用户名: 密码: 验证码:
利用酶法和外加香料法对下部烟叶的增香提质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
烟草,作为特殊的嗜好性产品,是我国重要的经济作物之一。在农田采收、烟叶贮藏、卷烟加工过程中,会产生大量的低等级烟叶如下部烟等,此类低等级烟叶通常品质差,利用率低,造成了极大的资源浪费。同时,由于中式卷烟品种结构的调整,中上等烟叶用量早已不足,若能将下部低等烟叶经处理转化成制造高档低焦油混合型卷烟的补充原料,对于提高我国下部低等烟叶利用价值,提高经济效益及环境效益都具有重要现实意义。本课题针对我国下部等低等级烟叶吸食品质差,可用性差,生产利用率低的问题,对其进行了提质增香的改良研究,旨在改良其内在品质及感官特性,提高其加工品质及可用性。主要研究内容及结果如下:
     目前我国上、下部烟叶的品质较差,相对于品质较好的中部烟叶,利用率较低,但造成这种结果的不同部位烟叶之间内在化学成分的具体差异原因尚不明确。因此首先针对我国不同部位烟叶之间缺乏化学成分差异性分析的缺陷,考察了上、中、下不同部位烟叶之间基本化学成分、大分子物质之间的差异,并通过主成分分析法比较了不同部位烟叶中性香味成分的差异,结果表明:上部烟叶水溶性总糖及还原糖含量低,烟碱含量高,因此烟叶成分协调性差,刺激性强;而中部烟叶各指标基本适中,是不同部位烟叶中品质最好的,烟叶整体感官品质优良;下部烟叶烟碱含量低,因此烟气劲头小,浓度低。细胞壁物质含量高,中性香味成分含量低,香气质量差。中性香味成分主成分分析结果表明:上部烟叶与中部烟叶之间的差异主要与类胡萝卜素降解产物相关,而下部烟叶与中部烟叶之间的差异与西柏烷类降解产物、萜类降解产物、美拉德反应产物和苯丙氨酸降解产物均有关。
     选择细胞壁物质含量高、具有代表性的下部低等烟叶进行低等烟的提质研究。首先通过细胞壁酶的作用对烟叶本身进行提质,主要采用了以多糖酶和蛋白酶复配进行非溶液酶解烟叶细胞壁物质和酶解法提取烟叶浸膏并反加香于下部低等烟叶两种方法。通过将多糖酶、中性蛋白酶、淀粉酶、果胶酶单独及复配喷施于下部低等级烟叶样品(亳州X3L)进行了酶降解烟叶细胞壁物质的研究。以烟叶细胞壁物质降解效果为指标,确定了多糖酶、蛋白酶作用效果适宜。通过单因素及正交试验确定了多糖酶和蛋白酶复配降解亳州X3L细胞壁物质的最佳工艺条件:多糖酶用量490U/g,蛋白酶用量208U/g,酶解时间4h,在此条件下烟叶细胞壁物质含量可降解至25.74%。并通过扫描电镜观察、GC-MS检测、TG-DSC热重分析考察了酶处理后烟叶的表面结构、燃烧性能及感官性质的变化,最后考察了复配酶处理对于烟叶及烟气成分的影响。结果表明:在多糖酶和蛋白酶的共同作用下,亳州X3L烟叶的细胞壁结构发生了一定程度的破坏,有利于烟叶中的香气成分转移至烟气中;复配酶处理增加了烟叶中美拉德反应产物类香味成分及中性香味成分总量的含量;复配酶处理仅略微减缓了烟草多糖类物质的热解和碳化过程,基本不改变烟叶的燃烧性质。经复配酶处理后的烟叶水溶性糖含量和成分协调性均得到了提高。
     由于果胶酶喷施于烟叶造成烟叶结构较大程度的破坏,因此利用了果胶酶解法提取烟草浸膏并用于亳州X3L加香,结果表明当果胶酶用量为64U/g,酶解时间2h时得到的烟叶浸膏,用于为低等级烟草增香时,感官评价得分最高。果胶酶处理制备的烟叶浸膏为亳州X3L加香适宜添加量烟丝质量的30~40g/g,添加此烟草浸膏后的烟叶和烟气中性香味成分的含量均得到提高。
     针对下部低等烟叶萜类降解产物等中性香味成分含量低的问题,对其进行了外加富含萜类的中草药(艾叶)提取物的增香研究。分别选择以艾叶精油、艾叶浸膏两种添加形式实现为低等烟叶的针对性补香。首先通过同时蒸馏萃取(SDE)、固相微萃取(SPME)与全二维气相色谱飞行时间质谱技术(GC×GC-TOFMS)联用分析了艾叶中的挥发性成分,结果表明艾叶中的挥发性成分主要为单萜(C10H16)和倍半萜(C15H24)类及其衍生物。接下来以艾叶精油形式进行增香实验。艾叶精油烟气转移实验证实,艾叶中的萜类物质可以增加烟气中香味成分的含量。针对艾叶精油在用于低等级烟草增香时易挥发、释放不均匀的问题,采用了微乳化技术对艾叶油进行了包埋。分别考察了不同表面活性剂、助表面活性剂及Km值对艾叶油微乳区域的影响,确定了以乙醇为助表面活性剂、吐温80为表面活性剂,Km=3:1时,能够与艾叶油形成载油量较高、加水稀释稳定的的微乳体系;并考察了此微乳体系的性质:以(吐温80+乙醇)(km=3):艾叶油=7:3的微乳体系在水分含量超过66%时,微乳结构为水包油型;此微乳体系在47°C发生相转变;不同水分含量的微乳贮藏2个月,微乳体系粒径及PDI均保持稳定。将制备的艾叶油微乳加入烟丝中,分析了艾叶精油及微乳在主流烟气中的逐口抽吸转移规律,结果表明艾叶精油经包埋后再添加至烟草中,可使得烟丝60天时持留率由<60%提高至>80%,并促使主流烟气抽吸口数之间艾叶油分布趋于均匀化,在一定程度上起到了缓释加香的作用。
     针对直接添加艾叶精油易挥发,烟丝持留率低的问题,设计了以艾叶浸膏形式为亳州X3L增香的实验。结果表明添加艾叶浸膏与直接添加艾叶精油相比,烟丝持留率得到了提高,但低于添加艾叶精油微乳的样品。艾叶浸膏直接裂解与添加至烟丝后的裂解反应证实,艾叶浸膏中的挥发性成分主要在300℃以下转移,300~600℃下部分转移,600~900℃发生裂解反应;艾叶浸膏中的挥发性成分可以在烟草燃烧条件下转移至烟气中,为亳州X3L低等烟叶增加萜类香味成分的含量,少量增加烟气总粒相物、焦油含量,对烟气其它常规成分影响不大。当艾叶浸膏在烟丝中的添加量为30g/g时,香气协调性好。
Tobacco, as special hobby product, is an important economic crop in China. During theprocessing of harvesting, storage, manufacturing process, large amounts of low-grade tobaccoare produced. The abandoned low grade tobacco with poor quality and low utilization causedgreat waste of resources, as well as serious environmental pollution. Meanwhile, the provisionof high grade tobacco was inadequate, since the restructuring policy of Chinese cigarettesblends. It will be of great importance for the industry and environment if the low-gradetobacco could be improved as supplement raw materials for low-tar cigarettes manufacturing.In this resrerch, the low-grade tobacco of poor flavoring quality, poor usability, and lowutilization were improved by different means, with the aims of improving the intrinsic qualityand organoleptic characteristics of low-grade tobacco. The main research contents and resultsare as follows.
