盐胁迫下紫杆柽柳cDNA文库构建及表达序列标签(EST)分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
柽柳抗旱、耐盐能力强,因此是进行耐盐碱机理研究的良好材料,但目前,有关柽柳耐盐碱的分子机理研究国内外尚未见报道。本文为了研究柽柳的耐盐机理构建了0.4 mmol/L NaHCO_3胁迫处理的柽柳cDNA文库,随机选取重组克隆测序,用表达序列标签(EST)方法研究NaHCO_3胁迫下柽柳基因的表达。
     cDNA初始文库滴度为1.2×10~6pfu/mL,蓝白斑检验结果表明,文库重组率为96%,PCR检测表明插入片段的平均长度1 200bp左右。
     随机挑选文库中的克隆进行测序。将获得序列去除5’端载体序列、文库接头序列和poly(A)序列。共获得2 328条读序较好的序列。
     以获得的2 328条序列建立本地核酸数据库。本地BLAST获得642个与其它序列无同源区的序列,其余的1 686条序列依照同源性聚为281个序列集,对每个序列集通过序列联配获得359个contig。用于网上进行BLAST分析的独立序列共有1 001个。文库的冗余度为57%。
     1 001个序列的BLASTX分析表明,有428个与已知功能的基因序列相似,234个与未知功能的基因相似,339个未能发现相似序列。将428个代表独立已知功能基因的EST,按功能分为11个类,其中防御基因、新陈代谢和蛋白合成及分拣的表达丰度最高,分别为25.26%、20.65%和15.37%。对与耐盐有关基因EST分析结果表明,信号元件、转录调控、应激蛋白和活性氧清除剂所包含的表达的基因比较多,这些基因的表达丰度也较高,分别为4.1%、1.9%、3.3%和0.9%,这说明这四种过程在柽柳抗盐胁迫时起到了重要作用。此外,跨膜运输及质子平衡、蛋白质代谢和新陈代谢类所包含的表达的基因种类相对较少,但是其表达丰度也较高分别为0.9%、0.9%和2.3%,可能在盐胁迫中也起到了重要的作用。
     以上研究说明,柽柳的抗盐过程是一个复杂的多基因协同作用体系,涉及到防御反应、基因调控、信号传导、离子转运、活性氧清除、渗透调节、应激反应等多方面的综合作用,从而为系统阐明柽柳抗盐分子机理研究奠定坚实基础。
Tamarix spp. is a good material to study the salt-resistance molecular mechanism because it has high ability to resist drought and salt stress. A cDNA library was constructed from the tissue of Tamarix androssowii treated with NaHCOs Expressed sequence tags (EST) analysis was carried out to study the molecular mechanism of salt-resistance in Tamarix androssowii.
    The library primary titer was 1.14
    ×10 pfu/mL, and the rate of recombination was 96%, the titer of amplified library was 4.0
    ×109 pfu/mL. The average length of inserted fragments in the library was 1.2kb, which was testified by both PCR and sequencing analysis. From this library, 2 328 high quality ESTs were obtained.
    Homology analysis by local BLAST and multiple alignment showed that these clones represented 1 001 unique transcripts. Results of comparing with the genes in unigene database of GenBank based on BLASTX algorithm indicated that 428 ESTs were homologous to the genes identified previously by BLAST from the Internet, while other 234 ESTs matched unknown protein coding regions and 339 ESTs were completely novel sequences. Eleven functional categories were carried out from all the tentative unique genes that were identified. Three group transcripts were significantly expressed: Defence, Metabolism and Protein synthesis and destination that respesented 25.26%, 20.65% and 15.37% respectively. The result of genes related to salt stress-tolerance indicated that Signaling components, Transcriptional regulators, Stress protein and Reactive oxygen scavengers contained more genes than the others, 4.1%, 1.9%, 3.3%and 0.9% respectively. So we can say these four processes played important action in the process of salt-resistance for Tamarix androssowii. Transmembrane transport and ion homeostasis, Protein syntheise and Metabolism were less.
