二氧化硅基杂化材料的设计制备及其在药物可控释放中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文的目的是设计制备二氧化硅基可控释放材料来研究药物的可控释放机理,控制水溶性小分子药物的释放,在提高药物负载量的同时,找到一种简单、灵活、有效的控制药物释放的方法。
     为深入理解可控释放机理,以酸碱指示剂为可控释放的活性成分,研究其在SiO_2及杂化SiO_2凝胶中的酸碱响应及释放行为。在凝胶制备的过程中采用Si(OC_2H_5)_4(TEOS),(C_2H_5O)_3Si(CH_2)_2CH_3(PTES)和(CH3_O)_3Si(CH_2)_6Si(OCH_3)_3(TSH)为前驱物。实验结果表明具有有机官能团的有机硅的加入减小了凝胶的孔径和孔体积,因而抑制了指示剂的释放,但对凝胶中指示剂的酸碱响应没有明显影响。总的来说,指示剂从凝胶中的释放量在酸性溶液中的小于在碱性溶液中的;在酸性溶液中的整个释放过程,以及在碱性溶液中释放的起始阶段,指示剂从凝胶中的释放量具有相同的顺序,即TEOS凝胶> TEOS/PTES凝胶> TEOS/TSH凝胶。整个释放过程受指示剂从凝胶中的扩散控制,释放主要受凝胶的孔结构、凝胶与指示剂之间的相互作用、以及指示剂溶解度的影响。
     为找到一个可以有效控制水溶性小分子药物释放的凝胶体系,研究了水杨酸钠(SS)从(CH3O)3Si(CH2)3NH(CH2)3Si(OCH3)3(TSPA)凝胶或TSPA/TEOS杂化凝胶中的释放行为。实验结果表明通过调节TSPA和TEOS的比例可以很容易控制SS的释放。在制备凝胶时增大TSPA与TEOS的比例可以降低凝胶的比表面积和孔体积,同时加强了药物和凝胶基质之间的相互作用,达到有效降低药物释放的效果。TSPA既能溶于水,又能溶于常见的有机溶剂,以其为前驱物制备的凝胶既适用于亲水药物、又适用于疏水药物的可控释放,尤其是适用于水溶性小分子药物的释放。
     为了提高药物的负载量,同时找到一种简单、灵活、有效的控制药物释放的方法,首先制备了负载维生素B1(VB1)的介孔SiO2压片,然后在压片表面涂了一系列溶胶-凝胶膜后,研究VB1的释放行为,综合考察了涂膜前驱物的种类、涂膜液组成、涂膜次数、干燥温度和释放介质对VB1可控释放的影响。研究结果表明,VB1的释放可以比较容易地通过改变涂膜前驱物的种类和涂膜次数得到控制。这种压片之后涂膜的方法是一种灵活有效的控制药物释放的方法,既通过介孔SiO2提高了药物的负载量,又通过改变涂膜条件灵活而有效地控制了药物的释放。
The purpose of this thesis is to design and prepare some silica-based materials to study the drug release mechanisms, to control the release of water-soluble drugs of small molecules, to raise the drug loading in the carrier materials, and at the same time to find an easy, flexible, and effective strategy to control the drug release.
     In order to understand the release mechanisms, the reactivity and release of acid-base indicators entrapped in silica and hybrid silica gels were studied. Tetraethoxysilane (TEOS), n-propyltriethoxysilane (PTES), and bis(trimethoxysilyl)hexane (TSH) were used as gel precursors. The experimental results suggest that adding the organosilanes lower the pore size and pore volume of the gels and therefore, suppress the indicator release, but do not present any obvious effects on the acid-base reactivity of the entrapped indicators. In general more indicators were found to release in basic solutions than in acidic solutions. For all the entrapped indicators in acidic solutions through the while release process, and in basic solutions at the beginning of the release, the indicator release was found to follow the sequence of TEOS Gel > TEOS/PTES Gel > TEOS/TSH Gel. The overall release process was found to be diffusion-controlled, and the release was mainly affected by the textural properties of the gels, the interactions between the gel matrices and the indicators, and the indicator solubility.
     In order to find a good recipe to effectively control the release of water-soluble drugs of small molecules, the controlled release of sodium salicylate (SS) from the gels derived from bis(trimethoxysilylpropyl)amine (TSPA) or the mixture of TSPA with tetraethoxysilane (TEOS) was investigated. The experimental results suggest that the release of SS can be easily controlled by adjusting the ratio between TSPA and TEOS. Increasing the ratio between TSPA and TEOS lowers the surface area and pore volume of the gels, while enhances the interactions between the drug and the gel matrix, therefore, reduces the release rate of the drug effectively. TSPA can dissolve in both water and common organic solvents. It was found to be a very convenient and effective precursor for the preparation of gels for controlled release of both hydrophilic and hydrophobic drugs, especially water-soluble drugs of small molecules.
