镁合金(AZ91D、AZ31B)焊接性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用钨极惰性气体保护焊(TIG)和熔化极惰性气体保护焊(MIG)对AZ91D、AZ31B镁合金的焊接性进行了较系统地研究,并且详尽探讨了常见的焊接性问题。
     揭示了AZ91D镁合金TIG/MIG及AZ31B镁合金MIG焊接接头的组织结构特点。结果表明,镁合金焊接接头由焊缝区,热影响区和母材区构成。镁合金焊缝多为较细小的等轴晶,在焊缝中心晶粒相对较粗大,而接近熔合线处晶粒较细小。焊缝金属主要由α-Mg固溶体和β-Al12Mg17金属间化合物组成,晶界处存在由α-Mg固溶体和β-Al12Mg17金属间化合物组成的两相层片状交替分布的共晶组织,在α-Mg固溶体晶内有β-Al12Mg17金属间化合物析出,随着焊缝Al含量的降低,晶界无共晶组织,极少量的β-Al12Mg17相呈细粒状析出于晶界。AZ91D、AZ31B镁合金焊接热影响区组织整体上有粗化的趋势,半熔化区晶界局部熔化、晶界变宽。
     研究了焊接电流和焊接速度对镁合金焊接接头组织及力学性能的影响规律。随着焊接电流的增加,AZ91D镁合金TIG/MIG及AZ31B镁合金MIG焊缝组织变化的突出特点是晶粒粗化,热影响区组织变化总的趋势是晶粒粗化、半熔化区晶界宽化,焊缝及半熔化区中β-Al12Mg17相的质量分数有增加的趋势。随着焊接速度的增加,焊缝组织变化的突出特点是晶粒细化,焊接热影响区组织变化总的趋势是晶粒细化和半熔化区晶界变窄。AZ91D镁合金MIG焊焊接电流为154A、TIG焊焊接电流为110A时,可获得相对较高的焊缝及接头的力学性能。AZ31B镁合金焊接,选择焊接电流160-170A、焊接速度400-450mm/min是有利的。
     研究了AZ91D、AZ31B镁合金焊接接头的裂纹和气孔的特点,探讨了形成机理及影响因素。结果表明,镁合金焊缝金属具有高的裂纹敏感性,主要分布在焊缝中心线处和焊缝末端弧坑处,裂纹沿α-Mg晶界扩展,属于结晶裂纹。镁合金焊缝结晶裂纹产生的主要原因在于焊缝中存在低熔点液态薄膜和焊缝金属在凝固过程中受到拉伸应力的作用,控制焊缝中低熔点共晶体的含量,降低接头拉伸应力是改善镁合金焊缝结晶裂纹敏感性的有效措施。与AZ31B镁合金相比,AZ91D镁合金具有更高的裂纹敏感性。AZ91D镁合金焊接热影响区的裂纹属于液化裂纹。随着焊接速度提高,接头拉伸应力减小,液化裂纹敏感性降低,在AZ31B镁合金MIG焊热影响区没有发现液化裂纹。镁合金焊缝具有高的产生氢气孔的敏感性。根据焊缝气孔的分布特征,可分为孤立气孔、密集气孔、链状气孔、弥散气孔和熔合区气孔。镁合金焊缝易产生氢气孔主要归因于焊接熔池中氢的溶解度随温度下降而降低,在凝固点发生突变,氢在焊接熔池中显著过饱和而导致气泡形核长大;镁合金密度小导致减小气泡的上浮速度;镁合金的热导率高导致提高焊缝的结晶速度。
     采用有限元模型研究了镁合金焊接接头温度场和应力场的分布特点及影响规律,有限元分析结果与试验结果基本吻合。
Magnesium alloys have recently attracted great attention owing to their unique properties such as low density, high specific strength and specific stiffness, good castability and machinability, excellent thermal conductivity and electromagnetic shielding efficiency, and recyclable characteristics. They are regarded as ideal materials to realize lightweight and reutilization. The development of materials showed that the wide application of advanced materials depended not only on their properties but also on the progress of welding (joining) technique. In recent years, welding of magnesium alloys is becoming a hot spot in welding field all over the world with the improvement of corrosion resistant property and the enlargement of application field of them. However, it is difficult to acquire reliable joint for magnesium alloy due to its unique physical and chemical properties. The weldability of magnesium alloys is the development foundation of welding technique and also the main content of theoretical study on material welding. No systematic research on weldability of magnesium alloy was found up to now, which has been one of the main problems to restrict the development of welding technique and affect the welding quality of magnesium alloys. Therefore, it is of great theoretical significance and practical value to study the weldability of magnesium alloys and reveal their weldability characteristics.
