超高压对鹰嘴豆分离蛋白功能性质的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超高压处理技术是一种新型的食品加工技术,与传统热处理技术相比有着许多优越性。蛋白质是食品的主要成分之一,是食品科学中的重要研究对象。鹰嘴豆是世界第二大消费豆类,产量居世界豆类总量的14%。鹰嘴豆蛋白氨基酸组成均衡,营养丰富。本文以鹰嘴豆分离蛋白(Chickpea protein isolate,简称CPI)为研究对象,研究超高压对CPI功能性质、结构和酶解性质的影响,旨在探讨超高压作用对CPI功能性质的影响规律和作用机理。
     CPI溶液的表面疏水性和紫外吸收光谱测定结果说明超高压处理导致了CPI内部疏水基团暴露到分子表面。CPI溶液的游离巯基含量随处理压力升高不断下降,说明压力处理导致了新的二硫键的形成。并通过使用高效液相、凝胶电泳,激光动态光散射等仪器的分析发现,超高压使Tris-HCl缓冲体系中的CPI分子在300 MPa以上压力处理后,分子发生了聚集现象,形成分子量和流体动力学半径很大的可溶性聚集体,同时伴随着在400 MPa以上压力处理后CPI解聚成了蛋白质亚基等小分子。
     超高压对CPI功能性质的影响很好地反映了超高压对CPI结构造成的改变。本文研究了超高压对CPI溶解性、乳化性和起泡性的影响,并考查不同缓冲体系中(磷酸盐和Tris-HCl缓冲体系)超高压及一些条件因子(包括压力、保压时间、体系pH和离子强度)对其功能性质的影响。
     处于两种不同缓冲体系中的CPI经超高压处理后表现出溶解性的变化差异。在非抗压型磷酸盐缓冲体系pH范围内(pH6.0-8.0),升高压力(尤其是400 MPa以上)或延长保压时间(大于5 min),都会使溶解性显著下降,而增大离子强度(大于0.4 mol/L)能提高超高压条件下蛋白质的稳定性,从而保持良好的溶解性。而在抗压型Tris-HCl缓冲体系中,压力、保压时间、pH和离子强度对CPI溶解性的影响不显著。
     处于两种不同缓冲体系中的CPI经超高压处理后乳化性能均得到显著改善。在非抗压型磷酸盐缓冲体系中,升高压力或延长保压时间,都能使乳化活性显著提高,并在400 MPa处理和保压时间10 min时达到最大值,而乳化稳定性在400 MPa以上压力处理或者延长保压时间时呈下降趋势。在缓冲体系pH范围内(pH6.0-8.0)和0-1.0 mol/L离子强度下,超高压处理均能使CPI乳化活性得到不同程度的提高。在抗压型Tris-HCl缓冲体系中,不同条件下乳化活性的提高和磷酸盐缓冲体系一致,但在升高压力时CPI乳化稳定性保持升高趋势。
     处于两种不同缓冲体系中的CPI经超高压处理后起泡性能均得到显著提高。在非抗压型磷酸盐缓冲体系中,升高压力或延长保压时间,都能使起泡能力显著提高,并在500 MPa处理和保压时间10 min时达到最大值,而泡沫稳定性在400MPa以上压力处理或者延长保压时间时呈下降趋势。在缓冲体系pH范围内(pH6.0-8.0)和0-1.0 mol/L离子强度下,超高压处理均能使CPI起泡能力得到不同程度的提高。在抗压型Tris-HCl缓冲体系中,不同条件下起泡能力的提高和磷酸盐缓冲体系一致,但在升高压力或者延长保压时间时CPI泡沫稳定性保持升高趋势。
     在对CPI进行酶解之前,采用超高压处理(尤其处理压力在300 MPa以上时)和热处理(50-70℃)均能有效提高CPI水解速率,因为这两种处理方式均能使CPI结构部分展开,使得酶与底物的亲和力增强,从而使水解速率提高。
     利用动力学模型考查了两种预处理方式对CPI酶解敏感性的影响。结果表明,Alcalase水解对于热处理比胰凝乳蛋白酶水解更加敏感,即加热更有利于Alcalase对CPI进行酶解,而对胰凝乳蛋白酶解影响相对略小。而超高压预处理对于胰凝乳蛋白酶水解的影响比Alcalase水解更大,即超高压处理更有利于使用胰凝乳蛋白酶对CPI进行水解。
     当使用Alcalase和胰凝乳蛋白酶在超高压处理(100-300 MPa)过程中进行酶解时,同样的水解时间下,水解度急剧上升,大大超过了采用超高压预处理或热处理时的水解度,说明在超高压处理过程中酶解能显著提高酶解反应的速率,使在超高压处理过程中进行酶解成为一种新颖高效的酶解方式。
Ultra high pressure (UHP) is an innovative technology for food processing, which has many advantages compared to traditional heat treatment. Protein is a major ingredient in food, so it has become an important research object in food science. Chickpea is the second most important pulse crop and accounts for 14% of the production of pulses in the world. Chickpea provides high-quality protein with balanced amino acid composition and nutrition. Effect of UHP on functional properties, structure and hydrolysis of chickpea protein isolate (CPI) has been investigated in order to find out the rules and mechanisms of the change induced by UHP.