    From above, we can conclude that salt-resistance of Tamarix androssowii was an complex process involved in signaling conduction, Transcription regulation, Transmembrane transport and ion homeostasis, reactive oxygen scavenging, osmolyte biosynthesis. The cDNA library construction and the acquiring of many ESTs relation to stess-resistance will make a foundation for thoroughly studying the mechanism of stress resistance of Tamarix androssowii.
引文
1 陈善福,舒庆尧.植物耐干旱胁迫的生物学机理及其基因工程研究进展.植物学通报,1999,16(5):555-560
    2 陈受宜等.转基因植物.见:孟广震主编,中国科学院生物技术研究进展.北京:科学出版社,1998,46-55
    3 陈炜,张戈,张恩仲.基于生物信息学的SNP候选位点搜寻方法.遗传,2001,23(2):153-156
    4 高越峰,朱祯,朱玉等.大豆Kunitz型胰蛋白酶抑制剂基因的克隆及其转基因烟草抗虫性初探.高技术讯,1997,9:5-8
    5 龚明,丁念诚,贺子义等.盐胁迫下大麦和小麦叶片脂质过氧化伤害与超微结构变化的关系.植物学报,1989,31(11):841-846
    6 黄必旺,关雄.生物信息学及生物信息查询与应用.武夷科学,1999,15:205-209
    7 李德全,邹琦,程炳嵩.土壤水分胁迫对小麦叶片的渗透调节与延长生长的影响.植物学报,1992,34(2):121-125
    8 李伟,印莉萍.基因组学相关概念及其研究进展.生物学通报,2000,35(11):1-3
    9 李子银,陈受宜.植物的功能基因组学研究进展.遗传,2000,22(1):57-60
    10 刘春明,朱祯,孙宝林等.豇豆胰蛋白酶抑制剂cDNA克隆及序列分析.见:李向辉主编.植物遗传操作.北京:高等教育出版社,1994,49-60
    11 刘春明,于占洋,朱祯等.豌豆外源凝集素基因的克隆及序列分析.遗传学报,1995,22:302-306
    12 刘俊君.高度耐盐双价转基因烟草的研究.生物工程学报,1995,11(4):381-384
    13 刘铭庭主编.柽柳属植物研究及大面积推广应用.兰州:兰州大学出版社,1995
    14 陆佳韵,王秀琴.EST及其应用.生命科学,1999,11(4):186-189
    15 吕芝香,乙引.NaCl对小麦苗叶片脯氨酸氧化酶活性和游离脯氨酸累积的影响.植物生理学报,1992,18(4):376-380
    16 罗静初,江涛,李兵等.分子生物信息镜象系统和数据库.高技术通讯,1998,10(10):61-63
    17 骆蒙,贾继增.植物基因组表达序列标签(EST)计划研究进展.生物化学与生物物理进展,2001,28(4):494-497
    18 牟欣,许志.柽柳研究现状及进展.国医论坛,2002,17(1):53-54
    19 任东涛.张承烈.河西走廊不同生态型芦苇可溶性蛋白质、总氨基酸和游离氨基酸分析.植物学报,1992,34(9):698-704
    20 汤章城.钾在高粱苗水分亏缺时脯氨酸累积中的作用.植物学报,1984,10(3):199-203
    
    
    21 田云,卢向阳.生物信息学.生物学杂志,2002,19(3):11-12
    22 田云,卢向阳等.生物信息学及其研究现状.生命科学研究,2002,6(4)(专辑):153-158
    23 田中.植物体中的钠.土肥志,1974,(45):285-291
    24 王宝山,赵可夫,邹琦.作物耐盐机理研究进展及提高作物耐盐性的对策.植物学通报,1997,14(增刊):25-30 wjh4004
    25 王洪春.植物生理学专题讲座.北京:科学出版社,1987,336-341
    26 王华春,陈清轩.更好地利用EST数据库.生物化学与生物物理进展,2000,27(4):442-444
    27 王玲.基于知识发现的生物信息学.生物工程进展,2000,20(3):27-29
    28 王霞,候平,尹林克等.土壤缓慢水分胁迫下柽柳植物内源激素的变化.新疆农业大学学报,2000,23(4):41-43
    29 王霞.水分胁迫对柽柳植物可溶性物质的影响.干旱区研究,1999,16(2):7-11
    30 王忠华,周美园,夏英武.表达序列标签及其应用.生物化学与生物物理进展,2001,18(1):71-77
    31 王遵亲.中国盐渍土.北京:科学出版社,1993:325-344
    32 卫芙蓉,郭美蓉,吴全忠.浅谈盐碱地柽柳的园林应用.山西林业科技,1999,3:39-46
    33 武玉叶,李德全.土壤水分胁迫下小麦叶片渗透调节和光合作用.作物学报,1999,25(6):752-758
    34 许雯,孙梅好,朱亚芳,苏维埃.甘氨酸甜菜碱增强青菜抗盐的作用.植物学报,43(8):809-814
    35 杨素欣,王振镒.盐胁迫下小麦愈伤组织生理生化特性的变化.西北农业大学学报.1999,27(2):47-51
    36 姚剑虹,孙小芬,唐克轩.半夏凝集素基因的克隆.复旦学报(自然科学版),2001,40(4):461-464
    37 张海燕,赵可夫.盐分和水分胁迫对盐地碱蓬幼苗渗透调节效应的研究.植物学报,1998,40(1):56-62
    38 张亨山.金属硫蛋白的抗过氧化作用.国外医学卫生学分册,1994(2):68-71
    39 张忠民,马如池.栽培柽柳改善重盐碱地生态环境.河北林业科技,1995,2:52-53
    40 赵可夫,李法曾.中国盐生植物.北京:科学出版社,1999.48-62
    41 赵可夫,李军.盐浓度对3种单子叶盐生植物渗透调节及其在渗透调节中的影响.植物学报,1999,41(12):1287-1291
    42 赵可夫.植物抗盐生理.北京:中国科学技术出版社,1993
    43 赵明范,葛成,翟志中.干旱地区次生盐碱地主要造林树种抗盐指标的确定及耐盐能力排序.林业科学研究,1997,10(2):194-198