     In this paper, the weldability of magnesium alloys (AZ91D and AZ31B) is systematically researched using TIG and MIG methods and the main weldability problems are explored in detail. The main conclusions are given as follows:
     (1) The welded magnesium alloy joints manly consist of weld zone, heat affected zone and base metal. The microstructure is mostly fine equiaxed grains in weld zone. The grains are bigger in the weld center while they are finer adjoining the fusion line. The weld microstructure was mainlyα-Mg andβ-Al12Mg17 distributing along theα-Mg grain boundaries. The mass fraction ofα-Al12Mg17 has an increased tendency with increasing Al content in the weld.
     (a) The average grain size in the weld zone of TIG welded AZ91D is not homogeneous. Under the condition of non-equilibrium solidification, in the grain boundaries of weld metal with 9.8wt.%Al there exists a layer eutectic structure composed ofα-Mg andβ-Al12Mg17 and in theα-Mg grains someβ-Al12Mg17 phases precipitate.
     (b) The average grain size in the weld zone of MIG welded AZ91D is also not homogeneous. Compared with TIG weld metal, there exists eutectic or divorced eutectic structure composed ofα-Mg andβ-Al12Mg17 in the grain boundaries. The amount ofβ-Al12Mg17 precipitated fromα-Mg decreased.
     (c) The microstructural characteristics of weld metal for MIG welded AZ31B are the decreased amount of β-Al12Mg17 and significant coarsening ofα-Mg grain. When the weld Al content decreased to 3.2wt.%, there was no eutectic structure, but a few granularβ-Al12Mg17 was precipitated in the grain boundaries.
     (d) HAZ microstructure of AZ91D magnesium alloy has a tendency of grain coarsening. The grain boundary in PFZ partly melted and its width increased. PFZ microstructure mainly consists ofα-Mg andβ-Al12Mg17 distributing along the grain boundary, which has the characteristic of divorced eutectic structure. Compared with HAZ of AZ91D magnesium alloy, the prominent characteristic in HAZ of AZ31B is a narrower PFZ and the more obvious grain coarsening ofα-Mg.
     (e) Microstructure of AZ91D magnesium alloy is composed of dendriticα-Mg and eutectic structure (α-Mg andβ-Al12Mg17) that distributes in interdendrites.
     (2) Welding current and welding speed have obvious effects on microstructure and mechanical properties of magnesium alloy weld metal.
     (a) The welding current has an obvious effect on microstructures of weld and HAZ for MIG welded magnesium alloys (AZ91D and AZ31B). With the increase of the welding current, in the weld the outstanding characteristic is grain coarsening, in HAZ the general tendency is grain coarsening with wide grain boundary in the PFZ and the mass fraction ofβ-Al12Mg17 in weld and PFZ has an increased tendency.
     (b) The welding speed has an obvious effect on microstructures of weld and HAZ for MIG welded magnesium alloys (AZ91D and AZ31B). With increasing the welding speed, in the weld the prominent characteristic is grain refining and in HAZ the general tendency is grain refining with narrow grain boundary in PFZ.
     (c) The welding current has some effects on microstructures of weld and HAZ for TIG welded AZ91D magnesium alloy. When the welding current increased from 80A to 130A, the average grain size of the weld metal increased from 22.8μm to 32μm, the width of PFZ increased from 120μm to 210μm and the mass fraction ofβ-Al12Mg17 in the weld had an increased tendency.
     (d) The weld Al content has obvious effects on mechanical properties of AZ91D magnesium alloy weld. The tensile strength and elongation changed from 192MPa and 4.9% to 215MPa and 7.9%, with decreasing weld Al contents from 9.8wt.% to 6.9wt.%. The magnesium alloy weld had a characteristic of intergranular fracture. The tensile dimple had a large proportion in the fracture surface of weld with 6.9wt.% Al and only a few cleavage pattern was observed. The magnesium alloy weld with 9.8wt.% Al had a mixed fracture of dimple and cleavage.
     (3) Defects such as solidification cracking in welds, liquation cracking in HAZ and weld pore easily formed during welding of magnesium alloys due to physical, chemical and mechanical properties of magnesium alloys.
     (a) Magnesium alloy weld had a high cracking sensitivity. Cracks were mainly distributed in the center line and the end of the weld and belonged to solidification cracking. It was due to the fact that there were low melting point liquid film in the weld and it was subjected to tensile stress. It was effective to control the amount of low melting point eutectic and decrease the tensile stress to improve the solidification cracking sensitivity of magnesium alloy weld.
