用户名: 密码: 验证码:
异丙酚靶控输注静脉麻醉在喉显微手术中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的
     支撑喉镜下喉部显微手术是临床上常见的短小手术,但其操作部位特殊,与麻醉共用气道,术中患者的血流动力改变剧烈,加之手术时间短,患者手术后又需能较快清醒,因此,对麻醉的要求很高。靶控输注(TCI)是以药代动力学与药效动力学为基础,以血浆或效应室的药物浓度为指标,由计算机控制给药输注速率的变化,达到按临床需要调节麻醉、镇静和镇痛深度的目的。喉显微手术目前多在气管内全麻或静脉麻醉配合高频通气下进行,随着异丙酚静脉麻醉在临床的广泛应用,在喉显微手术中亦有应用。本研究拟在喉显微手术中应用靶控输注的方式进行异丙酚全凭静脉麻醉,探讨术中不做气管插管保持病人自主呼吸的可行性,为喉显微手术提供一种安全可靠且简单易行的麻醉方法。
     方法
     选择45例ASAⅠ~Ⅱ级择期支撑喉镜下行声带息肉、声带小结及囊肿手术的患者,术前30min肌肉注射安定0.2mg/kg,阿托品0.01mg/kg。随机分为三组,每组15例。麻醉方法为全凭静脉麻醉,Ⅰ组单纯行异丙酚TCI,Ⅱ、Ⅲ组在异丙酚TCI前分别静脉注射芬太尼1μg/kg和2μg/kg。
     患者入室后监测血压、心率、脉搏血氧饱和度、心电图,行桡动脉穿刺连续监测平均动脉压。以2%利多卡因对口腔及舌体进行表面麻醉,鼻塞吸氧,氧流量为5L/min。开放静脉通路,接Graseby 3500电脑输液泵。以异丙酚目标血药浓度2μg/ml开始输注,达预计浓度后每次增加0.5μg/ml至患者意识消失。经鼻将ID2~3mm硅胶管置于咽后壁,通过延长管给氧,氧流量为5L/min。
    
    试行窥喉,再次增加异而酚目标血药浓度至患者对窥喉无明显抵
    抗,维持该目标血药浓度。以2%利多卡因行声带表麻后,开始手
    术。术中调整异丙酚目标血药浓度维持一定的麻醉深度,术毕停
    止异丙酚输注,吸氧至患者清醒。术中若发生血压下降过大或心
    动过缓,静脉注射麻黄碱或阿托品对抗。术中连续监测平均动脉
    压、心率、呼吸频率、脉搏血氧饱和度一心电图,于人室、麻醉诱导
    后。成功置人喉镜后分别采取动脉血Zml,行动脉血气分析。记录
    各组病人意识消失、置人喉镜后、停止异丙酚输注和清醒时异丙酚
    目标血药浓度及异丙酚用量,记录手术时间及停止异丙酚输注至
    患者清醒所需时间,术后回病房观察其24小时内的不良反应如头
    痛、恶心呕吐发生的例数及有无术中知晓。
     统计方法所有数据用均数上标准差k土S)表示,采用
    SPSS10.0统计软件进行统计学处理。组间及同一组各时点数据
    的比较采用方差分析,以P<0.05为统计学差异显著,P<o.of为
    差异非常显著。
     结 果
     三组患者的年龄、体重、手术时间及术前基本生命指标和血气
    参数无统计学差异,术后随访无术中知晓。二组、11组、亚组麻醉
    诱导所需异丙酚目标血药浓度分别为 4.68户.27和 4.15pg/Inl。
    麻醉诱导后各组都有不同程度的平均动脉压下降*心率与呼吸频
    率减慢、脉搏血氧饱和度下降以及动脉血氧分压下降与二氧化碳
    分压升高,其中1组的血流动力学改变最为明显。部分指标的改
    变有统计学意义,但无临床意义。成功置人喉镜所需异丙酚目标
    血药浓度各组分别为7.13户.68和4.42阶d,置人喉镜后各组
    的生命指标与血气参数基本恢复到基础水平直到手术结束。麻醉
    期间所需异丙酚药量各组分别为583石7/07.53和389.47mg,各
    组的苏醒时间分别为544.20612.00和679.805,提示加用芬太尼
     ·二·
    
    可不同程度地减少各时点所需异丙酚目标血药浓度及异丙酚用量
    而对苏醒时间却无显著影响。
     结 论
     二.异丙酚靶控输注静脉麻醉用于喉显微手术具有可行性,且
    术中可不做气管插管保持病人自主呼吸。
     2.适量的芬太尼与异丙酚靶控输注静脉麻醉联合应用可以减
    少异丙酚的用量,从而缓和异丙酚浓度过高所带来的血流动力学
    改变而且不产生呼吸抑制。
Objective
    Microlaryngosurgery under the Suspensive Laryngoscope is a common short operation in clinical. Its operating place is special because the airway is also occupied by anesthesist, the hemodynamics changes are severe during operation, the time of operation is short which need a rapid return to consciousness, so it request a profound anesthesia.
    Target - controlled infusion based on pharmacokinetics and phar-macodynetics, the velocity of infusion is controlled by computer, adjusting the drug concentration of plasma or effect - site to achieve the clinical demand of accommodation of anesthesia, sedation or analgesi-a.
    Microlaryngosurgery is often performed under general anesthesia with trachea! intubating or intravenous anesthesia with high frequency ventilation. With the propofol intravenous anesthesia extensively appli-cated in clinical, it is used in microlaryngosurgery also. In this study, we performed microlaryngosurgery under total intravenous anesthesia with propofol by target - controlled infusion system, and investigate the feasibility that patients keep spontaneous respiration without intubation during operation, to provide a safe and simple anesthetic method for microlaryngosurgery.
    