    44 郑国琦等.耐盐分胁迫的生物学机理及其基因工程研究进展.宁夏大学学报,2002,23(1):79-85
    45 朱玉,吴茜,高越峰等.雪花莲外源凝集素基因的克隆及序列分析.农业生物技术学报,1998,4:331-338
    
    
    46 朱玉,朱祯,徐鸿林.雪花莲外源凝集素基因的克隆及其多态性分析.高技术通讯,1999(9):36-41
    47 Adams M D, Dubnick M, Kerlavage A R, et al. Sequence identification of 2,375 human braingenes. Nature, 1992, 355, (13):632-634
    48 Adams M D, Kelley J M, Gocayne J D, et al. Complementary DNA Sequencing: expressed sequence tags and human genome project. Science, 1991,252(5013): 1651 -1656
    49 Arisz W H. Significance of the symplasm theory for transport across the root. Protop lasma, 1956, 46:5-62
    50 Arontt H J, Pautard F G.Calcification in plants[C].In: Schraer H,Biological calcification: cellular and molecular aspects[A]. Amsterdam: North-Holland Publishing House, 1970:375-446
    51 Arumuganathan, E.And Earle E D.Nuclear DNA content of some important plant species. Plant Mol.Boil Rep, 1991, 9:208-218
    52 Ball M C.Salinity tolerance in the mangroves Aegiceras corniculatum and Avicennia marina I. Water use in relation to growth, carbon partitioning, and salt balance. Australian Journal of Plant Physiology, 1988,15:447-464
    53 Basu D, Das S, Nayak P, et al. Monitoring functionaol property of the transgene through rapid amplification of cDNA ends in indica rice transformants. Curr Sci India, 1995, 68(11): 1140-1144
    54 Benseon D A, Boguske M S, Lipman D J, Ostell GenBank Nucleic Acids Res 1997,25:7-13
    55 Berry W L. Characteristics of salts secreted by Tamarix aphylla. American Journalof Botany, 1970, 57:1226-1230
    56 Boguski M S.Biosequence exegesis. Science, 1996(286): 453-456
    57 Boguski MS, Lowe TMJ, Tolstoshey CM. dbEST-database for 'expressed sequence tags'. Nat Genet, 1993, 4:332-333
    58 Bohnert, H J., Nelson, D.E., Jensen, R.G. Adaptations to environmental stress. Plant Cell, 1995,7: 1099-1111
    59 Bohra J S, Doerffling K. Potassium nutrition of rice oryza-sativa L. Varieties under sodium chloride salinity. Plant and Soil, 1993, 152(2): 299-303
    60 Bolwer C, Montagu M C.Superoxide Dismutase and stress tolerance. Plant Physiol,1992,98(1): 83-116
    61 Borson N D, Sato W L, Drewes L R. Alock-docking Oligo(dT) primer for 5' and 3' RACE PCR. PCR. Methods Applic, 1992, 2:144-148
    62 Bouchez D, Hofte H. Functional genomics in plants. Plant Physiology, 1998, 118:725-732
    63 Chander P K, Robertson M. Gene expression regulated by abscisic acid and its relation to stress
    
    tolerance. Mot Biol, 1994, 4:113-119
    64 Chenchik A, Diachenko L, Moqadam F, et al. Full length cDNA cloning and determination of mRNA 5' and 3' ends by amplification of adaptor-ligated Cdna. Biotechniques, 1996, 21(3): 526-534
    65 De M, Linda E, Whiteman H, et al.Isolation and characterization of a cDNA clone encoding cinnamyl alcohol dehydrogenase in Eucalyptus globules Labill.Plant Science,1999,143(2): 173-182