     In order to raise the drug loading in the carrier materials, and at the same time to find an easy, flexible, and effective strategy to control the drug release, the controlled release of vitamin B1 (VB1, thiamine hydrochloride) from mesoporous silica tablets coated with a series of sol-gel films were investigated. The effects of organosilane type and concentration, coating time, drying temperature, and release media on VB1 release from the coated mesoporous silica tablets were examined comprehensively. VB1 release decreased with the increase in coating time and drying temperature. The experimental results show that drug release can be easily controlled by changing the organosilane type and coating time. The method used in this study appears to be an effective and flexible way to control drug release because of the high drug loading in the mesoporous silica carrier and the ease control of the release by manipulating the coatings.
引文
[1] 杨延昆, 王玉玲. 药物缓释、控释制剂的研究开发现状及发展趋势[J]. 齐鲁药事, 2004, 4: 31-32.
    [2] Park CM, Hollenberg MJ. Induction of retinal regeneration in vivo by growth factors[J]. Dev Biol, 1991, 148: 322-333.
    [3] Edelman ER, Mathiowitz E, Langer R, Klagsbrun M. Controlled and modulated release of basic fibroblast growth factor[J]. Biomaterials, 1991, 12: 619-626.
    [4] 尹钟民. 微胶囊的合成及其应用的发展[J]. 印染译丛, 1992, 2: 75 - 79.
    [5] 刘袖洞, 何洋, 刘群. 微胶囊及其在生物医学领域的应用[J]. 科学通报, 2000, 45 (23): 2476-2483.
    [6] 钳户朝治著, 阎世翔译. 微胶囊工艺学[M]. 北京:轻工业出版社, 1989.
    [7] 梁治齐著. 微胶囊技术及其应用[M]. 北京:中国轻工业出版社, 1999.
    [8] 王康, 何志敏. 海藻酸凝胶性质、微囊的制备与在药物控释中的研究进展[J]. 化学工程, 2002, 1: 48-54.
    [9] 吴海燕, 谢瑞娟. 缓释制剂的研究进展[J]. 国外丝绸, 2006, 3: 20-22.
    [10] 余桂郁, 杨南如. 溶胶-凝胶原理及工艺过程[J]. 硅酸盐学报, 1993, 6: 60-65.
    [11] 党文修. 山东大学硕士学位论文[D]. 有序介孔二氧化硅材料的形貌控制,2004.
    [12] Wu Z, Joo H, Lee T G, Lee K. Controlled release of lidocaine hydrochloride from the surfactant-doped hybrid xerogels[J]. J. Controlled Release, 2005, 104 (3): 497-505.
    [13] Kortesuo P , Ahola M , Kangas M , Yli-Urpo A , Kiesvaara J , Marvola M. In vitro release of dexmedetomidine from silica xerogel monoliths: effect of sol-gel synthesis parameters[J]. Int. J. Pharm., 2001, 221: 107-114.
    [14] Ahola M S, Sailynoja E S, Raitavuo M H, Vaahtio M M, Salonen J I, Yli-Urpo A U O. In vitro release of heparin from silica xerogels[J]. Biomaterials, 2001, 22: 2163-2170.
    [15] Ahola M, Kortesuo P, Kangasniemi I, Kiesvaara J, Yli-Urpo A. Silica xerogel carrier materal for controlled release of toremifene citrate[J]. Int. J. Pharm., 2000, 195: 219-227.
    [16] Wu Z, Joo H, Ahn I S, Kim J H, Kim C K, Lee K. Design of doped hybrid xerogels for a controlled release of brilliant blue FCF[J]. J. Non-Cryst.solids, 2004, 342: 46-53.
    [17] Kortesuo P, Ahola M, Kangas M, Leino T, Laakso S, Vuorilehto L, Yli-Urpo A, Kiesvaara J,Marvola M. Alkyl-subsituted silica gel as a carrier in the controlled release of dexmedetomidine[J]. J. Controlled Release, 2001, 76: 227-238.
    [18] Vallet-Regi M, Doadrio J C, Doadrio A L, Izquierdo-Barba I, Perez-Pariente J. Hexagonal ordered mesoporous material as a matrix for the controlled release of amoxicillin[J]. Solid State Ionics, 2004, 172: 435-439.
    [19] Charnary C, Begu S, Tourne-Peteilh C, Nicole L, Lerner D A, Devoisselle J M, Inclusion of ibuprofen in mesoporous templated silica: drug loading and release property[J]. Eur. J. Pharm. Biopharm., 2004, 57: 533-540.
    [20] Horcajada P, Ramila A, Perez-Pariente J, Vallet-Regi M. Influence of pore size of MCM-41 matrices on drug delivery rate[J]. Microporous Mesoporous Mater., 2004, 68: 105-109.
    [21] Doadrio A L, Sousa E M B, Doadrio J C, Perez P J, Izquierdo-Barba I, Vallet-Regi M. Mesoporous SBA-15 HPLC evaluation for controlled gentamicin drug delivery[J]. J. Control. Release, 2004, 97: 125-132.
    [22] 周光, 雷映平, 廖兰, 王延吉. 新型无定形 SiO2 研究进展及展望[J]. 非金属矿, 2002, 25 (SⅠ): 14-17.
    [23] Zhu Y, Shi J, Chen H, Shen W, Dong X. A facile method to synthesize novel hollow mesoporous silica spheres and advanced storage property[J]. Microporous Mesoporous Mater., 2005, 84: 218-222.
    [24] 张永青, 王琴, 钟炳. 溶胶-凝胶法制备超细SiO2[J]. 燃料化学学报, 1996, 24 (6): 517-521.