    
    Methods
    45 patients ( ASA I to II) with polyp, nodule or cyst of vocal cord scheduled for an elective microlaryngoscopy were randomly allocated to three groups with 15 patients each group. All patients were premedicated with muscular diazepam 0. 2mg/kg and atropine 0. 01mg/kg 30 minutes before the procedure. Patients in group I receive target - controlled infusion with propofol alone and 1 or 2 g /kg with fentanyl supplementation before propofol TCI in group II or III.
    Perform a local anaesthesia with 2% lidocaine spray to mouth and body of tongue and then provide oxygen transnasal with 5 litre per minute. Open venous pass and connect with Graseby 3500 infusion pump. Start propofol infusion with the target concentration 2 g /ml and add it 0. 5 g /ml every time till loss of consciousness. Put a catheter with inside diamete 2 ~3mm transnasal to posterior wall of pharynx and provide oxygen with 5 litre per minute through an elongate tract. Add the target concentration of propofol again when placement of the laryngoscope till the patients have no resistance at insertion of the laryngoscope and maintain this concentration. Start operation after a surface anaesthesia to vocal cord with 2% lidocaine spray, and adjust the target concentration of propofol to a proper level to maintain a certain depth of anesthesia during operation. Stop propofol infusion when the operation is over, give oxygen till awakening. Inject ephed-rine or atropine if significant hypotension or bradycardia is occurred during operation.
    Monitoring mean arterial blood pressure, heart rate, respiratory rate and electrocardiograph continuously, Blood sample was taken before anesthesia, after induction and after placement of the laryngo-
    
    scope for arterial blood gas analysis. Recording the target concentrations and consumption dose of propofol when loss of consciousness, after placement of the laryngoscope, cessation of propofol and awakening. The interval of operation and the time from cessation of propofol infusion to awakening are also recorded. Observing the occurance numbers of adverse response such as cephalalgia, nausea or vomiting and consciousness during operation . The data were presented as the mean standard deviation (x s) , statistic procedure was proceed with SPSS10. 0 statistics software. Statistical significance was determined by analysis of variance for inter - group and intra - group comparisons, p < 0. 05 was considered statistically significant and p < 0. 01 was considered statistically very significant.
    Results
    The ages, weights, interval of operation, essential life sign and the blood - gas parameter before operation had no significant difference in three groups . The target concentration of propofol at induction were 4. 68,4.27 and 4. 15 g/ml in group I , II and III. Decrease of MAP, HR, RR, Sp02, PaO2 and incre
引文
1.应诗达.显微喉手术的麻醉方法进展。《国外医学》麻醉学与复苏分册,1996,17:205-208.
    2. Roberts FL, Dixon J, Lewis GT, et al. Induction and maintenance of propofol anaesthesia. A manual infusion scheme. Anaesthesia,1988,43 Supp 1:14 - 17.
    3. Mirakhur RK, Morgan M. Intravenous anaesthesia: a step forward. Anaesthesia.Anaesthesia, 1998,53 Suppl 1:1 - 3.
    4. Vuyk J, Engbers FH, Burm AG, et al. Pharmacodynamic interaction between propofol and alfentanil when given for induction of anesthesia. Anesthesiology, 1996,84:288 -299.
    5. Smith C, McEwan AI, Jhaveri R, et al. The interaction of fentanyl on the Cp50 of propofol for loss of consciousness and skin incision. Anesthesiology, 1994,81:820 - 828.
    6. Vuyk J, Engbers FH, Lemmens HJ, et al. Pharmacodynamics of propofol in female patients.Anesthesiology, 1992,77:3 -9.
    7. McEwan AI, Smith C, Dyar O, et al. Isoflurane minimum alveolar concentration reduction by fentanyl. Anesthesiology.1993,78:864 - 869.
    8. Smith C. Contamination of propofol. Anesthesiology, 1992,77:833 - 834.
    9. Russel D. Intravenous anaesthesia: Manual infusions schemes versus TCI system. Anaesthesia, 1998,53 Suppl:42 -45.
    10. Tzabar Y, Brydon C, Gillies GW. Induction of anaesthesia with midazolam and a target- controlled propofol infusion. Anaesthesia,1996,51:536 - 538.
    11. Glass PS, Glen JB, Kenny GN, et al. Nomenclature for computer
    
    -assisted infusion devices.Anesthesiology, 1997,86: 1430 - 1431.
    12. Syruys M, Versichelen L, Thas O, et al. Comparison of computer-controlled administration of propofol with two manually controlled infusion techniques. Anaesthesia, 1997, 52:41 - 50.
    13.王若松.靶控输注静脉麻醉.中华麻醉学杂志,2001,21:587—590.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700