     (b) Cracks in HAZ of magnesium alloy belonged to liquation cracking. With the increase of welding speed (300mm/min-400mm/min), welding heat input and the tensile stress decreased, and the liquation cracking sensitivity decreased. The liquation cracking was not found in the MIG welded AZ31B joint. It was attributed to the smaller Al content in AZ31B than that in AZ91D.
     (c) The magnesium weld had high hydrogen gas pore sensitivity. The pores were classified as isolated pore, porosity, chain pore, dispersed pore and pore in fusion zone. Since the solubility of hydrogen in the weld pool of magnesium alloy decreased with the decrease of temperature, the supersaturated hydrogen aggregated and grew up. The low density of magnesium alloy caused the decreased rising velocity of pores and the high thermal conductivity of it led to the increased solidification speed.
     (d) Since the liquid contraction and solidification contraction are larger than solid contraction, shrinkage cavity easily forms in magnesium alloy weld. Stress concentration will lead to forming microcrack at the tip of the shrinkage cavity.
     (4) It was found, based on the FEM analysis, that with increasing welding current, welding thermal cycle peak temperature increased, cooling speed decreased, isothermal range increased and tensile stress in the welded joint increased. When the welding speed was increased, the isothermal range decreased, the temperature gradient along the weld cross section became larger and tensile stress in the welded joint had a decreased tendency. These results are consistent with the results obtained from experiments of effect of welding current and welding speed on weld microstructure and hot crack sensitivity.
引文
[1] MONTEMOR M F, SIMOES A M, CARMEZIM M J. Characterization of rare-earth conversion films formed on the AZ31 magnesium alloy and its relation with corrosion protection [J]. Applied Surface Science, 2007, 253(16): 6922-6931.
    [2] LI W, ZHOU H, ZHOU W, et al. Effect of cooling rate on ignition point of AZ91D–0.98 wt.% Ce magnesium alloy [J]. Materials Letters, 2007, 61(13): 2772-2774.
    [3] ISHIHARA S, NAN Z, GOSHIMA T. Effect of microstructure on fatigue behavior of AZ31 magnesium alloy [J]. Materials Science and Engineering A, 2007, 468-470: 214–222.
    [4]余琨,黎文献,王日初,等.变形镁合金的研究、开发及应用[J].中国有色金属学报, 2003, 13(2): 277-288.
    [5] AGHION E, BRONFIN B, FRIEDRICH H. The environmental impact of new magnesium alloys on the transportation industry [J]. Magnesium Technology 2004, 14-18: 167-172.
    [6] DOBRZANSKI L A, TANSKI T, ?IZEK L, et al. Structure and properties of magnesium cast alloys [J]. Journal of Materials Processing Technology, 2007, 192-193: 567-574.
    [7] COLE G S. Issues that influence magnesium's use in the automotive industry [J]. Magnesium Alloys, 2003, 419(4): 43-49.
    [8] MORDIKE B L, EBERT T. Magnesium properties-applications-potential [J]. Materials Science and Engineering A, 2001, 302(1): 37-45.
    [9]张同俊,李星国.镁合金应用和中国镁工业[J].材料导报, 2002, 16(7): 11-13.
    [10]乐启枳,张新建,崔建忠.镁合金及成型工艺与应用现状[J].材料导报, 2002, 16(12): 12-15.
    [11]顾曾迪,陈根宝.有色金属焊接[M].北京:机械工业出版社, 1995: 94-97.
    [12]袁广银. Sb合金化对AZ91铸造镁合金高温变形行为的影响[J].铸造世界报, 2001(5-6): 155-160.
    [13]张永忠,张奎,崔代金,等. AZ91D镁合金的压铸工艺及性能[J].铸造, 2000, 49(2): 74-77.
    [14] BROWN R. Magnesium automotive meeting [J]. Light Metal Age, 1992, 50(6): 18-24.
    [15] LEE C Do, SHIN K S. Effect of microporosity on the tensile properties of AZ91magnesium alloy [J]. Acta Materialia, 2007, 55(13): 4293-4303.
    [16] LEE C Do. Effect of grain size on the tensile properties of magnesium alloy [J]. Materials Science and Engineering A, 2007, 459(1-2): 355-360.
    [17] RAVI KUMAR N V, BLANDIN J J, DESRAYAUD C, et al. Grain refinement in AZ91 magnesium alloy during thermomechanical processing [J]. Materials and Engineering A, 2003, 359(1-2): 150-157.
    [18] HIRAI K, SOMEKAWA H, TAKIGAWA Y, et al. Effects of Ca and Sr addition on mechanical properties of a cast AZ91 magnesium alloy at room and elevated temperature [J]. Materials Science and Engineering A, 2005, 403(1-2): 276-280.
    [19]李忠盛,潘复生,张静. AZ31镁合金的研究现状和发展前景[J].金属成形工艺, 2004, 22 (1): 54-57.