    66 DelauneyA J.Prolinebiosynthesisandosmoregulationinplants.PlantJ, 1993, 4:215-223
    67 Delseny M, Coole K, Raynaol M, et al. The Arabidopsis thaliana Cdna sequencing project. FEBSL etter, 1997, 403(3): 221-224
    68 Etienne P, Petitot A S, Houot V, et al. Induction of tcI7, a gene encoding a β-subunit of proteasome, in tobacco plants treated with eticitins, salicylic acid or hydrogen peroxide. FEBS Letters, 2000, 466(2-3): 213-218
    69 EU. Arabidopsis Genome Project. Nature, 1998, 391:485-489
    70 Ewing R M, Kahla A B, Poirot O, Lopez F, Audic S, Claverie J M. Large-scale statistic alanalysis of rice ESTs reveal correlated patterns of gene expression. Genome Research, 1999, 9:950-959
    71 Fehr C, Fickov M, Hiemke C, Dahmen N. Rapid cloning of Cdna ends polymerase chain reaction of G-protein-coupled receptor kinase 6: an improved method to determine 5' -and 3' -cDNA ends. Brain Res Protoc, 1999, 3(3): 242-251
    72 Flowers T J, Harvey D M R. Ions relation of salt tolerance. Australian Journal of Plant Physiology, 1997, 24:89-93
    73 Frohman M A, Dush M K, Martin G R. Rapid production of full length cDNAs from rare transcripts: Amplification using a single gene-specific oligonucleotide primer. Proc Natl Acad Sci USA, 1988, 85:8998-9002
    74 Garlisi C G, Uss A S, Xiao H, et al. Auniquem RNA initiated within a middle intron of WHSC 1/MMSET encodes a DNA binding protein that suppresses human IL-5 transcription. Am J Resp Cell Mol, 2001, 24(1): 90-98
    75 Gevaudant F, Petel G, Guilliot A. Differential expression of four members of the H~+-ATPase gene family during dormancy of vegetative buds of peach trees. Planta, 2001, 212(4): 619-626
    76 Guy R D, Warne P G, Reid D M, 1984. Glycinebetaine content of halophytes: improved analysis by liquid chromatography and inter pretations of results. Physiol Plant, 61:195-202
    77 H.J. Bouwmeester, J. Gershenzon, M. Konings, R. Croteau, Biosynthesis of the monoterpenes
    
    limonene and carvone in thefruit of caraway-I-demonstration of enzyme activities and theirchanges with development, Plant Physiol. 1998 (117): 901-912
    78 Hafider, Smithde, Karroum, et al. Physiological responses of spring durum wheat cultivars to early-season drought in a Mediterranean environment. Ann-bot, London, New York: Academic Press, 1998, 81(2): 363-370
    79 Hatey F, Tosser Klopp G, Clouscard martinato C, et al. Expressed sequencedtags for genes: a review. Genet Sel Evol, 1998, 30(5): 521-541
    80 Haverland T G. Physiological plant anatomy. London: Mac Millan and Co., Ltd, 1914:777
    81 Helder R J. The loss of substances by cells and tissues (salt glands)[A]. In: Ruhland W, eds. Handbuch derpflanzen physiologic[C]. Berlin-Gottingen-Heidelberg: Springer Verlag, 1996, 468-488
    82 Hirochika H. et al. Retrotransposons of rice involved in mutations induced by tissue culture. Proc. Natl Acad Sci. U. S.A, 1996, 93:7783-7787