    [25] Diniz da Costa J C, Lu G. Q, Rudolph V, Lin Y S. Novel molecular sieve silica (MSS) membranes: characterisation and permeation of single-step and two-step sol–gel membranes[J]. J. Membr. Sci., 2002, 198 (1): 9-21.
    [26] Atkin R, Craig V S J, Wanless E J, Biggs S. Mechanism of cationic surfactant adsorption at the solid–aqueous interface[J]. Adv. Colloid Interface Sci., 2003, 103: 219-304.
    [27] Wu Z, Lee K, Lin Y, Lan X, Huang L. Effects of surface-active substances on acid-base indicator reactivity in SiO2 gels[J]. J. Non-Cryst. Solids, 2003, 320: 168-176.
    [28] Wu Z, Joo H, Ahn I-S, Haam S, Kim J-H, Lee K. Organic dye adsorption on mesoporous hybrid gels[J]. Chem. Eng. J., 2004, 102: 277-282.
    [29] Wu Z, Ahn I-S, Lee C-H, Kim J-H, Shul Y G, Lee K. Enhancing the organic dye adsorption on porous xerogels[J]. Colloids Surf., A, 2004, 240: 157-164.
    [30] Siepmann J, Peppas N A. Modeling of drug release from delivery systems based on hydroxypropyl methylcellulose (HPMC)[J]. Adv. Drug Deliv. Rev., 2001, 48: 139-157.
    [31] Rao M S, Gray J, Dave B C. Smart glasses: Molecular programming of dynamic responses in organosilica sol-gels[J]. J. Sol-Gel Sci. Technol., 2003, 26: 553-560.
    [32] Brinker C J, Scherer G W. Sol-gel science: The Physics and Chemistry of Sol-Gel Processing[M], Academic Press, Inc. 1990, 373.
    [33] Iler R K. The Chemistry of Silica[M]. Wiley-Interscience Publication, 1979, 62.
    [34] Falaize S, Radin S, Ducheyne P. In vitro behavior of silica-based xerogels intended as controlled release carriers[J]. J. Am. Ceram. Soc., 1999, 82: 969-1045.
    [35] 李艳, 褚良银, 朱家骅, 曾刚, 夏素兰, 陈文梅. 环境感应式控制释放开关膜的研究进展[J]. 高分子材料科学与工程, 2003, 19 (5): 37-41.
    [36] 宋江莉, 王秀芬. LCST 类水凝胶开关效应的研究进展[J]. 化学进展, 2004, 16 (1): 56-60.
    [37] Mal N K, Fujiwara M, Tanaka Y. Photocontrolled reversible release of guest molecules from coumarinmodified mesoporous silica[J]. Nature, 2003, 421: 350-353
    [38] Casasus R, Marcos M D, Martinez-Manez R, Ros-Lis J V, Soto J, Villaescusa L A, Amoros P, Beltran D, Guillem C, Latorre J. Toward the Development of Ionically Controlled Nanoscopic Molecular Gates[J]. J. Am. Chem. Soc., 2004, 126: 8612-8613.
    [39] 黄德平, 黄文旵, 陈天丹. 多孔微晶玻璃作为药物载体材料的制备及其体外释放研究[J]. 无机材料学报, 2001, 16 (6): 1195-1198.
    [1] Makote R, Collinson M M. Organically modified silicate films for stable pH sensors[J]. Anal. Chim. Acta, 1999, 394: 195-200.
    [2] Sanchez C, Julian B, Belleville P, Popall M. Applications of hybrid organic–inorganic nanocomposites[J]. J. Mater. Chem., 2005, 15: 3559-3592.
    [3] Wu Z, Lee K, Lin Y, Lan X, Huang L. Effects of surface-active substances on acid–base indicator reactivity in SiO2 gels[J]. J. Non-Cryst. Solids, 2003, 320: 168-176.
    [4] Wu Z, Joo H, Ahn I-S, Kim J-H, Kim C-K, Lee K. Design of doped hybrid xerogels for a controlled release of brilliant blue FCF[J]. J. Non-Cryst. Solids, 2004, 342: 46-53.
    [5] Wu Z, Joo H, Lee T G, Lee K. Controlled release of lidocaine hydrochloride from the surfactant-doped hybrid xerogels[J]. J. Controlled Release, 2005, 104: 497-505.
    [6] Jiang Y, Wu Z, You L, Xiang H. Bis(trimethoxysilylpropyl)amine and tetraethoxysilane derived gels as effective controlled release carriers for water-soluble drugs of small molecules[J]. Colloids Surf., B, 2006, 49: 55-59.
    [7] Han K, Wu Z, Lee J, Ahn I-S, Park J W, Min B R, Lee K. Activity of glucose oxidase entrapped in mesoporous gels[J]. Biochem. Eng. J., 2005, 22: 161-166.
    [8] Costa T M H., Stefani V, Gallas M R, Balzaretti N M, Jornada J A H. Fluorescent compacts prepared by the entrapment of benzoxazole type dyes into a silica matrix at high pressure[J]. J. Non-Cryst. Solids, 2004, 333: 221-225.