     Analysis by surface hydrophobicity and ultraviolet difference spectra showed that more hydrophobic groups exposed to surface of CPI. Free sulfhydryl group (SHF) determination showed the decrease of SHF leading to create more new disulfides (S-S). Study of conformation by gel filtration, dynamic light scattering and electrophoresis proved the emergence of aggregation of CPI after treatment higher than 300 MPa, while some were dissociated into subunits with small molecular weight and kinetic radius after high pressure processing above 400 MPa.
     Influence of UHP on functional properties of CPI could be explained by the structural changes induced by UHP. Effect of UHP on solubility, emulsifying ande foaming capacity of CPI were studied, as well as effect of functional properties of CPI in different buffers (phosphate and Tris-HCl buffer) and with certain conditional factors such as pressure intensity, treatment time, pH and ionic strength.
     Effect of UHP on solubility of CPI in different buffers (phosphate and Tris-HCl buffer) has been investigated at pressures ranging from 100 to 600 MPa. Results showed that solubility of CPI decreased significantly at phosphate buffer pH with pressure intensity above 400 MPa and treatment time longer than 5 min, while ionic strength higher than 0.4 mol/L could effectively prevent the decrease of solubility due to pressurization. In Tris-HCl buffer, effect of UHP on solubility of CPI was not significant under the conditions above.
     UHP treated CPI displayed much better emulsifying capacity in different buffers. In non-resistent buffer (phosphate buffer), emulsifying activity was significantly enhanced with elevated pressure and prolonged treatment time. Maximum emulsifying activity was achieved at 400 MPa treated for 10 min, while emulsifying stability decreased with pressure higher than 400 MPa and treatment time longer than 10 min. Emulsifying activity improved to different extent at phosphate buffer pH (6.0-8.0) and different ionic strength (0-1.0 mol/L). In resistant buffer (Tris-HCl buffer), the increase of emulsifying activity was consistent with the change in phosphate buffer, while emulsifying stability increased at higher pressure.
     Foaming property of CPI significantly improved in different buffers. In non-resistent buffer (phosphate buffer), foaming capacity was significantly increased with elevated pressure and prolonged treatment time. Maximum foaming capacity was achieved at 500 MPa treated for 10 min, while foaming stability decreased with pressure higher than 400 MPa and treatment time longer than 10 min. Foaming capacity was enhanced to different extent at phosphate buffer pH (6.0-8.0) and different ionic strength (0-1.0 mol/L). In resistant buffer (Tris-HCl buffer), the increase of foaming capacity was consistent with CPI in phosphate buffer, while foaming stability kept increasing with higher pressure and longer treatment time.
     CPI hydrolysis by Alcalase orα-chymotrypsin was effectively accelerated after high pressure (above 300 MPa) and heat pretreatment (50-70℃). This increased hydrolysis was due to unfolding of CPI and facilitation of binding of the substrate to the enzyme induced by pressure and heat pretreatment.