    [20] JIN Q L, EOM J P, LIM S G, et al. Grain refining mechanism of a carbon addition method in a Mg–Al magnesium alloy [J]. Scripta Materialia, 2003, 49(11): 1129-1132.
    [21]翟秋亚,王智民,袁森,等.挤压变形对AZ31镁合金组织和性能的影响[J].西安理工大学学报,2002, 18 (3): 254-258.
    [22] CHANG T C, WANG J Y, et al. Grain refining of magnesium alloy AZ31 by rolling, Journal of Materials Processing Technology [J]. 2003, 140: 588-591.
    [23]彭立明,曾小勤,朱燕萍,等.固溶处理对AM60+xRE及AZ91D+xRE镁合金性能的影响[J].材料研究学报, 2003, 17(1):97-106.
    [24] ZHOU H, WANG M X, LI W, et al. Effect of Ce addition on ignition point of AM50 alloy powders [J]. Materials Letters, 2006, 60(27): 3238-3240.
    [25] WANG M X, ZHOU H, WANG L. Effect of Yttrium and Cerium addition on microstructure and mechanical properties of AM50 magnesium alloy [J]. Journal of Rare Earths, 2007, 25(2): 233-237.
    [26] RUDAJEVOVA A, LUKAC P. Comparison of the thermal properties of AM20 and AS21 magnesium alloys [J]. Materials Science and Engineering A, 2005, 397(1-2): 16-21.
    [27] WEI L Y, DUNLOP G L, WESTENGEN H. Development of microstructure in cast Mg-Al-rare earth alloys [J]. Materials Science and Technology, 1996, 12(9): 741-750.
    [28] POLMEAR I J. Magnesium alloys and application [J]. Materials Science and Technology, 1994, 10(1): 1-16.
    [29] WANG S J, WU G Q, LI R H, et al. Microstructures and mechanical properties of 5 wt.% Al2Yp/Mg-Li composite [J]. Materials Letter. 2006, 60(15): 1863-1865.
    [30]刘静安.镁合金加工技术发展趋势与开发应用前景(Ⅱ)[J].稀有金属快报, 2003(2): 8.
    [31] LUO A, RENAUD J, NAKATSUGAWA I. Magnesium casting for automobile applications [J]. JOM, 1995, 47(7): 28-31.
    [32]李义春.中国新材料发展年鉴[M].北京:中国科学技术出版社, 2003, 207-208.
    [33]王渠东,吕宜振,曾小勤,等.镁合金在电子器材壳体中的应用[J].材料导报, 2000, 14(6): 22-24.
    [34]白丁.俄罗斯镁合金生产技术进展[J].世界有色金属, 2003(4): 62-65.
    [35]国翔.镁合金的焊接[J].有色金属与稀土应用, 2002(3): 25-30.
    [36]冯吉才,王亚荣,张忠典.镁合金焊接技术的研究现状及应用[J].中国有色金属学报, 2005, 15(2): 165-178.
    [37]中国机械工程学会焊接学会.焊接手册-材料的焊接[M].北京:机械工业出版社, 2001.
    [38]美国金属学会.金属手册-焊接与钎焊[M].北京:机械工业出版社, 1994.
    [39]张福全,王响群,陈振华,等. AZ31镁合金钨极交流氩弧焊焊缝气孔的研究[J].焊接, 2006(3): 36-39.
    [40] MUNITZ A, COTLER C, STEM A, et al. Mechanical properties and microstructure of gas tungsten arc welded magnesium AZ91D plates [J]. Materials Science and Engineering A, 2001, 302(1): 68-73.
    [41]肖锋,傅亚,徐晓菱,等. TIG焊接热循环对AZ3B硬度的影响[J].稀有金属, 2005, 29(5): 604-608.
    [42] CAO X, JAHAZI M, IMMARIGEON J P, et al. A review of laser welding techniques for magnesium alloys [J]. Journal of Materials Processing Technology, 2006, 171(2): 188-204.
    [43] ZHAO H, DEBROY T. Pore formation during laser beam welding of die-cast magnesium alloy AM60B mechanism and remedy [J]. Welding Journal, 2001, 80(8): 204S-210S.
    [44] SUN D Q,LABG B,SUN D X, et al. Microstructures and mechanical properties of resistance spot welded magnesium alloy joints [J]. Materials Science and Engineering A, 2007, 460-461: 494-498.
    [45] ZHOU W, LONG T Z, MARK C K. Hot cracking in tungsten inert gas welding of magnesium alloy AZ91D [J]. Materials Science and Technology, 2007, 23(11): 1294-1299.