    [9] Unger B, Rurack K, Muller R, Jancke H, Resch-Genger U. Microscopic vs. macroscopic structural evolution of SiO2 sols and gels employing a tailor-made fluorescent reporter dye[J]. J. Mater. Chem., 2005, 15: 3069-3083.
    [10] Kim M S, Seok S I, Ahn B Y, Koo S M, Paik S U. Encapsulation of Water-Soluble Dye in Spherical Sol-Gel Silica Matrices[J]. J. Sol-Gel Sci. Technol., 2003, 27 (3): 355-361.
    [11] Anedda A, Carbonaro C M, Clemente F, Corpino R, Grandi S, Magistris A, Mustarelli P C. Rhodamine 6G–SiO2 hybrids: A photoluminescence study[J]. J. Non-Cryst. Solids, 2005, 351: 1850-1854.
    [12] Kruk M, Jaroniec M. Gas adsorption characterization of ordered organic-inorganic nanocomposite materials[J], Chem Mater, 2001, 13: 3169-3183.
    [13] 徐如人, 庞文琴等. 分子筛与多孔材料化学[M]. 北京, 科学出版社, 2004, 145-146.
    [14] 严继民, 张启元, 高敬琮. 吸附与凝聚[M]. 北京, 科学出版社, 1986.
    [15] Tsai M T. Hydrolysis and condensation of forsterite precursor alkoxides: modification of the molecular gel structure by acetic acid[J]. J. Non-Cryst. Solids, 2002, 298: 116-130.
    [16] Orel B, Jese R, Stangar U L, Grdadolnik J, Puchberger M. Infrared attenuated total reflection spectroscopy studies of aprotic condensation of (EtO)3Si-R-Si(OEt)3 and R-Si(OEt)3 systems with carboxylic acids[J]. J. Non-Cryst. Solids, 2005, 351: 530-549.
    [17] Siepmann J, Peppas N A. Modeling of drug release from delivery systems based on hydroxypropyl methylcellulose (HPMC)[J]. Adv. Drug Deliv. Rev., 2001, 48: 139-157.
    [18] Rao M S, Gray J, Dave B C. Smart Glasses: Molecular Programming of Dynamic Responses in Organosilica Sol-Gels[J]. J. Sol-Gel Sci. Technol., 2003, 26: 553-560.
    [19] Falaize S, Radin S, Ducheyne P. In Vitro Behavior of Silica-Based Xerogels Intended as Controlled Release Carriers[J]. J. Am. Ceram. Soc., 1999, 82: 969-1045.
    [20] Coutts-Lendon C A, Wright N A, Mieso E V, Koenig J L. The use of FT-IR imaging as an analytical tool for the characterization of drug delivery systems[J]. J. Controlled Release, 2003, 93: 223-248.
    [21] Papadopoulou V, Kosmidis K, Vlachou M, Macheras P. On the use of the Weibull function for the discernment of drug release mechanisms[J]. Int. J. Pharm., 2006, 309: 44-50.
    [22] Carceles M D, Alonso J M, Garcia-Munoz M, Najera M D, Castano I, Vila N. La crème améthoca?ne/lidoca?ne, une nouvelle formule topique pour prévenir la douleur par ponction veineuse chez les enfants[J]. Reg Anesth. Pain M., 2002, 27: 289-295.
    [23] B?ttcher H, Slowik P, Sü? W. Sol-Gel Carrier Systems for Controlled Drug Delivery[J]. J. Sol-Gel Sci. Technol., 1998, 13: 277-281.
    [24] Kortesuo P, Ahola M, Kangas M, Yli-Urpo A, Kiesvaara J, Marvola M. In vitro release of dexmedetomidine from silica xerogel monoliths: effect of sol-gel synthesis parameters[J]. Int. J. Pharm., 2001, 221: 107-114.
    [25] Santos E M, Radin S, Ducheyne P. Sol-gel derived carrier for the controlled release of proteins[J]. Biomaterials, 1999, 20: 1695-1700.
    [26] Costa J C D, Lu G. Q, Rudolph V, Lin Y S. Novel molecular sieve silica (MSS) membranes: characterisation and permeation of single-step and two-step sol–gel membranes[J]. J. Membr. Sci.,2002, 198: 9-21.
    [27] Muller-Dethlefs K, Hobza P. Noncovalent Interactions: A Challenge for Experiment and Theory[J]. Chem. Rev. 2000, 100: 143-167.
    [28] Kortesuo P, Ahola M, Kangas M, Leino T, Laakso S, Vuorilehto L, Yli-Urpo A, Kiesvaara J, Marvola M. Alkyl-subsituted silica gel as a carrier in the controlled release of dexmedetomidine[J]. J. Controlled Release, 2001, 76: 227-238.
    [29] Ahola M S, Sailynoja E S, Raitavuo M H, Vaahtio M M, Salonen J I, Yli-Urpo A U O. In vitro release of heparin from silica xerogels[J]. Biomaterials, 2001, 22: 2163-2170.
    [30] Wu Z, Ahn I-S, Lee C-H, Kim J-H, Shul Y G, Lee K. Enhancing the organic dye adsorption on porous xerogels[J]. Colloids Surf., A, 2004, 240: 157-164.