     Kinetic model was used to describe the effect of these two pretreatments on CPI hydrolysis. Results showed that hydrolysis by Alcalase was more sensitive to heat pretreatment as compared to hydrolysis byα-chymotrypsin. However, hydrolysis by Alcalase was less sensitive to pressure pretreatment as compared to hydrolysis byα-chymotrypsin.
     The rate of hydrolysis by Alcalase orα-chymotrypsin during high pressure treatment (100-300 MPa) was increased dramatically much higher than the rate of hydrolysis after pressure and heat pretreatment. Therefore, hydrolysis under high pressure became an innovative way of enzymatic hydrolysis with high efficiency.
引文
[1] Moazhaev V. V., Heremans K., Frank J., Masson P., Balny C. Exploiting the effects of high hydrostatic pressure in biotechnological applications [J]. 1994, TIB Techniques, 12: 493-501.
    [2]高福成.现代食品工程高新技术[M].北京:中国轻工业出版社, 1997.
    [3] Knorr D. Effects of high hydrostatic pressure processes on food safety and quality [J]. Food Technology, 1993, 47(6): 156-161.
    [4] Mertens B. Hydrostatic pressure treatment of food: equipment and processing [M]. New Method of Food Preservation, Blackie, London, 1994, 159-175.
    [5] Ogawa H. Effects of hydrostatic pressure on sterilization and preservation of freshly squeezed, nonpasteurized citrus juice [J]. Nippon Nogeikagaku Kaishi, 1989, 63: 1109-1114.
    [6] Nienaber U. High-pressure processing of orange juice: combination treatment and a shelf life study [J]. J. Food Sci., 2001, 66(2): 331-336.
    [7] Park S. J., Lee J. I., Park J. Effects of a combined process of high-pressure carbon dioxide and high hydrostatic pressure on the quality of carrot juice [J]. J. Food Sci., 2002, 67(5): 1827-1834.
    [8] Horie Y. Jam preparation by pressurization [J]. Nippon Nageikagaku kaishi, 1991, 65(6): 975-980.
    [9] Kimura K. Comparison of keeping quality between pressure-processed jam and heat-processed jam: changes in flavor components, hue, and nutrients during storage[J]. Biosci. Biotech. Biochem, 1994, 58: 1386-1391.
    [10] Drake M. A., Harrison S. L., Asplund M., Barbosa-Canovas G., Swanson B.G.. High pressure treatment of milk and effects on microbiological and sensory quality of cheddar cheese [J]. 1997, 62 (4), 843–860.
    [11] Castellari M., Arfelli G., Riponi C., Carpi G., Amati A. High hydrostatic pressure treatments for beer stabilization [J]. J. Food Sci., 2000, 65 (6), 974–977.
    [12] Suzuki A. Mechanism for meat tenderization and acceleration of meat conditioning induced by high pressure treatment [J]. J. of Japanese Society of Food Scierce & Technology, 1995, 42(5): 388-394.
    [13] Chung Y. C., Gebrehiwot A., Farkas D. F., Morrissey M. T.Gelation of Surimi by high hydrostatic pressure [J]. J. Food Sci., 1994, 59(3): 523-524.
    [14]青山.高压改良陈米炊饭性能研究[J].食品と开发. 1991, 26(12): 15-19.
    [15]林立丸.高压技术在食品工业上的应用研究及市场动向[J],食品と开发, 1992, 27(12): 5-7.
    [16]神田幸忠.压力移动冻结法-压力速冻法的研究[J],食品と开发, 1991, 26(12): 12-14.
    [17] Fuchigami M., Histological changes in high pressure frozen carrots [J]. J. Food Sci., 62(4): 809-812.
    [18] Zhao Y. Y., Flores R. A. Olson D. G. High hydrostatic pressure effects on rapid thawing of frozen beef [J]. J. Food Sci., 63 (2): 272-275.
    [19] Hill V. M. Influence of high hydrostatic pressure and pH on the rate of Millard browning in a glucose-lysine system, J. Agric. Food Chem., 1996, 44(2): 594-598.
    [20] Matsumoto T. Effects of Pressure on the Mechanism of hydrolysis of Maltoheptaose and Amylose [J]. J. Agric. Food Chem., 1997, 45, 31-34.
