GPS/GNSS 2009[C], Jeju, Korea, November 4-6, 2009.
    [83]赵瑞,顾启泰.滤波理论的最新进展及其在导航系统中的应用[J].清华大学学报(自然科学版), 2000, 40 (5), pp 24-27.
    [84]赵伟,袁信.基于H∞滤波的GPS/INS全深组合导航系统研究[J].中国空间科学技术, 2002, (2), pp 9-14.
    [85]林敏敏,房建成,高国江. GPS/SINS组合导航系统混合校正卡尔曼滤波方法[J].中国惯性技术学报, 2003, 11 (3), pp 29-33.
    [86]张炎华,王立端,战兴群, et al.惯性导航技术的新进展及发展趋势[J].中国造船, 2008, 49 (S1), pp 134-144.
    [87]江春红,苏惠敏,陈哲.信息融合技术在INS/GPS/TAN/SMN四组合系统中的应用[J].信息与控制, 12, 2001, 30 (6), pp 537-542.
    [88] YE, P., ZHAI, C., WU, H., et al. A Low-Cost Integrated Navigation System Based on IMU/Magnetic Compass/Velocity Log/Altimeter[A], In International Symposium on GPS/GNSS 2008[C], Odaiba, Tokyo, Japan, November 11-14, 2008; pp 284-290.
    [89] YE, P., DU, G., ZHAI, C., et al. Error Compensation Algorithm and Calibration Experiment Based on Ellipse Model for Magnetic Compass in Land Navigation System[A], In Proceedings of the 22th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS 2009)[C], Savannah, Georgia, September 22-25, 2009.
    [90]狄旻珉,张尔扬.超紧致GPS/惯性耦合技术及干扰措施[J].航天电子对抗, 2006, 22 (1), pp 33-35.
    [91]高翔,刘兴堂.超紧密组合下GPS/INS跟踪回路的结构及性能分析[J].战术导弹技术, 2007, (1), pp 67-70.
    [92]王立端,张炎华,战兴群. GNSS/INS超紧组合导航技术及最新进展[J].声学与电子工程, 2009, (63), pp 51-54.
    [93] Brown, A. and Lu Y. Performance Test Results on An Integraed GPS/MEMS Inertial Navigation Package[A], In Proceedings of the 17th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS 2004)[C], Long Beach, California, September 21-24, 2004; pp 825-832.
    [94] Hide, C. and Moore, T. GPS and Low Cost INS Integration for Positioning in The Urban Environment[A], In Proceedings of the 18th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS 2005)[C], Long Beach, CA, September 13-16, 2005; pp 1007-1015.
    [95] Paul, B. R. Progress in Development of Gyroscope for Use in Tactical Weapon Systems[A], In Proceedings of SPIE[C], 2000, (3990), pp 2-12.
    [96] Vicki, C.L., Lynne K.R. and David, W.P. MEMS IMU-Common Guidance[A], In 40th Annual Armament Systems: Guns-Ammunition-Rockets-Missiles Conference[C], 2005.
    [97]李荣彬,刘建业,曾庆化.基于MEMS技术的微型惯性导航系统的发展现状[J].中国惯性技术学报, 2004, 12(6), pp 88-94.
    [98] Beser, J., Alexander, S., Crane, R., et al. TRUNAV: A Low-cost Guidance/Navigation Unit Integrating a Saasm-based GPS and MEMS IMU in a Deeply Coupled Mechanization[A], In Proceedings of the 15th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GPS 2002)[C], Portland, Oregon, September 24-27, 2002; pp 545-555.
    [99] L3 Communications Interstate Electronics Corporation, New Generation of Deeply Integrated Anti-jamming and Hardware. 2005. http://www.l-3com.com.
    [100] Timothy, M.B., Jason, W. and Michael, J.C. A High G MEMS-Based Deeply Integrated INS/GPS Guidance Navigation and Control Flight Management Unit[A], In IEEE/ION PLANS 2006[C], 2000; pp 772-794.
    [101] Van, D.F. and Abraham, C. Indoor GPS Technology[M]. Dallas, CTIA Wireless-Agenda: 2001.
    [102] Zhodzishsky, M., Yudanov, S., Veitsel, V., et al. TRUNAV: Co-Op Tracking for Carrier Phase[A], In Proceedings of the 11th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GPS 1998)[C], 2002; pp 653-664.