     At first, the differences of basic chemical compositions and macromolecule substancesbetween the upper, middle and lower leaves were compared, due to the the lack of appropriatephysical and chemical indicators support defects in currenent Chinese flue-cured tobaccoquality evaluation system. Thereafter, Principal Component Analysis (PCA) was applied toinvestigate the differences of neutral voltiles in tobacco flavor between different positions oftobacco stalk. The results obtained showed that: the upper leaves had low contents of totalsugar and reducing sugar, high levels of nicotine, which led to poor components coordinationand strong irritant feeling; All of the chemical composition index examined in the middleleaves were in an moderate range, which led to middle leaves with the best sensory qualitybetween different positions of tobacco; the lower leaves had low contents of nicotine andneutral volatiles but high cell wall material contents, which led to the low mainstream smokevolume and poor aroma quality. PCA results showed that: the main differences between upperleaves and middle leaves were the content of carotenoids degradation products, while thedifference between the middle and lower leaves were releted to the cembratriendid alkyldegradation products, terpenes degradation products, Maillard reaction products andphenylalanine degradation products.
     In order to decrease the negative effects of high content of tobacco cell wall substancesto the tobacco aroma, polysaccharide enzyme (Viscozyme), neutral protease (Protease),amylase (BAN), pectinase (Pectine) in non-solution system were applied to degrade the cellwall substances of lower position tobacco. Cell wall degradation ratio and sensory scoreswere used as indicators to determine the efficiency of enzymtic degradtion. The resultsindicated that Viscozyme and Protease showed the most satisfied profits. The technologyparameters of degradation with Viscozyme and Protease were optimized by using theorthogonal experiment design combined with practical process. The optimized process was asfollows: Viscozyme of490U/g, Protease of208U/g, Reaction time of4h; under thiscondition tobacco cell wall substance content was decreased to25.74%. Meanwhile, theeffects of enzymatic treatment on tobacco surface structure, the combustion property and the content of neutral volatiles were also investigated by scanning electron microscopy (SEM),GC-MS detection and TG-DSC thermal analysis, respectively. The results showed that: thetobacco surface became smoother and the contents of neutral volatiles were raised afterenzymolysis; the combustion prosperity was rarely influenced by enzymatic process.
     As Pectinase caused serious damage to the low-grade tobacco structure, the pectinasesolution was consequently used to extract the flavor components of low-grade tobacco forflavoring. When the Pectinase dosage was64U/g and the reaction time was2h, tobaccoextract obtained and used as low-grade tobacco flavoring showed good sensory properties.The cased cigarettes provided coordinate aroma when the addition amount of tobacco extractwas in the dosage of30~40g/g.
     In order to increase the TDPs content of lower leaves, the Artemisia argyi leaves rich interpenoids was applied. Simultaneous distillation extraction (SDE), solid phase microextraction (SPME) and comprehensive two-dimensional gas chromatography time of flightmass Spectrometry (GC×GC-TOFMS) were used to determine the volatiles of the Artemisiaargyi leaves. The results showed that the major volatiles of Artemisia argyi leaves weremonoterpenes (C10H16), sesquiterpenes (C15H24) and their oxygend derivatives. Smoketransfer experiments indicated that terpenes can transfer into mainstream smoke and increasethe content of neutral volatiles in tobacco smoke. Because of high volatility of essential oil,the added Artemisia argyi essential oils would lost during storage and uneven release inmainstream smoke. Therefore, the microemulsion of Artemisia argyi essential oil was appliedto solve this problem. The effects of different surfactants, cosurfacant and Km values to themicroemulsion area were examined. The results indicated that ethanol as co-surfactant, Tween80as surfactant and Km=3:1were the optimal choices for Artemisia argyi essential oilmicroemulsion system, which had high loading capacity and good water dilution. Themicroemulsion system was O/W type when the moisture content was over66%, and thephase transition temperature was47°C. The microemulsion particle size and PDI remainedstable under two months storage. The Artemisia argyi essential oil microemulsion was addedto low grade tobacco leaves and the mainstream somke puff-by-puff transfer rules werechecked. The results showed that Artemisia argyi essential oil added in embedding type couldraise the60-day essential oil holding rate in tobacco leaves from <60%up to>80%. Also,Artemisia argyi essential oil microemulsion promoted the volatiles, in a certain extent,distributed more evenly among puffs in mainstream smoke.
     Artemisia argyi ethanol extract was also applied for lower leaves casing. The aromaretention rates and prolysis properties of Artemisia argyi ethanol extract were determined.The results indicated that retention rate of volatiles in tobacco experiments was higher inArtemisia argyi extract than that in Artemisia argyi essential oil, but lower than that inArtemisia argyi essential oil microemulsion. The pyrolysis products at different temperatures(300℃,600℃,900℃) were identified. The results showed that most of the volatiles directlytransferred via distilling under300℃. Part of the neutral volatiles transferred to the smoke atthe range of300~600℃and most of the volatiles pyrolysed at the range of600~900℃.The terpenoids in tobacco smoke can be raised under the combustion situation. The contents ofTPN, tar were also increased slightly, while the CO, nicotine were not influenced. Sensoryevaluation results showed that the cased cigarette provided coordinate aroma when theaddition amount of Artemisia argyi extract was30g/g.