    [46] KAZUHIRO N. Weldability of magnesium alloy [J]. Journal of Light Metal Welding & Construction, 2001, 39(12): 26-35.
    [47]天津大学焊接教研室.金属熔化焊原理及工艺[M].北京:机械工业出版社, 1979.
    [48] MARYA M. Theoretical and experimental assessment of chloride effects in the A-TIG welding of magnesium [J]. Welding in the World, 2002, 46(7-8): 7-21.
    [49] MARYA M, EDWARDS G R. Chloride contributions in flux-assisted GTA welding of magnesium alloys-experiments demonstrated chlorides increased arc voltage, arc temperature, and weld penetration, with cadmium chloride being the most effective [J]. Welding Journal, 2002, 81(12): 291S-298S.
    [50]徐杰,刘子利,沈以赴,等. AZ31镁合金活性TIG焊接头分析[J].焊接学报, 2005, 26(10): 54-58.
    [51] PATON B E, ZAMKOV V N, PRILUTSKY V P, et al. Contraction of the welding arc caused by the flux in tungsten-electrode argon-arc-welding [J]. Paton Welding Journal, 2000, 526(1): 5-11.
    [52]刘黎明,张兆栋,沈勇,等.活性剂对镁合金TIG焊接熔深的影响[J]金属学报, 2006, 42(4): 399-404.
    [53]张兆栋,刘黎明,沈勇,等.镁合金的活性电弧焊接[J].中国有色金属学报, 2005, 15(6): 912-916.
    [54] LIU. L M, DONG C F. Gas tungsten-arc giller welding of AZ31magnesium alloy [J]. Materials Letters, 2006, 60:2194-2197.
    [55] STERN A, MUNITZ A. Partially melted zone microstructural characterization from gas tungsten-arc bead on plate welds of magnesium AZ91 alloy [J]. Journal of Materlals Science Letters, 1999, 18(11): 853-855.
    [56] ZHU T P, CHEN Z W, GAO W. Incipient melting in partially melted zone during arc welding of AZ91D magnesium alloy [J]. Materials Science and Engineering A, 2006, 416(1-2): 246-252.
    [57]肖锋,傅亚,李春天,等. TIG焊热循环对AZ91D镁合金硬度的影响[J].焊接, 2005(6): 10-13.
    [58]苗玉刚,刘黎明,赵杰,等.变形镁合金熔焊接头组织特征分析[J].焊接学报, 2003, 24(2): 63-66.
    [59]曲广学,刘庆忠,郭道厚. AZ31镁合金薄板的焊接[J].焊接, 2002(4): 44-45.
    [60] ASAHINA T, TOKISUE H. Some characteristics of TIG welded joints of AZ31 magnesium alloy [J]. Journal of Japan Institute of Light Metals, 1995, 45(2): 70-75.
    [61]张福全,王响群,陈振华,等. AZ31镁合金薄板的交流钨极氩弧焊[J].湖南大学学报, 2004, 31(6): 9-12.
    [62]董长富,刘黎明,赵旭.变形镁合金填丝TIG焊接工艺及组织性能分析[J].焊接学报, 2005, 26(2), 33-36.
    [63]徐初雄.焊接工艺500问[M].北京:机械工业出版社, 2002.
    [64] MARYA M. Theoretical and experimental assessment of chloride effects in the A-TIG welding of magnesium [J]. Welding in the World, 2002, 46 (7-8): 7-21.
    [65]姜焕中.焊接方法及设备[M].北京:机械工业出版社, 1982.
    [66] LOCKWOOD L F. Gas metal-arc welding of AZ31B magnesium alloy sheet [J]. Welding Journal, 1963, 42(10): 807-818.
    [67] RETHEMEIER M, WIESNER S. Characteristic features of MIG welding of magnesium alloys [J]. Zeitschrift Fur Metallkunde, 2001, 92(3): 281-285.
    [68] WOHLFAHRT H, RETHLEMEIER M, BOUAIFI B. Metal-inert gas welding of magnesium alloys [J]. Welding and Cutting, 2003, 55(2): 80-84.
    [69] FUJIE M, NAKATA K, TONG H, et al. MIG arc welding of magnesium alloy [J]. Transactions of Joining and Welding Research Institute, 2003, 32(1): 39-40.
    [70] FUJIE M, TONG H, MURAKAMI T, et al. Joint formation of AZ31 magnesium alloy sheet by pulsed MIG arc welding [J]. Journal of Light Metal Welding and Construction, 2004, 42(5): 221-228.
    [71] DAWES C. Laser Welding: A Practical Guide Cambridge [M]. UK: Abington Publishing, 1992.