    [31] Wu Z, Lee K, Adsorption mechanisms of mesoporous adsorbents in solutions[J]. Chem. Res. Chinese U., 2004, 20 (2): 185-187.
    [32] Wu Z, Joo H, Ahn I-S, Haam S, Kim J-H, Lee K. Organic dye adsorption on mesoporous hybrid gels[J]. Chem. Eng. J., 2004, 102: 277-282.
    [33] Wu Z, Joo H, Lee K. Kinetics and thermodynamics of the organic dye adsorption on the mesoporous hybrid xerogel[J]. Chem. Eng. J., 2005, 112: 227-236.
    [34] Wu Z, Wu J, Xiang H, Chun M-S, Lee K. Organosilane-functionalized Fe3O4 composite particles as effective magnetic assisted adsorbents[J]. Colloids Surf., A, 2006, 279: 167-174.
    [35] You L, Wu Z, Kim T, Lee K. Kinetics and thermodynamics of bromophenol blue adsorption by a mesoporous hybrid gel derived from tetraethoxysilane and bis(trimethoxysilyl)hexane[J]. J. Colloid Interface Sci., 2006, 300: 526-535.
    [1] Nicoll S B, Radin S, Santos E M, Tuan R S, Ducheyne P. In vitro release kinetics of biologically active transforming growth factor-β1 from a novel porous glass carrier[J]. Biomaterials, 1997, 18: 853-859.
    [2] Kortesuo P, Ahola M, Kangas M, Leino T, Laakso S, Vuorilehto L, Yli-Urpo A, Kiesvaara J, Marvola M. Alkyl-subsituted silica gel as a carrier in the controlled release of dexmedetomidine[J]. J. Controlled Release, 2001, 76: 227-238.
    [3] Ahola M, Kortesuo P, Kangasniemi I, Kiesvaara J, Yli-Urpo A. Silica xerogel carrier material for controlled release of toremifene citrate[J]. Int. J. Pharm., 2000, 195: 219-227.
    [4] B?ttcher H, Slowik P, Sü? W. Sol-Gel Carrier Systems for Controlled Drug Delivery[J]. J. Sol-Gel Sci. Technol., 1998, 13: 277-281.
    [5] Ahola M S, Sailynoja E S, Raitavuo M H, Vaahtio M M, Salonen J I, Yli-Urpo A U O. In vitro release of heparin from silica xerogels[J]. Biomaterials, 2001, 22: 2163-2170.
    [6] Fattal E, Rosa G D, Bochot A. Gel and solid matrix systems for the controlled delivery of drug carrier-associated nucleic acids[J]. Int. J. Pharm., 2004, 277: 25-30.
    [7] Kortesuo P, Ahola M, Kangas M, Yli-Urpo A, Kiesvaara J, Marvola M. In vitro release of dexmedetomidine from silica xerogel monoliths: effect of sol-gel synthesis parameters[J]. Int. J. Pharm., 2001, 221: 107-114.
    [8] Sanchez C, Julian B, Belleville P, Popall M. Applications of hybrid organic–inorganic nanocomposites[J]. J. Mater. Chem., 2005, 15: 3559-3592.
    [9] Kortesuo P, Ahola M, Karlsson S, Kangasniemi I, Kiesvaara J, Yli-Urpo A. Sol-gel processed sintered silica xerogel as a carrier in controlled drug delivery[J]. J. Biomed. Mater. Res., 1999, 44 (2): 162-167.
    [10] Kortesuo P, Ahola M, Karlsson S, Kangasniemi I, Yli-Urpo A, Kiesvaara J. Silica xerogel as an implantable carrier for controlled drug delivery-evaluation of drug distribution and tissue e!ects after implantation[J]. Biomaterials, 2000, 21: 193-198.
    [11] Santos E M, Radin S, Shenker B J, Shapiro I M, Ducheyne P. Si-Ca-P xerogels and bone morphogenetic protein act synergistically on rat stromal marrow cell differentiation in vitro[J].J. Biomed. Mater. Res., 1998, 41 (1): 87-94.
    [12] Santos E M, Radin S, Ducheyne P. Sol-gel derived carrier for the controlled release of proteins[J]. Biomaterials, 1999, 20: 1695-1700.
    [13] Radin S, Ducheyne P, Kamplain T, Tan B H. Silica sol-gel for the controlled release of antibiotics. I. Synthesis, characterization, and in vitro release[J]. J. Biomed. Mater. Res., 2001, 57: 313-320.
    [14] Aughenbaugh W, Radin S, Ducheyne P. Silica sol-gel for the controlled release of antibiotics. II. The effect of synthesis parameters on the in vitro release kinetics of vancomycin[J]. J. Biomed. Mater. Res., 2001, 57 (3): 321-326.
    [15] Radin S, Falaize S, Lee M H, Ducheyne P. In vitro bioactivity and degradation behavior of silica xerogels intended as controlled release materials[J]. Biomaterials, 2002, 23: 3113-3122.
    [16] Bottcher H, Jagota C, Trepte J, Kallies K-H., Haufe H. Sol–gel composite films with controlled release of biocides[J]. J. Controlled Release, 1999, 60: 57-65.