引文
[1]许建营.烟草工艺与调香技术[M].北京:中国纺织出版社,2007:37.
    [2] Karaivazoglou N A, Tsotsolis N C, Tsadilas C D. Influence of liming and form of nitrogen fertilizeron nutrient uptake, growth, yield, and quality of Virginia (flue-cured) tobacco[J]. Field Crops Research.2007,100(1):52-60.
    [3] Long R C, A W J. major chemical changes during senescence and curing of tobacco leaf[J]. RecentAdvances in Tobacco Science.1981(7):48.
    [4] Burton H R, Bush L P, Hamilton J L. Effect of curing on the chemical composition of burleytobacco[J]. Recent Advances in Tobacco Science.1983(9):91-113.
    [5]阎克玉.烟叶分级[M].北京:中国农业出版社,2003:119.
    [6]王能如.烟叶调制与分级[M].合肥:中国科学技术大学出版社,2002:286.
    [7] USA Agricultural Marketing Seivice Tobacco Division. Official Standard Grades for Flue-CuredTobacco U.S. Types11,12,13,14,&Foreign Type92[S]. Washington,D.C.,1989.
    [8] Feng T, Ma L, Ding X, et al. Intelligent techniques for cigarette formula design[J]. Mathematics andComputers in Simulation.2008,77(5-6):476-486.
    [9] Hui-Li G, Rui-Chun H, Xiang-Qian D. Research on the Application of Cigarette Tobacco-Group'sIntelligent Aided Design[C]. Natural Computation. Fourth International Conference,2008,655-659.
    [10] Jianjun L, Jinyuan S, Zhenyu S, et al. Grading tobacco leaves based on image processing andgeneralized regression neural network[C]. Intelligent Control, Automatic Detection and High-EndEquipment (ICADE). IEEE International Conference.2012,89-93.
    [11] Marcomac J. K M. On-line image processing for tobacco grading in Zimbabwe[C]. IndustrialElectronics,1993. Conference Proceedings, ISIE'93-Budapest., IEEE International Symposium.1993,327-331.
    [12] Philipp I, Rath T. Improving plant discrimination in image processing by use of different colourspace transformations[J]. Computers and Electronics in Agriculture.2002,35(1):1-15.
    [13] Zhang F, Zhang X. Classification and Quality Evaluation of Tobacco Leaves Based on ImageProcessing and Fuzzy Comprehensive Evaluation[J]. Sensors.2011(11):2369-2384.
    [14]魏春阳,李锋,张仕祥,等.基于特征向量的烤烟外观质量分类评价[J].烟草科技.2010(12):61-65.
    [15] Stedman R L. Chemical composition of tobacco and tobacco smoke[J]. Chemical Reviews.1968,68(2):153-207.
    [16] Kein nen M, Oldham N J, Baldwin I T. Rapid HPLC Screening of Jasmonate-Induced Increases inTobacco Alkaloids, Phenolics, and Diterpene Glycosides in Nicotiana attenuata[J]. Journal of Agriculturaland Food Chemistry.2001,49(8):3553-3558.
    [17] Li Z, Wang L, Yang G, et al. Study on the Determination of Polyphenols in Tobacco by HPLCCoupled with ESI-MS After Solid-Phase Extraction[J]. Journal of Chromatographic Science.2003,41(1):36-40.
    [18] Chen J, Liu X, Xu X, et al. Rapid determination of total solanesol in tobacco leaf byultrasound-assisted extraction with RP-HPLC and ESI-TOF/MS[J]. Journal of Pharmaceutical andBiomedical Analysis.2007,43(3):879-885.
    [19] Yang S S, Smetena I. Determination of free amino acids in tobacco by HPLC with fluorescencedetection and precolumn derivatization[J]. Chromatographia.1993,37(11-12):593-598.
    [20] Pieraccini G, Furlanetto S, Orlandini S, et al. Identification and determination of mainstream andsidestream smoke components in different brands and types of cigarettes by means of solid-phasemicroextraction-gas chromatography-mass spectrometry[J]. Journal of Chromatography A.2008,1180(1-2):138-150.
    [21]杜文,谭新良,易建华,等.用烟叶化学成分进行烟叶质量评价[J].中国烟草学报.2007,13(3):25-31.
    [22]李东亮.基于化学成分的烟草质量评价方法研究与应用[D].郑州:河南农业大学,2008.
    [23]张喆.烟叶主要化学成分与等级品质关系的研究[D].北京:中国农业大学,2004.
    [24]邵惠芳,陈红丽,杨永锋,等.应用主成分分析和聚类分析评价烤烟叶位间质量差异[J].西南农业学报.2008,21(6):1559-1563.
    [25] Barrett R E. Tobacco Aging, Enzymes of Bright and Burley Tobaccos[J]. Journal of Agricultural andFood Chemistry.1957,5(3):220-224.
    [26] Di Giacomo M, Paolino M, Silvestro D, et al. Microbial community structure and dynamics of darkfire-cured tobacco fermentation[J]. Appl Environ Microbiol.2007,73(3):825-837.
    [27] Vigliotta G, Di Giacomo M, Carata E, et al. Nitrite metabolism in Debaryomyces hansenii TOB-Y7,a yeast strain involved in tobacco fermentation[J]. Appl Microbiol Biotechnol.2007,75(3):633-645.
    [28] Dixon L, Darkis F, Fa W, et al. Flue-cured tobacco: natural aging of flue-cured cigarette tobaccos[J].Industrial&Engineering Chemistry.1936,28(2):180-189.
    [29] Reid JJ, Gribbons M, DE Haley. The fermentation of cigar-leaf tobacco as influenced by the additionof yeast.[J]. J Agric Res.1944,69(9):373-381.