    [72] ZHAO B, DEBROY T. Pore formation during laser beam welding of die-cast magnesium alloy AM60B mechanism and remedy [J]. Welding Journal, 2001, 80(8): 204-210.
    [73] SCHUBERT E, KLASSEN M, ZERNER I, et al. Light-weight structures produced by laser beam joining for future applications in automobile and aerospace industry [J]. Journal of Materials Processing Technology, 2001, 115(1): 2-8.
    [74] WATKINS K G. Laser welding of magnesium alloys [M]. Magnesium Technology, TMS Annual Meeting and Exhibition, San Diego, CA, 2003, 2-6: 153-156.
    [75] SPROW E E. The laser-welding spectrum: what it has to offer you [J]. Tooling and Production, 1988, 54 (3): 556-563.
    [76] HIRAGE H, INOUE T, KAMADO S. Effect of shielding gas and laser wavelength in laser welding of magnesium alloy sheet [J]. Quarterly Journal of the Japan Welding Society, 2001, 19(4):591-599.
    [77] BOBBY K M, DIETZEL W, BLAWERT C, et al. Stress corrosion cracking behavior of Nd:YAG laser butt welded AZ31 Mg sheet [J]. Materials Science and Engineering A, 2007, 444(1-2): 220-226.
    [78] WEISHEIT A, GALUN R, MORDIKE B L. CO2 Laser beam welding of magnesium-based alloys [J]. Welding Research Supplement, 1998, 77(4): 149S-154S.
    [79] MARYA M, EDWARDS G R. Factors controlling the magnesium weld morphology indeep penetration welding by a CO2 laser [J]. Journal of Materials Engineering and Performance, 2001, 10(4): 435-443.
    [80] BEHLER K, BERKNIANNS J, EHRHARD A, et al. Laser beam welding of low weight materials and structures [J]. Materials and Desgin, 1997, 18(4-6): 261-267.
    [81] ZHU J H, LI L, LIU Z. CO2 and diode laser welding of AZ31 magnesium alloy [J]. Applied Surface Science, 2005, 247(1-4): 300-306.
    [82]王红英,李志军. AZ61镁合金激光焊接接头的组织与性能[J].中国有色金属学报, 2006, 16(8): 1388-1393.
    [83]王红英,李志军.焊接工艺参数对镁合金CO2激光焊焊缝表面成形的影响[J].焊接学报, 2006, 27(2): 64-68.
    [84]宋刚,刘黎明,王继锋,等.变形镁合金AZ31B的激光焊接工艺研究[J].应用激光, 2003, 23(6): 327-329.
    [85]王继锋,刘黎明,宋刚.激光焊接AZ31B镁合金接头微观组织特征[J].焊接学报, 2004, 25(3): 15-18.
    [86] BLUNDELL N J. Arc takes laser welding into new territory [J]. Materials World, 1998, 6(9): 537-538.
    [87]吕高尚,史春元,董春林,等.激光-电弧复合热源焊接研究及应用现状[J].航空制造技术, 2005(5): 86-88.
    [88] BARRALLIER L, FABRE A, MASSE J E. Residual stress measurements using neutron diffraction in magnesium alloy laser welded joints [J]. Materials Science Forum, 2002, 404-407: 399-404.
    [89] PAGE C J, DEVERMANN T, BIFFIN J, et al. Plasma augmented laser welding and its applications [J]. Science and Technology of Welding and Joining, 2002, 7(1): 1-10.
    [90] TUSEK J, SUBAN M. Hybrid welding with arc and laser beam [J]. Science and Technology of Welding and Jointing, 1999, 4(5): 308-311.
    [91] SONG G, L. LIU M, WANG P C. Overlap welding of magnesium AZ31B sheets using laser-arc hybrid process [J] Materials Science and Engineering A, 2006, 429(1-2): 312-319.
    [92] LIU L M, WANG J F, SONG G. Hybrid laser–TIG welding, laser beam welding and gas tungsten arc welding of AZ31B magnesium alloy [J]. Materials Science and Engineering A, 2004, 381(1-2): 129-133.
    [93]宋刚,刘黎明.镁合金焊接技术研究[J].科学中国人, 2005, 2: 54-55.
    [94]迟鸣声,刘黎明,宋刚.镁合金AZ31B的激光-TIG复合热源焊工艺[J].焊接学报, 2005, 26(3): 21-24.
    [95]周广德.电子束焊接技术的特点与应用[J].电工电能新技术, 1994, 4: 25-30.
    [96]中国机械工程学会焊接学会主编.焊接手册第一册-焊接方法及设备[M].北京:机械工业出版社, 2001.
    [97]李志远,钱乙余,张九海.先进连接方法[M].北京:机械工业出版社, 2000.