    83 Hoog C. Isolation of alarge number of novel screening strategy. Nucleic Acids Res, 1991, 19(22): 6123-6127
    84 HSIAO T C Influence of osmotic adjustment on leaf rolling and tissue death in rice (Oryzasativa L.). Plant Physiol, 1984, 75:338-341
    85 Ingram J, Bartels D. The molecular basis of dehydration tolerance in plants. Annual Reviewon Plant Physiology&Plant Molecular Biology, 1996, 47:377-403
    86 Kemp B E, Barden J A, Kobe B, et al. Intrasteric Regulation of Calmodulin dependent Protein Kinase. Adv Pharmacol, 1996, 36:221-249
    87 Koster K L. Glass formation and desiccation tolerance in seeds. Plant Physiol., 1991, 96:302-304
    88 Krishnamurthy R, Bhagwat K A. Polyamines as modulators of salt tolerance in rice cultivars. Plant Physiol, 1989, 91 : 500-504
    89 Kuhn J, Tengler U, Binder S. Transcript lifetime is balanced between stabilizing stem-loop structures and degradation promoting polyadenylation in plant mitochondria. Mol Cell Biol, 2001, 21(3): 731-742
    90 Leipe D D. Genome and DNA sequence database. Curr Opin Gen Devel, 1996, 6(6): 686-691
    91 Levitt J. Response of plants to environmenta Istress. Vol Ⅱ. 2nded[M]. NewYork: Academic Press, 1980. 102-106
    92 Liang D, Pardee A B. Differential display of eukaryotic Mrna by means of PCR. Science, 1992, 257:967-971
    
    
    93 Lin J P, Zhu J K. Proline accumulation and saltstress induced gene expression in a salt hypersensitive mutant of Arabidopsis. Plant Physiol, 1997, 114:591-596
    94 Lingle S E, Dyear J M. Cloning and expression of sucrose synthase-1 Cdna from sugarcne. Journal of Plant physiology, 2001, 158(1): 129~131
    95 Lix, Fengy, Boersmal. Comparison of osmotic adjustment responses to water and temperature stresses in spring wheat and sudangrass. Ann-Bot, London: Academic Press, 1993, 71(4): 303-310
    96 Loss S P. Siddique K H M. Morphological and physiological traits associated with wheat yield increases in Mediterranean environments. Adv Agron, 1994, 52:229-276
    97 Mainguet M. Aridity drought and human development. Springer-verlag. Berlin, Heidelberg. 1999
    98 McCouch S. Proc Natl Acad Sci USA, 1998, 95:1983-1986
    99 Meinke, D.W. et al. Arabidopsis thaliana: A model plant spectes for genome analysis. Science, 282:662-682
    100 Munns R Fermaat. Whole plant response to salinity. Australian Journal of Plant Physiology, 1986, 13:143-147
    101 Munns R. Physiologica lprocesses limiting plant growth in saline soil: Some dogmas and hypothesis. Plant Cell Enviroment, 1993, 16:15-19
    102 Newman T, de Bruijn F J. et al.. Genes galore: a summary of the methods for accessing the results from large-scale partial sequencing of anonymous Arabidopsis cDNA clones. Plant Physiool. 1994. 106:1241-1255
    103 Niu X, Bressan R A, Hasegawa P M, Pardo JM. Ion homeostasis in NaCl stress environments. Plant Physiol, 1995, 109:735-742