    [103] Carver, C. Myths and Realities of Anywhere GPS High Sensitivity versus Assisted Techniques[J]. GPS World, 2005.
    [104] Klukas, R., Julien, O., Dong, L., Cannon, M.E. and Lachapelle, G. Effects of Building Materials on UHF Ranging Signals[J]. GPS Solutions, 2004, 8(1), pp 1-8.
    [105] Karunanayake, D., Cannon, M.E., Lachapelle, G. and Cox, G. Evaluation of AGPS in Weak Signal Environments Using a Hardware Simulator[A], In Proceedings of the 17th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS 2004)[C], Long Beach, California, September 21-24, 2004; pp 2416-2426.
    [106] Sennott, J. Robustness of Tightly Coupled Integrations for Real-Time Centimeter GPS Positioning[A], In Proceedings of the 10th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GPS 1997)[C], Kansas City KS, September 16-19, 1997; pp 655-663.
    [107] Gebre-Egziabher, D., Razavi, A., Enge, P., et al. Sensitivity and Performance Analysis of Doppler-aided GPS Carrier-tracking Loops[J]. Journal of the Institute of Navigation, 2005, 52(2), pp 49-60.
    [108] Gao, G. and Lachapelle, G. INS-Assisted High Sensitivity GPS Receiver for Degrade Signal Navigation[A], In Proceedings of the 19th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS 2006)[C], Fort Worth, TX, September 26-29, 2006; pp 2997-2989.
    [109] Lewis, D. Ultra-Tightly Coupled GPS/INS Tracking Performance[A], In AIAA's 3rd Annual Aviation Technology, Integration, and Operations (ATIO) Forum[C], Denver, Colorado, Nov. 17-19, 2003.
    [110] Gold, K. and Brown, A. Architecture and Performance Testing of a Software GPS Receiver for Space-based Applications[A]. In Proceedings of IEEE AC[C], 1-12, 2004.
    [111] Alban S. Design and Performance of A Robust GPS/INS Attitude System for Automobile Applications[D]. Stanford University 2004.
    [112] Gao, G. INS-Assisted High Sensitivity GPS Receiver for Degrade Signal Navigation[D]. University of Calgary 2007.
    [113]唐康华. GPS/MIMU嵌入式组合导航关键技术研究[D].湖南:国防科学技术大学控制科学与工程2008.
    [114]刘凯,刘慧. GPS/INS组合制导技术在现代战争中的应用及趋势研究[J].中国航天,2005, (9), pp 35-40.
    [115] Gebre-Egziabher D. and Razavi A. Doppler Aided Tracking Loops for SRGPS Integrity Monitoring[A], In Proceedings of the 16th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GPS 2003)[C], Portland, Oregon, September 9-12, 2005; pp 2561-2571.
    [116] Lozow, J.B. Analysis of Direct P(Y) Code Acquistion[J]. Journal of the Institute of Navigation, 1997, 44(1), pp 89-98.
    [117]孙礼. GPS接收机系统的研究[D].北京:北京航空航天大学1998.
    [118] Zhang, W. Modeling and Analysis for The GPS Pseudo-range Observable[J]. IEEE Trans. on AES, 1995, 31(2), pp 739-751.
    [119] Bastide F., Julien O., Macabiau C. and Roturier B. Analysis of L5/E5 Acquisition, Tracking and Data Demodulation Threshold[A], In Proceedings of the 15th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GPS 2002)[C], Portland, Oregon, September 24-27, 2002; pp. 2196-2206.
    [120] Tsui J. B. Y. Fundamentals of Global Positioning System Receivers: A Software Approach[M]. 2nd ed.; Wiley, New York: 2005.
    [121]张伯川,张其善,常青.高动态接收机的温启动快捕问题[J].电子学报, 2005, 33(3), pp 530-533.
    [122] Yu, W. Selected GPS Receiver Enhancements for Weak Signal Acquisition and Tracking[D]. University of Calgary 2007.
    [123]谢钢. GPS原理与接收机设计[M].北京:电子工业出版社: 2009.
    [124] Filler, R.L. The Acceleration Sensitivity of Quartz Crystal Oscillators: A Review[J]. IEEE Trans. on Ultrasonics Ferroelectrics and Frequency Control, 1998, 35(3), pp 297-305.