    [30] English C F, Bell E J, Berger A J. Isolation of Thermophiles from Broadleaf Tobacco and Effect ofPure Culture Inoculation on Cigar Aroma and Mildness[J]. Applied Microbiology.1967,15(1):117-119.
    [31]徐洁.两个真菌菌株对烤烟诱香机理的初步研究[D].泰安:山东农业大学,2006.
    [32]陶红,沈光林,赵谋明,等.酶技术改善烟叶品质的研究进展[J].现代食品科技.2008,24(7):737-740,708.
    [33] Swain J W. Tobacco flavorants[P].美国专利,4286606.1981-9-1.
    [34]刘维涓,张虹娟.氨化处理法改良低次烤烟质量的研究[J].烟草科技.1998(01):7-8.
    [35] Zi W, Peng J, Zhang X, et al. Optimization of waste tobacco stem expansion by microwave radiationfor biomass material using response surface methodology[J]. Journal of the Taiwan Institute of ChemicalEngineers.2013,44(4):678-685.
    [36] Tibor S. Microwave expansion of tobacco [P].美国专利,3842846.1973-1-22.
    [37]李红武,张强,孙力,等.微波膨胀对烟梗致香物质的影响分析[J].中国农学通报.2013(24):207-211.
    [38] Process A. Method of puffing tobacco stems by microwave energy [P].美国专利,3409023.1968-11-5.
    [39] Norman D. Heitkamp. Enhancement of flavor and aroma by microwave treatment[P].美国专利,3870053.1972-6-6.
    [40] Liu G, Wei F, Wang F, et al. Determination of Carotenoids in Flue-Cured Tobacco Leaves During itsGrowth by Reversed-Phase High Performance Liquid Chromatography[J]. Chinese Journal ofChromatography.2006,24(2):161-163.
    [41] Enzell C. Biodegradation of carotenoids—an important route to aroma compounds[J]. Pure AndApplied Chemistry.1985,57(5):693-700.
    [42] Song Z, Li T, Zhang Y, et al. The Mechanism of Carotenoid Degradation in Flue-Cured Tobacco andChanges in the Related Enzyme Activities at the Leaf-Drying Stage During the Bulk Curing Process[J].Agricultural Sciences in China.2010,9(9):1381-1388.
    [43] Schindler C, Reith P, Lichtenthaler H K. Differential Levels of Carotenoids and Decrease ofZeaxanthin Cycle Performance during Leaf Development in a Green and an Aurea Variety of Tobacco[J].Journal of Plant Physiology.1994,143(4-5):500-507.
    [44] Rodríguez-Bustamante E, Maldonado-Robledo G, Ortiz M, et al. Bioconversion of lutein using amicrobial mixture—maximizing the production of tobacco aroma compounds by manipulation of culturemedium[J]. Applied Microbiology and Biotechnology.2005,68(2):174-182.
    [45] Maldonado-Robledo G, Rodriguez-Bustamante E, Sanchez-Contreras A, et al. Production of tobaccoaroma from lutein. Specific role of the microorganisms involved in the process[J]. Applied Microbiologyand Biotechnology.2003,62(5-6):484-488.
    [46] Mikami Y, Fukunaga Y, Arita M, et al. Microbial Transformation of beta-Ionone andbeta-Methylionone[J]. Appl Environ Microbiol.1981,41(3):610-617.
    [47]谢剑平.烟草香原料[M].北京:化学工业出版社,2009:231-234.
    [48] Ali H P R B H. Determination of l-and d-amino acids in smokeless tobacco products and tobacco[J].Food Chemistry.2006,99(4):803-812.
    [49] Wahlberg I, Karlsson K, Austin D J, et al. Effects of flue-curing and ageing on the volatile, neutraland acidic constituents of Virginia tobacco[J]. Phytochemistry.1977,16(8):1217-1231.
    [50] Ho C, Oh Y, Zhang Y, et al. Peptides as Flavor Precursors in Model Maillard Reactions[M]. Flavorprecursors. American Chemical Society,1992,490:193-202.
    [51] Shibamoto T, Bernha R A. Investigation of Pyrazine Formation Pathways in Sugar-Ammonia ModelSystems[J]. J. Agic. Food Chem.1977,25(3):609-614.
    [52]杨叶昆,李雪梅,周瑾,等.酪蛋白的酶促水解及其水解物的美拉德反应[J].食品科学.2003,24(4):104-107.
    [53] Blank I, Davidek T, Devaud S, et al. Analysis of Amadori compounds by high performance anionexchange chromatography–pulse amperometric detection[J]. International Congress Series.2002,1245:263-267.
    [54] Cerny C, Fitzpatrick F, Ferreira J. Effect of salt and sucrose addition on the formation of the Amadoricompound from methionine and glucose at40°C[J]. Food Chemistry.2011,125(3):973-977.
    [55] Tarnawski M, lepokura K, Lis T, et al. Crystal structure ofN-(1-deoxy-β-d-fructopyranos-1-yl)-l-proline—an Amadori compound[J]. Carbohydrate Research.2007,342(9):1264-1270.
    [56] Fd Mills B B J H. Amadori Compounds as Nonvolatile Flavor Precursors in Processed Foods [J].JAFC.1969,4(17):723-727.
    [57] Coleman Iii W M, Chung H L. Pyrolysis GC–MS analysis of Amadori compounds derived fromselected amino acids and glucose[J]. Journal of Analytical and Applied Pyrolysis.2002,62(2):215-223.
    [58] Coleman Iii W M, Chung H L. Pyrolysis GC-MS analysis of Amadori compounds derived fromselected amino acids with glucose and rhamnose[J]. Journal of Analytical and Applied Pyrolysis.2002,63(2):349-366.
    [59] Burt S. Essential oils: their antibacterial properties and potential applications in foods-a review[J].International Journal of Food Microbiology.2004,94(3):223-253.
    [60]阎克玉,于静.金银花挥发油的提取及在卷烟中的应用[J].郑州轻工业学院学报(自然科学版).2008(5):24-28.
    [61]鹿洪亮.银杏叶挥发油热裂解产物分析及其在卷烟中的应用[J].中国烟草科学.2011,32(1):66-70.
    [62]夏宇,徐如彦,张峻松.川芎油挥发性成分分析及在卷烟中的应用[J].农产品加工(学刊).2011(12):73-75.