    [98] ASAHINA T, TOKISUE H. Electron bean weldability of pure magnesium and AZ31 magnesium alloy [J]. Materials Transactions, 2001, 42(11): 2345-2353
    [99]张英明.纯镁和AZ31镁合金的电子束焊接性能[J].稀有金属快报, 2003(4): 25-26.
    [100] MUNITZ A, COTLER C, SHAHAM H. Electron beam welding of magnesium AZ91D plates [J]. Welding Research Supplement, 2000, 79(7): 202-208.
    [101] MICHAEL M A, BAKER H. ASM specialty handbook magnesium and magnesium alloys [J]. ASM International, 1999: 193.
    [102] SU S F, LIN H K, HUANG J C, et al. Electron-beam welding behavior in Mg-Al-based alloys [J]. Metallurgical and Materials Transactions A, 2002, 33(5): 1461-1473.
    [103] CHI C T, CHAO C G, LIU T F, et al. A study of weldability and fracture modes in electron beam weldments of AZ series magnesium alloys [J]. Materials Science and Engineering A, 2006, 435-436: 672-680.
    [104] CHI C T, CHAO C G, LIU T F, et al. Aluminum element effect for electron beam welding of similar and dissimilar magnesium-aluminum-zinc alloys [J]. Scripta Materialia, 2007, 56(9): 733-736.
    [105] CHI C T, CHAO C G. Characterization on electron beam welds and parameters for AZ31B-F extrusive plates [J]. Journal of Materials Processing Technology, 2007, 182(1-3): 369-373.
    [106] THOMAS W M, NICHOLAS E D. Friction stir welding for the transportation industries [J]. Materials and Design, 1997, 18(4-6): 269-273.
    [107] CHALMERS R E. The friction welding advantage [J]. Manufacturing Engineering, 2001, 126(5): 64-68.
    [108] NICHOLAS E D. Developments in the friction stir welding of metals [C]. 6th International Conference Aluminum Alloys. Toyohashi, Japan: The Japan Institute of Light Metal, 1998: 139-151.
    [109] DAWES C J, THOMAS W M. Friction stir process welds aluminum alloys [J]. Welding Journal, 1996, 75(3): 41-45.
    [110] DAWES C J. An introduction to friction stir welding and its development [J]. Welding and Metal Fabrication, 1995, 63(1): 13-16.
    [111]张华,吴林,林三宝,等. AZ31镁合金搅拌摩擦焊研究[J].机械工程学报, 2004,40(8): 123-126.
    [112] ESPARZA J A, DAVIS W C, TRILLO E A. Friction-stir welding of magnesium alloy AZ31B [J]. Journal of Materials Science Letters, 2002, 21(12): 917-920.
    [113] CAMPBELL G, STOTLER T. Friction stir welding of armor grade aluminium plate [J]. Welding Journal, 1999, 78(12): 45-47.
    [114] KNIPSTROM K E, PEKKARI B. Friction stir welding process goes commercial [J]. Welding Journal, 1997, 76(9): 55-57.
    [115] ESPARZA J A, DAVIS W C, TRILLO E A. Friction-stir welding of magnesium alloy AZ31B [J]. Journal of Materials Science Letters, 2002, 21(12):917-920.
    [116] BRTLING L, HARLFINGER N. Innovative ftigeverfahren zur herstellung von AI-leichtbaustrukturen im schienenfahrzeugbau [J]. Materialwissenschaft and Werkstofftechnik, 2000, 31(4): 290-299.
    [117] REYNOLDS A P, LOCKWOOD W D, SEIDEL T U. Pocessing-propertyb correlation in friction stir welds [J]. Materials Science Forum, 2000, 331-337: 1719-1724.
    [118] ZHANG H, LIN S B, WU L, et al. Microstructural studies of friction stir welded AZ31 magnesium alloy [J]. Acta Metallurgica Sinica, 2004, 17(5): 747-753.
    [119]张华,林三宝,吴林,等.镁合金AZ31搅拌摩擦接头的微观组织[J].中国有色金属学报, 2003, 13(6): 1510-1513.
    [120] WANG X H, WANG K S. Microstructure and properties of friction stir butt-welded AZ31 magnesium alloy [J]. Materials Science and Engineering A, 2006, 431(1-2): 114-117.
    [121] SOMASEKHARAN A C, MURR L E. Microstructures in frictionstir welded dissimilar magnesium alloys and magnesium alloys to 6061-T6 aluminum alloy [J]. Materials Characterization, 2004, 52(1): 49-64.
    [122] PARK S H C, SATAO Y S, KOKAWA H. Effect of micro-texture on fracture location in friction stir weld of Mg alloy AZ61 during tensile test [J]. Scripta Materialia, 2003, 49(2): 161-166.