    [17] Morpurgo M, Teoli D, Palazzo B, Bergamin E, Realdon N, Guglielmi M. Influence of synthesis and processing conditions on the release behavior and stability of sol–gel derived silica xerogels embedded with bioactive compounds[J]. IL Farmaco, 2005, 60: 675-683.
    [18] Wu Z, Joo H, Lee T G, Lee K. Controlled release of lidocaine hydrochloride from the surfactant-doped hybrid xerogels[J]. J. Controlled Release, 2005, 104: 497-505.
    [19] Ro J C, Chung I J. Structures and properties of silica gels prepared by the sol-gel method[J]. J. Non-Cryst. Solids, 1991, 130: 8-17.
    [20] Curran M D, Stiegman A E. Morphology and pore structure of silica xerogels made at low pH[J]. J. Non-Cryst. Solids, 1999, 249: 62-68.
    [21] Tillotson T M, Reynolds J G. Structure and characterization of sol–gel and aerogel materials and oxidation products from the reaction of (CH3O)4Si and C16H33Si(OCH3)3[J]. J. Non-Cryst. Solids, 2003, 331: 168-176.
    [22] Faulon J-L, Loy D A, Carlson G A, Shea K J. Computer-aided structure elucidation for arylene-bridged polysilsesquioxanes[J]. Comp. Mater. Sci., 1995, 3 (3): 334-346.
    [23] Siepmann J, Peppas N A. Modeling of drug release from delivery systems based on hydroxypropyl methylcellulose (HPMC)[J]. Adv. Drug Deliv. Rev., 2001, 48: 139-157.
    [24] Coutts-Lendon C A, Wright N A, Mieso E V, Koenig J L. The use of FT-IR imaging as an analytical tool for the characterization of drug delivery systems[J]. J. Controlled Release, 2003, 93: 223-248.
    [25] Papadopoulou V, Kosmidis K, Vlachou M, Macheras P. On the use of the Weibull function for the discernment of drug release mechanisms[J]. Int. J. Pharm., 2006, 309: 44-50.
    [26] Polakovic M, Gorner T, Gref R, Dellacherie E. Lidocaine loaded biodegradable nanospheres II. Modelling of drug release[J]. J. Controlled Release, 1999, 60: 169-177.
    [27] Muller-Dethlefs K, Hobza P. Noncovalent Interactions: A Challenge for Experiment and Theory[J]. Chem. Rev., 2000, 100: 143-167.
    [28] Wu Z, Lee K, Lin Y, Lan X, Huang L. Effects of surface-active substances on acid–base indicator reactivity in SiO2 gels[J]. J. Non-Cryst. Solids, 2003, 320: 168-176.
    [29] Wu Z, Joo H, Ahn I-S, Kim J-H, Kim C-K, Lee K. Design of doped hybrid xerogels for a controlled release of brilliant blue FCF[J]. J. Non-Cryst. Solids, 2004, 342: 46-53.
    [30] Wu Z, Ahn I-S, Lee C-H, Kim J-H, Shul Y G, Lee K. Enhancing the organic dye adsorption on porous xerogels[J]. Colloids Surf., A, 2004, 240: 157-164.
    [1] Nicoll S B, Radin S, Santos E M, Tuan R S, Ducheyne P. In vitro release kinetics of biologically active transforming growth factor-β1 from a novel porous glass carrier[J]. Biomaterials, 1997, 18: 853-859.
    [2] Kortesuo P, Ahola M, Kangas M, Leino T, Laakso S, Vuorilehto L, Yli-Urpo A, Kiesvaara J, Marvola M. Alkyl-subsituted silica gel as a carrier in the controlled release of dexmedetomidine[J]. J. Controlled Release, 2001, 76: 227-238.
    [3] Ahola M, Kortesuo P, Kangasniemi I, Kiesvaara J, Yli-Urpo A. Silica xerogel carrier material for controlled release of toremifene citrate[J]. Int. J. Pharm., 2000, 195: 219-227.
    [4] B?ttcher H, Slowik P, Sü? W. Sol-Gel Carrier Systems for Controlled Drug Delivery[J]. J. Sol-Gel Sci. Technol., 1998, 13: 277-281.
    [5] Ahola M S, Sailynoja E S, Raitavuo M H, Vaahtio M M, Salonen J I, Yli-Urpo A U O. In vitro release of heparin from silica xerogels[J]. Biomaterials, 2001, 22: 2163-2170.
    [6] Fattal E, Rosa G D, Bochot A. Gel and solid matrix systems for the controlled delivery of drug carrier-associated nucleic acids[J]. Int. J. Pharm., 2004, 277: 25-30.
    [7] Kortesuo P, Ahola M, Kangas M, Yli-Urpo A, Kiesvaara J, Marvola M. In vitro release of dexmedetomidine from silica xerogel monoliths: effect of sol-gel synthesis parameters[J]. Int. J. Pharm., 2001, 221: 107-114.
    [8] Unger K, Rupprecht H, Valentin B, Kircher W. The use of porous and surface modified silicas as drug delivery and stabilizing agent[J]. Drug. Dev. Ind. Pharm., 1983, 9: 69-91.
    [9] Kortesuo P, Ahola M, Karlsson S, Kangasniemi I, Kiesvaara J, Yli-Urpo A. Sol-gel processed sintered silica xerogel as a carrier in controlled drug delivery[J]. J. Biomed. Mater. Res., 1999, 44 (2): 162-167.