    104 Phillips, R L. and Freeling, M. Plant genomics and our food supply, an introduction Proc Natl Acad Sci USA, 1998, 95:1969-1970
    105 Qutgley F., Dao R, Cottet A., Mache R.. Sequence analysis of an 81kb contig from Arabidopsis thaliana. Nucleic Acids Tes, 1996, 24:4313-4318
    106 Ramagopal S. Protein synthesis in a maize callus exposed to NaCl and mannitol. Plant Physiol, 1987, 84:324-328
    107 Reddy M K, Nair S, Singh B N, et al. Cloning and expression of a nuclear encoded plastid specific 3kDa ribonucleoprotein gene (33RNP) from pea that is light stimulated. Gene, 2001, 263(1): 179-187
    108 Rhodes D, Hanson A D, 1993. Quaternary ammonium and tertiary sulfonium compounds in higher plants. Annu Rev Plant Physiol Plant Mol Biol, 44:357-384
    
    
    109 Schaefer B C. Revolutions in rapid amplification of Cdna ends: New strategies for polymerase chain reaction cloning of full length cDNA ends. Anal Biochem, 1995, 227:255-273
    110 Schena, M. et al. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science, 1995, 270:467-470
    111 Scholander P F, Bradstreet E D, Hammel H E, Hemmingsen E A. Sap concentration on halophytes and some other plants. Plant Physiology, 1966, 41:529-532
    112 Scholander P F, Hammel H E, Hemmingsen E, Garey W. Salt balance in mangroves. Plant Physiology, 1962, 37:722-729
    113 Serrano, R., Mulet, J M, Rcos, G, Marquez J A, de Larnnoa, L F, Leube, et al. A glimpse of the mechanisms of ion homeostasts during salt stress. J Exp Bot, 1999, 50:1023-1036
    114 Shen B, Jensen R G, Bohner H J. Increased resistance to oxidative stress in transgenic plants by targeting mannitol biosynthesis to chloroplasts. Plant Physiol, 1997,113:1177-1183
    115 Singh N K, Bracket C A, Hasegawa P M, et al. Characterization of osmotin: thaumati like protein associated with osmitic adaptationin plant cells. Plant Physiol, 1987, 85:739-743
    116 Smirnoff C, Thonke B, Popp M. The capatibility of D-pinitol and 1 D-l-o-methyl-mucoinositol with malate dehydrogenase activity. BotActa, 1990, 103:270-273
    117 Somerville C, Dangl J. Plant Biology in 2010. Science, 2000, 290:2077-2078
    118 Stewart C R. Effect of NaCl on proline synthesis and utilization in exercised barley leaves. Plant Physiol, 1983, 72:664-672
    119 Stoesser G, Sterk P, et al. The EMBL nucleotide sequence Databases. Nucleic Acids Res, 1997, 25:7-13
    120 Storey R, Thomson W W. Anx-raym icroanalysis study of the salt glands and intracellular calcium crystals of Tamarix. Annals of Botany, 1994, 73:307-313
    121 Takuji Sasaki & Benjamin Burr. International Rice Genome Sequencing Project: the effort to completely sequence the rice genome. Current Opinion in Plant Biology, 2000, 3:138-141
    122 Tanksley S D, Ganal M W, Martin G B, et al. Chromosomal landing aparadigm for map-based genecloning in plants with large genomes. Trends Genet, 1995, 11:63-68