    [63]阎克玉,杜紫娟,王勇.沙棘籽油的提取及其在卷烟中的应用[J].河南农业科学.2010(5):44-47.
    [64]王欣,于存峰,吴迪,等.缬草精油分析及在卷烟中的应用研究[J].安徽农学通报.2010,16(6):42,107.
    [65]阎克玉,高远翔,杜荣杰,等.野菊花挥发油的提取及其在单料烟中的应用[J].郑州轻工业学院学报(自然科学版).2009,24(2):1-4.
    [66] García-Risco M R, Vicente G, Reglero G, et al. Fractionation of thyme (Thymus vulgaris L.) bysupercritical fluid extraction and chromatography[J]. The Journal of Supercritical Fluids.2011,55(3):949-954.
    [67] Wang K, Zhu R, Qu R, et al. Comprehensive two-dimensional gas chromatography–time-of-flightmass spectrometry for the analysis of volatile components in Neroli essential oil[J]. MendeleevCommunications.2012,22(1):45-46.
    [68] Hu L, Chen X, Kong L, et al. Improved performance of comprehensive two-dimensional HPLCseparation of traditional Chinese medicines by using a silica monolithic column and normalization of peakheights[J]. Journal of Chromatography A.2005,1092(2):191-198.
    [69] Omar J, Alonso I, Olivares M, et al. Optimization of comprehensive two-dimensionalgas-chromatography (GCxGC) mass spectrometry for the determination of essential oils[J]. Talanta.2012,88(0):145-151.
    [70] Li Y, Kong D, Wu H. Analysis and evaluation of essential oil components of cinnamon barks usingGC–MS and FTIR spectroscopy[J]. Industrial Crops and Products.2013,41:269-278.
    [71] Yang K K. A study on the fixation of menthol by clinoptilolites[J]. Korean Society of TobaccoScience.1984,6(2):117-129.
    [72] Corporation C. Mentholated cigarette filter[P].美国专利,3972335.1976-08-03
    [73] Richard M, Irby J, Robert S, et al. Tobacco smoke Filter element [P].美国专利,3236244.1966-02-22
    [74] Badgett C E, Osmalov J S. Flavor-releasing smoking article and method of making the same [P].美国专利,3603319.1971-9-7
    [75] Matsushita Hiroshi S M. Flavorant composition for tobacco, method for producing the same tobaccoproduct comprising said composition[P].美国专利,4318427.1980-01-21
    [76] Yeo Y, Bellas E, Firestone W, et al. Complex Coacervates for Thermally Sensitive ControlledRelease of Flavor Compounds[J]. Journal of Agricultural and Food Chemistry.2005,53(19):7518-7525.
    [77] Gharsallaoui A, Roudaut G, Chambin O, et al. Applications of spray-drying in microencapsulation offood ingredients: An overview[J]. Food Research International.2007,40(9):1107-1121.
    [78] Danielsson I, Lindman B. The definition of microemulsion[J]. Colloids and Surfaces.1981,3(4):391-392.
    [79] Li X, He G, Zheng W, et al. Study on conductivity property and microstructure ofTritonX-100/alkanol/n-heptane/water microemulsion[J]. Colloids and Surfaces A: Physicochemical andEngineering Aspects.2010,360(1-3):150-158.
    [80]于梦.薄荷油微乳化包埋及应用研究[D].无锡:江南大学,2008.
    [81] Garegg P J, Oscarson S, Ritzén H. Partially esterified sucrose derivatives: Synthesis of6-O-acetyl-2,3,4-tri-O-[(S)-3-methylpentanoyl]sucrose, a naturally occurring flavour precursor oftobacco[J]. Carbohydrate Research.1988,181:89-96.
    [82] Xie W C, Yang X H, Zhang C H, et al. Investigation on pyrolysis behavior and decompositioncompounds of three synthesized glycosidically bond flavor precursors[J]. Thermochimica Acta.2012,532:2-9.
    [83] Xie W, Tang J, Gu X, et al. Thermal decomposition study of menthyl-glycoside by TGA/SDTA,DSC and simultaneous Py-GC–MS analysis[J]. Journal of Analytical and Applied Pyrolysis.2007,78(1):180-184.
    [84] Leffingwell J C. Leaf chemistry: basic chemical constituents of tobacco leaf and differences amongtobacco types[M]. Tobacco: Production Chemistry and Technology, Oxford:Blackwell Science,1999,265-284.
    [85] Adams T B, Cohen S M, Doull J, et al. The FEMA GRAS assessment of hydroxy-andalkoxy-substituted benzyl derivatives used as flavor ingredients[J]. Food and Chemical Toxicology.2005,43(8):1241-1271.
    [86] Ng L, Lafontaine P, Vanier M. Characterization of Cigarette Tobacco by Direct ElectrosprayIonization Ion Trap Mass Spectrometry (ESI-ITMS) Analysis of the Aqueous ExtractA Novel and SimpleApproach[J]. Journal of Agricultural and Food Chemistry.2004,52(24):7251-7257.
    [87] Song Q, Zheng-Yin W, Jun-Xiong S. Quality Characteristics of Tobacco Leaves with DifferentAromatic Styles from Guizhou Province, China[J]. Agricultural Sciences in China.2007,6(2):220-226.
    [88] Sun J, He J, Wu F, et al. Comparative Analysis on Chemical Components and Sensory Quality ofAging Flue-Cured Tobacco from Four Main Tobacco Areas of China[J]. Agricultural Sciences in China.2011,10(8):1222-1231.
    [89] Duan J, Huang Y, Li Z, et al. Determination of27chemical constituents in Chinese southwesttobacco by FT-NIR spectroscopy[J]. Industrial Crops and Products.2012,40(0):21-26.
    [90] Schlotzhauer W S, Chortyk O T. Recent advances in studies on the pyrosynthesis of cigarette smokeconstituents[J]. Journal of Analytical and Applied Pyrolysis.1987,12(3-4):193-222
    [91] Carmella S G, Hecht S S, Tso T C, et al. Roles of tobacco cellulose, sugars, and chlorogenic acid asprecursors to catechol in cigarette smoke[J]. Journal of Agricultural and Food Chemistry.1984,32(2):267-273.