    [125] Irsigler, M. and Eissfeller, B. PLL Tracking Performance in The Presence of Oscillator Phase Noise[J]. GPS Solutions, 2002, 5(4), pp 45-57.
    [126]狄旻珉. GPS抗干扰接收技术研究[D].湖南:国防科学技术大学2006.
    [127]孙晓昶,张忠华,欧建平,皇甫堪,周良柱. GPS接收机空时自适应抗干扰研究[J].航天电子对抗, 2002, (6), pp 13-17.
    [128]孙晓昶,皇甫堪,程翥,陈强. GPS接收机联合空时抗干扰方法[J].通信学报, 2003, 24(9), pp 93-102.
    [129]周坤芳,李德武,周湘蓉.干扰环境下GPS/INS组合模式研究[J].中国惯性技术学报, 2004, 12 (4), pp 24-33.
    [130]周坤芳,周湘蓉,李德武.对GPS/INS制导巡航导弹GPS干扰方法的探讨[J].航空电子技术, 2005, 36 (3), pp 1-5.
    [131]罗鸣,曹冲,肖雄兵.全球定位系统——信号、测量与性能(第二版)[M].北京:电子工业出版社: 2008.
    [132]秦永元.惯性导航[M].北京:科学出版社: 2006.
    [133]董绪荣,张守信,华仲春. GPS/SINS组合导航定位及其应用[M].长沙:国防科技大学出版社: 1998.
    [134] Grewal, M. S., Andrews, A. P. Kalman Filtering: Theory and Practice Using MATLAB[M]. 3rd ed.; Hoboken, New Jersey: John Wiley & Sons, Inc.: 2008.
    [135] Kim, C., Kim, H. and Park, H. Modeling and Analysis of Measurement Time Synchronization Error in Transfer Alignment[A], In Proceedings of the 21st International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS 2008)[C], Savannah, GA, September 16-19, 2008; pp 528-536.
    [136] Li, Q., Wang, L., Zhai, C., et al. Time Synchronization Design Based on FPGA in Integrated GPS/INS System[A], In Proceedings of the 2009 IEEE International Conference on Mechatronics and Automation[C], Changchun, China, August9-12, 2009; pp 3769-3774.
    [137] Crane, R. N. A Simplified Method for Deep Coupling of GPS and Inertial Data[A], In Proceedings of the 2007 National Technical Meeting of the Institute of Navigation[C], San Diego, California January 22 - 24, 2007; pp 311-319.
    [138] Wang, H. and Detterich, B.C. Ultra-tightly Coupled GPS and Inertial Navigation System for Agile Platform[P]. United States: 20070118286, May 24, 2007.
    [139]万德钧,房建成.惯性导航初始对准技术[M].南京:东南大学出版社: 1998.
    [140] Goshen-Meskin, D. and Bar-Itzhack, I.Y. Observability Analysis of Piece-Wise Constant System, Part I:Theory[J]. IEEE Trans. on Aerospace and Electronic Systems, 1992, 28(4), pp 1056-1067.
    [141] Goshen-Meskin, D. and Bar-Itzhack, I.Y. Observability Analysis of Piece-Wise Constant System, Part II: Application to Inertial Navigation In-flight Alignment[J]. IEEE Trans. on Aerospace and Electronic Systems, 1992, 28(4), pp 1068-1075.
    [142] Jee, G. I., Kim, H. S., Lee, Y. J. and Park, C. G. A GPS C/A Code Tracking Loop Based on Extented Kalman Filter with Multipath Mitigation[A], In Proceedings of the 15th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS 2002)[C], Portland, Oregon, September 24-27, 2002; pp 446-451.
    [143] Petovello, M. G.. and Lachapelle, G. Comparison of Vector-Based Software Receiver Implementations with Application to Ultra-tight GPS/INS Integration[A], In Proceedings of the 19th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS 2006)[C], Fort Worth, TX, September 26-29, 2006; pp 1790-1799.
    [144]于海亮.基于INS辅助的GPS接收机捕获和跟踪技术研究[D].湖南:国防科学技术大学控制科学与工程2007.
    [145]秦永元,张洪钺,汪叔华.卡尔曼滤波与组合导航原理[M].西安:西北工业大学出版社: 1998.
    [146]程向红,郑梅.捷联惯导系统初始对准中Kalman参数优化方法[J].中国惯性技术学报,Vol.14,No.4,2006,12-17.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700