    [123]柯黎明,邢丽,徐卫平. AZ81A镁合金焊接接头的组织与性能[J].材料工程, 2005, (1): 41-44.
    [124] PARK S H C, SATO Y S, KOKAWA H. Improvement of mechanical properties in thixomolded MG alloy AZ91D by friction stir welding [J]. Trends in Welding Research Proceedings, 2003, 267-272.
    [125]邢丽,柯黎明,孙德超,等.镁合金薄板的搅拌摩擦焊工艺[J].焊接学报, 2001, 22(6): 18-21
    [126]徐卫平,孙德超,邢丽. MB8镁合金薄板的搅拌摩擦焊[J].材料工程, 2002, 8:35-36.
    [127]朱正行,严向明,王敏.电阻焊技术[M].北京:机械工业出版社, 2000.
    [128] LANG B, SUN D Q, XUAN Z Z, et al. Hot cracking of resistance spot welded magnesium alloy [J]. ISIJ International, 2008, 48(1): 77-82.
    [129] LANG B, SUN D Q, WU Q, et al. Optimization design of resistance spot welding parameters of magnesium alloy [J]. China Welding, 2008, 17(1): 49-56.
    [130]王亚荣,张忠典,冯吉才,等.镁合金交流和直流点焊接头组织分析[J].焊接学报, 2004, 25(6): 11-14.
    [131] WANG Y R, FENG J C, ZHANG Z D. Microstructure characteristics of resistance spot welds of AZ31 Mg alloy [J]. Science and Technology of Welding and Joining, 2006, 11(5): 555-560.
    [132]王亚荣,张忠典.镁合金电阻点焊接头中的缺陷[J].焊接学报, 2006, 27 (7): 9-12.
    [133] TOMIHARU O. Resistance welding of aluminum alloy to dissimilarmetals [J]. Joumal of Light Metal Welding and Construction, 2004, 42(1): 2-15.
    [134] ROSENTHAL D. Mathematical theory of heat distribution during welding and cutting [J]. The Weld Journal, 1941, 20(5): 220-234.
    [135]雷卡林.焊接热过程计算[M].北京:机械工业出版社, 1958.
    [136] WILSON E, NICKLL R E. Application of the finite element method to heat conduction analysis [J]. Nuclear Engineer and Design, 1966(4): 276-286.
    [137] PALEY Z, HIBBERT H D. Computation of temperatures in actual weld design [J]. Welding Journal, 1975, 54: 385-392.
    [138] WEN S W, HILTION P, FARRUGIA D C J. Finite element modelling of a submerged arc welding process [J]. Journal of Materials Processing Technology, 2001, 119(1-3): 203-209.
    [139] GOLDAK J, CHAKRAVARTI A, BIBBY M. A new finite element model for welding heat sources [J]. Metallurgical Transaction B, 1984, 15(B): 299-305.
    [140]蔡洪能,唐幕尧. TIG焊接温度场的有限元分析[J].机械工程学报, 1996; 32(2):34-39.
    [141]武传松.三维瞬态焊接温度场的有限元模拟[J].上海交通大学学报, 1996; 30(3): 120-125.
    [142]陈楚.非线性焊接热传导的有限元分析和计算[J].焊接学报, 1983;4(3): 139-147.
    [143]鹿安理,史清宇,赵海燕.厚板焊接过程温度场、应力场的三维有限元数值模拟[J].中国机械工程, 2001, 12(2): 183-186.
    [144]楼志文.瞬态温度场和热弹塑性场的有限元分析[J].西安交通大学学报, 1981, 15(6):1-8.
    [145]范雄主编.金属X射线学[M].北京:机械工业出版社, 1988.
    [146] PEPE J J, SAVAGE W F. Effects of constitutional liquation in 18-Ni maraging steel weldments [J]. Welding Journal, 1967, 46 (9): 411-422.
    [147] TSUJIMOTO K, SAKAGUCHI A, KINOSHITA T, et al. HAZ cracking of Al-Mg-Si alloys [J]. IIW Doc, 1983, IX-1273: 1-3.
    [148] SMITH C S. Microstructure [M]. Transactions of the American Society for Metals, 1953, 45: 533-575.
    [149] MILLER W A, CHADWICK G A. On the magnitude of the solid/liquid interfacial energy of pure metals and its relation of grain boundary melting [J]. Acta Metallurgica, 1967, 15: 607-614.
    [150]张文钺.焊接传热学[M].北京:机械工业出版社, 1989.
    [151]陈楚等.数值分析在数值中的应用[M].上海:上海交通大学出版社, 1985.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700