    [92]阎克玉,阎洪洋,李兴波,等.烤烟烟叶细胞壁物质的对比分析[J].烟草科技.2005(10):6-11.
    [93]阎克玉,刘凤珠.酶降解烟叶中细胞壁物质[J].生物技术.2001,11(4):19-21.
    [94] Weeks W W, Chaplin J F, Campbell C R. Capillary chromatography: evaluation of volatiles fromflue-cured tobacco varieties[J]. Journal of Agricultural and Food Chemistry.1989,37(4):1038-1045.
    [95] Wu Z, Weeks W W, Long R C. Contribution of neutral volatiles to flavor intensity of tobacco duringsmoking[J]. Journal of Agricultural and Food Chemistry.1992,40(10):1917-1921.
    [96]张怀苓.烟草分析与检验[M].郑州:河南科学技术出版社,1994:103-111.
    [97]李星亮.烟草中淀粉含量测定[J].安徽农业科学.2010(15):7818-7819.
    [98] Peng F, Sheng L, Liu B, et al. Comparison of different extraction methods: steam distillation,simultaneous distillation and extraction and headspace co-distillation, used for the analysis of the volatilecomponents in aged flue-cured tobacco leaves[J]. Journal of Chromatography A.2004,1040(1):1-17.
    [99]孙树林,许自成,戴亚,等.烤烟总氮分布特点及与其他化学成分的关系[J].江西农业学报.2009,21(10):13-16.
    [100] Ajandouz E H, Desseaux V, Tazi S, et al. Effects of temperature and pH on the kinetics ofcaramelisation, protein cross-linking and Maillard reactions in aqueous model systems[J]. Food Chemistry.2008,107(3):1244-1252.
    [101]姚光明.降低烟叶中蛋白质含量的研究[J].烟草科技.2000(09):6-8.
    [102]史宏志,邸慧慧,赵晓丹,等.豫中烤烟烟碱和总氮含量与中性香气成分含量的关系[J].作物学报.2009,35(7):1299-1305.
    [103]罗玲,杨杰,许自成,等.四川烤烟烟碱和总氮含量分布特点及对评吸质量的影响[J].郑州轻工业学院学报(自然科学版).2012,27(1):33-36.
    [104] Fox J W. Tobacco Ingredient Pyrolysis and Transfer Contributions to Cigarette MainstreamSmoke[Z].1993. bliley_pm2023893554-2023893589
    [105] Weeks W W. Leaf chemistry: relationship between leaf chemistry and organoleptic properties oftobacco smoke[M]. Tobacco: Production, Chemistry and Technology, Oxford:Blackwell Science,1999,304-312.
    [106] Fowles J B M. The Chemical Constituents in Cigarettes and Cigarette Smoke: Priorities for HarmReduction[Z].2000.
    [107] Rustemeier K, Stabbert R, Haussmann H J, et al. Evaluation of the potential effects of ingredientsadded to cigarettes. Part2: Chemical composition of mainstream smoke[J]. Food and Chemical Toxicology.2002,40(1):93-104.
    [108] Seeman J I, Laffoon S W, Kassman A J. Evaluation of relationships between mainstream smokeacetaldehyde and "tar" and carbon monoxide yields in tobacco smoke and reducing sugars in tobaccoblends of U.S. commercial cigarettes[J]. Inhal Toxicol.2003,15(4):373-395.
    [109] Svob Troje Z, Fr be Z, Perovi. Analysis of selected alkaloids and sugars in tobacco extract[J].Journal of Chromatography A.1997,775(1–2):101-107.
    [110]李丹丹.四川烤烟钾、氯含量状况及与其他品质指标的关系[D].河南农业大学,2008.
    [111]卢剑,王龙,孙曙光,等.不同钾肥种类对烤烟品质的影响[J].山西农业科学.2012,40(12):1277-1281.
    [112]舒海燕,杨铁钊,曹刚强,等.烟叶钾含量与烟株农艺性状和烟碱含量的相关分析[J].中国农学通报.2007,23(2):275-278.
    [113] Karaivazoglou N A, Papakosta D K, Divanidis S. Effect of chloride in irrigation water and form ofnitrogen fertilizer on Virginia (flue-cured) tobacco[J]. Field Crops Research.2005,92(1):61-74.
    [114] Mulchi C L. Chloride Effects on Agronomic, Chemical and Physical Properties of Maryland Tobacco-I. Response to Chloride Applied to the Soil[J]. tobacco Science.1982,66:113-116.
    [115]于川芳,李晓红,罗登山,等.玉溪烤烟外观质量因素与其主要化学成分之间的关系[J].烟草科技.2005(1):5-7.
    [116]谢剑平.烟草香料技术原理及应用[M].北京:化学工业出版社,2008,230-234.
    [117] Casla V G, Rosales-Conrado N, Leon-Gonzalez M E, et al. Principal component analysis (PCA) andmultiple linear regression (MLR) statistical tools to evaluate the effect of E-beam irradiation onready-to-eat food[J]. Journal of Food Composition and Analysis.2011,24(3):456-464.
    [118] Xiang G, Yang H, Yang L, et al. Multivariate statistical analysis of tobacco of different origin, gradeand variety according to polyphenols and organic acids[J]. Microchemical Journal.2010,95(2):198-206.
    [119] He Y, Li X, Deng X. Discrimination of varieties of tea using near infrared spectroscopy by principalcomponent analysis and BP model[J]. Journal of Food Engineering.2007,79(4):1238-1242.
    [120] Varonen U, Mattila M. The safety climate and its relationship to safety practices, safety of the workenvironment and occupational accidents in eight wood-processing companies[J]. Accident Analysis&Prevention.2000,32(6):761-769.
    [121] Gaines T P, Miles J D. Protein composition and classification of tobacco[J]. Journal of Agriculturaland Food Chemistry.1975,23(4):690-694.
    [122]张见,刘元法,李东亮,等.非溶液体系下酶解条件对烟草梗丝中细胞壁物质的影响[J].安徽农业科学.2012(7):3973-3975,3979.
    [123] Ahamad T, Alshehri S M. TG–FTIR–MS (Evolved Gas Analysis) of bidi tobacco powder duringcombustion and pyrolysis[J]. Journal of Hazardous Materials.2012,199–200(0):200-208.