    [10] Kortesuo P, Ahola M, Karlsson S, Kangasniemi I, Yli-Urpo A, Kiesvaara J. Silica xerogel as an implantable carrier for controlled drug delivery-evaluation of drug distribution and tissue e!ects after implantation[J]. Biomaterials, 2000, 21: 193-198.
    [11] Santos E M, Radin S, Shenker B J, Shapiro I M, Ducheyne P. Si-Ca-P xerogels and bone morphogenetic protein act synergistically on rat stromal marrow cell differentiation in vitro[J].J. Biomed. Mater. Res., 1998, 41 (1): 87-94.
    [12] Santos E M, Radin S, Ducheyne P. Sol-gel derived carrier for the controlled release of proteins[J]. Biomaterials, 1999, 20: 1695-1700.
    [13] Radin S, Ducheyne P, Kamplain T, Tan B H. Silica sol-gel for the controlled release of antibiotics. I. Synthesis, characterization, and in vitro release[J]. J. Biomed. Mater. Res., 2001, 57: 313-320.
    [14] Aughenbaugh W, Radin S, Ducheyne P. Silica sol-gel for the controlled release of antibiotics. II. The effect of synthesis parameters on the in vitro release kinetics of vancomycin[J]. J. Biomed. Mater. Res., 2001, 57 (3): 321-326.
    [15] Radin S, Falaize S, Lee M H, Ducheyne P. In vitro bioactivity and degradation behavior of silica xerogels intended as controlled release materials[J]. Biomaterials, 2002, 23: 3113-3122.
    [16] Ro J C, Chung I J. Structures and properties of silica gels prepared by the sol-gel method[J]. J. Non-Cryst. Solids, 1991, 130 (1): 8-17.
    [17] Curran M D, Stiegman A E. Morphology and pore structure of silica xerogels made at low pH[J]. J. Non-Cryst. Solids, 1999, 249: 62-68.
    [18] Wu Z, Lee K, Lin Y, Lan X, Huang L. Effects of surface-active substances on acid–base indicator reactivity in SiO2 gels[J]. J. Non-Cryst. Solids, 2003, 320: 168-176.
    [19] Wu Z, Joo H, Ahn I-S, Kim J-H, Kim C-K, Lee K. Design of doped hybrid xerogels for a controlled release of brilliant blue FCF[J]. J. Non-Cryst. Solids, 2004, 342: 46-53.
    [20] Wu Z, Joo H, Lee T G, Lee K. Controlled release of lidocaine hydrochloride from the surfactant-doped hybrid xerogels[J]. J. Controlled Release, 2005, 104: 497-505.
    [21] Jiang Y, Wu Z, You L, Xiang H. Bis(trimethoxysilylpropyl) amine and tetraethoxysilane derived gels as effective controlled release carriers for water-soluble drugs of small molecules[J]. Colloids Surf., B, 2006, 49: 55-59.
    [22] Salonen J, Laitinen L, Kaukonen A M, Tuura J, Bjorkqvist M, Heikkila T, Vaha-Heikkila K, Hirvonen J, Lehto V-P. Mesoporous silicon microparticles for oral drug delivery: Loading and release of five model drugs[J]. J. Controlled Release, 2005, 108: 362-374.
    [23] Izquierdo-Barba I, Martinez A, Doadrio A L, Perez-Pariente J, Vallet-Regi M. Release evaluation of drugs from ordered three-dimensional silica structures[J]. Eur. J. Pharm. Sci., 2005, 26: 365-373.
    [24] Xia W, Chang J. Well-ordered mesoporous bioactive glasses (MBG): A promising bioactive drug delivery system[J]. J. Controlled Release, 2006, 110: 522-530.
    [25] Vallet-Regi M, Doadrio J C, Doadrio A L, Izquierdo-Barba I, Perez-Pariente J. Hexagonal ordered mesoporous material as a matrix for the controlled release of amoxicillin[J]. Solid State Ionics, 2004, 172: 435-439.
    [26] Charnary C, Begu S, Tourne-Peteilh C, Nicole L, Lerner D A, Devoisselle J M. Inclusion of ibuprofen in mesoporous templated silica: drug loading and release property[J]. Eur. J. Pharm. Biopharm., 2004, 57: 533-540.
    [27] Horcajada P, Ramila A, Perez-Pariente J, Vallet-Regi M. Influence of pore size of MCM-41 matrices on drug delivery rate[J]. Microporous Mesoporous Mater., 2004, 68: 105-109.
    [28] Trewyn B G, Whitman C M, Lin V S-Y. Morphological control of room-temperature ionic liquid templated mesoporous silica nanoparticles for controlled release of antibacterial agents[J]. Nano. Lett., 2004, 4: 2139-2143.
    [29] Andersson J, Rosenholm J, Areva S, Linden M. Influences of material characteristics on ibuprofen drug loading and release profiles from ordered micro- and mesoporous silica matrices[J]. Chem. Mater., 2004, 16: 4160-4167.