    123 Tarczynski M C, Jense R G, Bohnert H J. Stress protection of transgenic tobacco by production of osmolyte mannitol. Sci, 1993, 259:508-510
    124 Tateno Y and Gojobori T. DNA Data Bank of Japan in the age of information biology. Nucleic Acids Res, 1997, 25:14-17
    125 The International SNI Map working Group. A map of human genome sequence variation
    
    containing 1.42 million single nucleolide polymorphisms. Nature, 2001, 409(15): 928-933
    126 Thomson W W, Liu L L. Ultrastructural features of the salt gland of Tamarix aphylla L. Planta, 1967,73:201-220
    127 Tremousaygue D, Bardet M, Dabos R Regard F, et al. Genome DNA sequencing around the EF-la multigenic locus of Arabidopsis thaliana indicates a high gene density and a shuffling of non-coding regions. Genome Res, 1997, 7:198-209
    128 Tsang E W, Bowler C, Herouart D, et al. Differential regulation of superoxide dismutases in plants exposed to environ mental stress. Plant Cell, 1991, 3:783-792
    129 Turner N C. Concurrent comparisons of stomatal behavior, wheat status and evaporation of maize in soil at high or low potential. Plant Physiol, 1975, 55:932-936
    130 Waisel Y E, Agamia M. Salt balance of leaves of the mangrove Avicennia marina. Physiologia Plantarum, 1986, 67:67-72
    131 Wang D G, Fan J B, Siao C T, et al. Large scale identification, mapping and genotyping of single-nucleotide-polymorphism in the human genome. Science, 1998, 280:1048-1077
    132 White J A, Todd J, Newman T, et al. A New set of Arabidopsis Expressed Sequence Tags from Developing Seeds. The Metabolic Pathway from Carbohydrates to Seed Oil. Plant Physiology, 2000, 124:1582-1594
    133 Xiao mu Niu. NaCl-induced alteration in both cell structure and tissue specific plasma membrand H~+-ATPase gene expression. Plant Physiot, 1996,111:679-689
    134 Xu D. Expression of a late embryogenesis abundant protein gene, HVA1, from barely confers tolerance to water deficit and salt stress in transgenic rice. Plant Physiol, 1996,110:249-257
    135 Yamada S, et al. A family of transcripts encoding water channel proteins: tissue-specific expression in the commonice plant. Plant Cell, 1995, 7(8): 1129-1142
    136 Yammanoto K, Sasaki T. Large-scale EST sequencing in rice. Plant Molecular Biology, 1997, 35(1): 135-144
    137 Yano, M. and Sasaki T. Genetic and molecular dissection of quantitative traits in rice. Plant Mol. Biol 1997, 35:145-153
    138 Zhang Y, Frohman M A. Using rapid amplification of cDNA ends (RACE) to obtain full-length cDNAs. Methods Mol Biol, 1997, 69:61-87
    139 Zhang J-F, Fang Y-F et al. A-groforestry and its application in amelioration of saline soils in eastern China coastal region. In the Proceedings of the Second International Conference on Sustainable Agriculture for Food, Energy and Industry (in press). 2002

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700