    [124] Baker R R, Bishop L J. The pyrolysis of tobacco ingredients[J]. Journal of Analytical and AppliedPyrolysis.2004,71(1):223-311.
    [125] Senneca O, Chirone R, Salatino P, et al. Patterns and kinetics of pyrolysis of tobacco under inert andoxidative conditions[J]. Journal of Analytical and Applied Pyrolysis.2007,79(1–2):227-233.
    [126] Li W, Peng J, Zhang L, et al. Investigations on carbonization processes of plain tobacco stems andH3PO4-impregnated tobacco stems used for the preparation of activated carbons with H3PO4activation[J].Industrial Crops and Products.2008,28(1):73-80.
    [127] Yang Y, Li T, Jin S, et al. Catalytic pyrolysis of tobacco rob: Kinetic study and fuel gas produced[J].Bioresource Technology.2011,102(23):11027-11033.
    [128] Torikaiu K, Uwano Y, Nakamori T, et al. Study on tobacco components involved in the pyrolyticgeneration of selected smoke constituents[J]. Food and Chemical Toxicology.2005,43(4):559-568.
    [129] Coelho D, Marques G, Gutirrez A, et al. Chemical characterization of the lipophilic fraction of giantreed (Arundo donax) fibres used for pulp and paper manufacturing[J]. Industrial Crops and Products.2007,26(2):229-236.
    [130] Bassilakis R, Carangelo R M, Wójtowicz M A. TG-FTIR analysis of biomass pyrolysis[J]. Fuel.2001,80(12):1765-1786.
    [131] Hubert P, Vitzthum O G. Fluid Extraction of Hops, Spices, and Tobacco with Supercritical Gases[J].Angewandte Chemie International Edition in English.1978,17(10):710-715.
    [132] Vallès J, Garcia S, Hidalgo O, et al. Chapter7-Biology, Genome Evolution, Biotechnological Issuesand Research Including Applied Perspectives in Artemisia (Asteraceae)[J]. Advances in BotanicalResearch.2011, Volume60:349-419.
    [133] Umano K, Hagi Y, Nakahara K, et al. Volatile Chemicals Identified in Extracts from Leaves ofJapanese Mugwort (Artemisia princeps Pamp.)[J]. Journal of Agricultural and Food Chemistry.2000,48(8):3463-3469.
    [134] Rustaiyan A, Masoudi S. Chemical constituents and biological activities of Iranian Artemisiaspecies[J]. Phytochemistry Letters.2011,4(4):440-447.
    [135] Shang Z H, Hou Y, Long R J. Chemical composition of essential oil of Artemisia nanschanicaKrasch. from Tibetan plateau[J]. Industrial Crops and Products.2012,40(0):35-38.
    [136]李胜华,袁跃红,王少峰.艾叶在卷烟中的应用[J].安徽农学通报.2009,15(10):212-235.
    [137] Zheng X, Deng C, Song G, et al. Comparison of Essential Oil Composition of Artemisia argyi Leavesat Different Collection Times by Headspace Solid-Phase Microextraction and Gas Chromatography-MassSpectrometry[J]. Chromatographia.2004,59(11-12):729-732.
    [138] Wang W, Zhang X, Wu N, et al. Antimicrobial activities of essential oil from Artemisiae argyileaves[J]. Journal of Forestry Research.2006,17(4):332-334.
    [139]文福姬,俞庆善,阉民燮.艾叶精油化学成分研究[J].香料香精化妆品.2007(3):21-23.
    [140] Yang Z, Peng Z, Li J, et al. Development and evaluation of novel flavour microcapsules containingvanilla oil using complex coacervation approach[J]. Food Chemistry.2014,145(0):272-277.
    [141] Parthasarathi S, Ezhilarasi P N, Jena B S, et al. A comparative study on conventional andmicrowave-assisted extraction for microencapsulation of Garcinia fruit extract[J]. Food and BioproductsProcessing.2013,91(2):103-110.
    [142]包秀萍,王松峰,何雪峰,等.薄荷油微胶囊的制备及其在卷烟中的应用[J].河南农业科学.2013(03):146-149.
    [143] Yaghmur A, Aserin A, Garti N. Phase behavior of microemulsions based on food-grade nonionicsurfactants: effect of polyols and short-chain alcohols[J]. Colloids and Surfaces A: Physicochemical andEngineering Aspects.2002,209(1):71-81.
    [144] Lv F, Zheng L, Tung C. Phase behavior of the microemulsions and the stability of thechloramphenicol in the microemulsion-based ocular drug delivery system[J]. International Journal ofPharmaceutics.2005,301(1–2):237-246.
    [145] Rao J, Mcclements D J. Lemon oil solubilization in mixed surfactant solutions: Rationalizingmicroemulsion& nanoemulsion formation[J]. Food Hydrocolloids.2012,26(1):268-276.
    [146] Mitra R K, Paul B K. Physicochemical investigations of microemulsification of eucalyptus oil andwater using mixed surfactants (AOT+Brij-35) and butanol[J]. Journal of Colloid and Interface Science.2005,283(2):565-577.
    [147] Weldegergis B T, Villiers A D, Mcneish C, et al. Characterisation of volatile components of Pinotagewines using comprehensive two-dimensional gas chromatography coupled to time-of-flight massspectrometry (GCxGC–TOFMS)[J]. Food Chemistry.2011,129(1):188-199.
    [148] Perestrelo R, Barros A S, Camara J S, et al. In-Depth Search Focused on Furans, Lactones, VolatilePhenols, and Acetals As Potential Age Markers of Madeira Wines by Comprehensive Two-DimensionalGas Chromatography with Time-of-Flight Mass Spectrometry Combined with Solid PhaseMicroextraction[J]. Journal of Agricultural and Food Chemistry.2011,59(7):3186-3204.
    [149] Watkins P J, Rose G, Warner R D, et al. A comparison of solid-phase microextraction (SPME) withsimultaneous distillation–extraction (SDE) for the analysis of volatile compounds in heated beef and sheepfats[J]. Meat Science.2012,91(2):99-107.