    [30] Doadrio A L, Sousa E M B, Doadrio J C, Pariente P, Izquierdo-Barba I, Vallet-Regi M. Mesoporous SBA-15 HPLC evaluation for controlled gentamicin drug delivery[J]. J. Controlled Release, 2004, 97: 125-132.
    [31] Zeng W, Qian X-F, Zhang Y-B, Yin J, Zhu Z-K. Organic modified mesoporous MCM-41 through solvothermal process as drug delivery system[J]. Mater. Res. Bull., 2005, 40: 766-772.
    [32] Qu F, Zhu G, Huang S, Li S, Qiu S. Effective controlled release of captopril by silylation of mesoporous MCM-41[J]. ChemPhysChem., 2006, 7: 400-406.
    [33] Doadrio J C, Sousa E M B, Izquierdo-Barba I, Doadrio A L, Perez-Pariente J, Vallet-Regi M. Functionalization of mesoporous materials with long alkyl chains as a strategy for controlling drug delivery pattern[J]. J. Mater. Chem., 2006, 16: 462-466.
    [34] Song S-W, Hidajat K, Kawi S. Functionalized SBA-15 materials as carriers for controlled drug delivery: Influence of surface properties on matrix-drug interactions[J]. Langmuir, 2005, 21: 9568-9575.
    [35] Ramila A, Munoz B, Perez-Pariente J, Vallet-Regi M. Mesoporous MCM-41 as drug host system[J]. J. Sol-Gel Sci. Technol., 2003, 26: 1199-1202.
    [36] Zeng W, Qian X-F, Yin J, Zhu Z-K. The drug delivery system of MCM-41 materials viaco-condensation synthesis[J]. Mater. Chem. Phys., 2006, 97: 437-441.
    [37] Zhu Y, Shi J, Chen H, Shen W, Dong X. A facile method to synthesize novel hollow mesoporous silica spheres and advanced storage property[J]. Microporous Mesoporous Mater., 2005, 84: 218-222.
    [38] Zhu Y, Shi J, Li Y, Chen H, Shen W, Dong X. Storage and release of ibuprofen drug molecules in hollow mesoporous silica spheres with modified pore surface[J]. Microporous Mesoporous Mater., 2005, 85: 75-81.
    [39] Zhu Y, Shen W, Chen H, Dong X, Ruan, Shi J. Preparation of novel hollow mesoporous silica spheres and their sustained-release property[J]. Nanotechnology, 2005, 16: 2633-2638.
    [40] Li Z-Z, Xu S-A, Wen L-X, Liu F, Liu A-Q, Wang Q, Sun H.-Y, Yu W, Chen J-F. Controlled release of avermectin from porous hollow silica nanoparticles: Influence of shell thickness on loading efficiency, UV-shielding property and release[J]. J. Controlled Release, 2006, 111: 81-88.
    [41] Li Z-Z, Wen L-X, Shao L, Chen J-F. Fabrication of porous hollow silica nanoparticles and their applications in drug release control[J]. J. Controlled Release, 2004, 98: 245-254.
    [42] Hancock B C, Parks M. What is the true solubility advantage for amorphous pharmaceuticals?[J]. Pharm. Res., 2000, 17 (4): 397-404.
    [43] Altinkaya S A, Yenal H. In vitro drug release rates from asymmetric-membrane tablet coatings: Prediction of phase-inversion dynamics[J]. Biochem. Eng. J., 2006, 28 (2): 131-139.
    [44] Nahrup J S, Gao Z M., Mark J E, Sakr A. Poly(dimethylsiloxane) coatings for controlled drug release-polymer modifications[J]. Int. J. Pharm., 2004, 270: 199-208.
    [45] Khramov A N, Voevodin N N, Balbyshev V N, Mantz R A. Sol-gel-derived corrosion-protective coatings with controllable release of incorporated organic corrosion inhibitors[J]. Thin Solid Films, 2005, 483: 191-196.
    [46] Zandi-zand R, Ershad-langroudi A, Rahimi A. Silica based organic–inorganic hybrid nanocomposite coatings for corrosion protection[J]. Prog. Org. Coat., 2005, 53: 286-291.
    [47] Riccio F, Mennella C, Fogliano V. Effect of cooking on the concentration of Vitamins B in fortified meat products[J]. J. Pharm. Biomed. Anal., 2006, 41: 1592-1595.
    [48] Faulon J-L, Loy D A, Carlson G A, Shea K J. Computer-aided structure elucidation for arylene-bridged polysilsesquioxanes[J]. Comp. Mater. Sci., 1995, 3: 334-346.
    [49] 邱春阳, 张克铮. 溶胶- 凝胶法制备二氧化硅无机膜的实验研究[J]. 玻璃与搪瓷, 2006, 34 (2):5-8.
    [50] Atkin R, Craig V S J, Wanless E J, Biggs S. Mechanism of cationic surfactant adsorption at the solid–aqueous interface[J]. Adv. Colloid Interface Sci., 2003, 103: 219-304.
    [51] Casasus R, Marcos M D, Martinez-Manez R, Ros-Lis J V, Soto J, Villaescusa L A, Amoros P, Beltran D, Guillem C, Latorre J. Toward the development of ionically controlled nanoscopic molecular gates[J]. J. Am. Chem. Soc., 2004, 126 (28): 8612-8613.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700