    [150] Ning L, Fu-Ping Z, Hai-Tao C, et al. Identification of volatile components in Chinese Sinkiangfermented camel milk using SAFE, SDE, and HS-SPME-GC/MS[J]. Food Chemistry.2011,129(3):1242-1252.
    [151] Riu-Aumatell M, Vargas L, Vichi S, et al. Characterisation of volatile composition of white salsify(Tragopogon porrifolius L.) by headspace solid-phase microextraction (HS-SPME) and simultaneousdistillation–extraction (SDE) coupled to GC–MS[J]. Food Chemistry.2011,129(2):557-564.
    [152] Lin L, Zhuang M, Lei F, et al. GC/MS analysis of volatiles obtained by headspace solid-phasemicroextraction and simultaneous–distillation extraction from Rabdosia serra (MAXIM.) HARA leaf andstem[J]. Food Chemistry.2013,136(2):555-562.
    [153] Ma Q L, Hamid N, Bekhit A E D, et al. Optimization of headspace solid phase microextraction(HS-SPME) for gas chromatography mass spectrometry (GC–MS) analysis of aroma compounds in cookedbeef using response surface methodology[J]. Microchemical Journal.2013,111(0):16-24.
    [154] Jeleń H H. Use of solid phase microextraction (SPME) for profiling fungal volatile metabolites[J].Letters in Applied Microbiology.2003,36(5):263-267.
    [155] Gra mann J. Terpenoids as Plant Antioxidants[M]. Vitamins&Hormones, Gerald L, AcademicPress,2005: Volume72,505-535.
    [156]冯兆欣. O/W型鱼油微乳的制备及其应用研究[D].无锡:江南大学,2012.
    [157] Housaindokht M R, Nakhaei Pour A. Study the effect of HLB of surfactant on particle sizedistribution of hematite nanoparticles prepared via the reverse microemulsion[J]. Solid State Sciences.2012,14(5):622-625.
    [158] Kegel W K, Lekkerkerker H N W. Phase behaviour of an ionic microemulsion system as a functionof the cosurfactant chain length[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects.1993,76(0):241-248.
    [159] Mehta S K, Bala K. Tween-based microemulsions: a percolation view[J]. Fluid Phase Equilibria.2000,172(2):197-209.
    [160]徐文婷.非离子表面活性剂形成微乳的规律性研究[D].无锡:江南大学,2009.
    [161] Gamal M. E M. Transdermal delivery of hydrocortisone from eucalyptus oil microemulsion: Effectsof cosurfactants[J]. International Journal of Pharmaceutics.2008,355(1–2):285-292.
    [162] Maidment L J, Chen V, Warr G G. Effect of added cosurfactant on ternary microemulsion structureand dynamics[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects.1997,129–130(0):311-319.
    [163] Lopez F, Cinelli G, Ambrosone L, et al. Role of the cosurfactant in water-in-oil microemulsion:interfacial properties tune the enzymatic activity of lipase[J]. Colloids and Surfaces A: Physicochemicaland Engineering Aspects.2004,237(1–3):49-59.
    [164] Savelli M P, Solans C, Pons R, et al. Keratin cystine reactivity in microemulsion media: influence ofcosurfactant chain length[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects.1996,119(2–3):155-162.
    [165] Monzer F. Properties of microemulsions with mixed nonionic surfactants and citrus oil[J]. Colloidsand Surfaces A: Physicochemical and Engineering Aspects.2010,369(1–3):246-252.
    [166] Kreilgaard M, Pedersen E J, Jaroszewski J W. NMR characterisation and transdermal drug deliverypotential of microemulsion systems[J]. Journal of Controlled Release.2000,69(3):421-433.
    [167] Spernath L, Regev O, Levi-Kalisman Y, et al. Phase transitions in O/W lauryl acrylate emulsionsduring phase inversion, studied by light microscopy and cryo-TEM[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects.2009,332(1):19-25.
    [168] Goddeeris C, Cuppo F, Reynaers H, et al. Light scattering measurements on microemulsions:Estimation of droplet sizes[J]. International Journal of Pharmaceutics.2006,312(1–2):187-195.
    [169] Zheng L, Minamikawa H, Harada K, et al. Effect of Inorganic Salts on the Phase Behavior of anAqueous Mixture of Heptaethylene Glycol Dodecyl Ether[J]. Langmuir.2003,19(25):10487-10494.
    [170] Webman I, Safran S A, Bug A L R, et al. Dynamic percolation in microemulsions[J]. PhysicalReview A.1986,33(4):2842-2845.
    [171] Anton N, Gayet P, Benoit J, et al. Nano-emulsions and nanocapsules by the PIT method: Aninvestigation on the role of the temperature cycling on the emulsion phase inversion[J]. InternationalJournal of Pharmaceutics.2007,344(1–2):44-52.
    [172] Rao J, Mcclements D J. Stabilization of Phase Inversion Temperature Nanoemulsions by SurfactantDisplacement[J]. Journal of Agricultural and Food Chemistry.2010,58(11):7059-7066.
    [173]付婷婷.番茄红素微乳的制备及特性研究[D].江南大学,2012.
    [174] Carmines E L. Evaluation of the potential effects of ingredients added to cigarettes. Part1: Cigarettedesign, testing approach, and review of results[J]. Food and Chemical Toxicology.2002,40(1):77-91.
    [175]谷风林.酪蛋白美拉德产物的制备、性质及在烟草中的应用研究[D].江南大学,2010.
    [176] Gómez-Siurana A, Marcilla A, Beltran M, et al. Thermogravimetric study of the pyrolysis of tobaccoand several ingredients used in the fabrication of commercial cigarettes: Effect of the presence ofMCM-41[J]. Thermochimica Acta.2011,523(1–2):161-169.
    [177] Geng Z, Zhang M, Yu Y. Theoretical investigation on pyrolysis mechanism of glycerol[J]. Fuel.2012,93(0):92-98.
    [178] Oja V, Hajaligol M R, Waymack B E. The vaporization of semi-volatile compounds during tobaccopyrolysis[J]. Journal of Analytical and Applied Pyrolysis.2006,76(1–2):117-123.
    [179]许永,向能军,高茜,等.杭白菊浸膏热裂解产物的GC/MS分析[J].精细化工.2008,25(8):766-770.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700