    [21] Karsten O. Effect of high hydrostatic pressure on the steady-state kinetics of tryptic hydrolysis ofβ-lactoglobulin [J]. Food Chem., 2003, 80: 255–260.
    [22] Vardag, T., High pressure food processing[J], Food Techn. Europe. 1995, 2(2): 106,108-110.
    [23] Shigehisa T., et al. High Pressure Bioscience and Biotechnology, 1996, 273-278.
    [24] Zhang Shouqin, et al. Novel high pressure extraction technology . International Journal of Pharmaceutics, 2004 278: 471-474.
    [25] Cheftel J. C. High pressure and biotechnology [M]. Paris, 1992.
    [26] U. S. Food and Drug Administration (FDA). Kinetic of microbial inactivation for food processing technologies: High pressure processing. 2000.6
    [27] Hite B. H. The effects of pressure in the preservation of milk [J]. Morgantown. Bull WV Univ. Agric. Exp. Sta. Morgantown, 1899, 58: 15-35.
    [28] Hite B. H., et al. The effects of pressure on certain microorganisms encountered in the preservation of fruits and vegetables [J]. Bull WV Univ. Agric. Exp. Sta. Morgantown, 1914, 146: 1-67.
    [29]林立丸.高压在食品方面应用的研究开发和任务[J].食品と开发, 1991, 26(12): 2-4.
    [30]韩德乾.农产品加工业的发展与新技术应用.中国农业出版社, 2001.
    [31] Hoover D. G. Pressure effects on biological systems[J]. Food Technology, 1993, (7): 150-155
    [32] Dallas G., et al. Biological effects of high hydrostatic pressure on food microorganisms [J]. Food Technology, 1989, (3): 99-107.
    [33]李勇.高压致死微生物的研究进展[J].微生物学通报, 1995, 22(4): 243-245.
    [34] Arroyo G., et al. Effect of high pressure on the reduction of microbial population in vegetables [J]. Journal of Applied Microbiology, 1997, 82: 735-742.
    [35] Balny C., et al. Some recent aspects of the use of high pressure for protein investigations in solution [J]. High Pressure Research, 1989, (2): 1-28.
    [36] Pandya Y., et al. Concurrent effects of high hydrostatic pressure, acidity and heat on the destruction and injury of yeasts [J]. J. Food Prot., 1995, 58(3): 301-304.
    [37]李汴生.超高压处理蛋白质和多糖胶体特性的变化及其机理研究[D].华南理工大学博士学位论文, 1997.
    [38] Cheftel J. C. Effects of high hydrostatic pressure on food constituents: an overview. High pressure and biotechnology [M], 1992: 195-209.
    [39] Maggi A., et al. Use of high pressure for inactivation of butyric clostridia in tomato serum [J]. Ind. Conserve., 1995, 70(3): 289-293.
    [40] Sale A. J. H., et al. Inactivation of bacterial spores by hydrostatic pressure [J]. J. Gen. Microbial., 1970, 60(3): 323-334.
    [41] Heinz V., et al. High pressure germination and inactivation kinetics of bacterial spores. N. S. Isaacs (ed.). High Pressure Food Science, Bioscience and Chemistry [M]. Cambridge, UK. The Royal Society of Chemistry. 1998, 436-441.
    [42] Hayakawa I., et al. Oscillatory compared with high pressure sterilization on Bacillus stearothermophilus spores [J]. J. Food Sci., 1994, 59: 164-167.
    [43] Aleman G. D., et al. Pulsed ultra high pressure treatments for pasteurization of pineapple juice [J]. J. Food Sci., 1996, 61: 388-390.
    [44] Crawford Y. J., et al. Use of high hydrostatic pressure and irradiation to eliminate Clostridium sporogenes spores in chicken breast [J]. J. Food Prot., 1996, 59: 711-715.
    [45] Li T. M., Hook J. W., Drickamer H. G., Weber G. Plurality of pressure-denatured forms in chymotrypsinogen and lysozyme [J]. Biochenistry, 1976, 15: 5571-5580.
    [46] Masson P., Arciero D., Hooper A. B., Balny C., Electrophoresis at elevated hydrostatic pressure of the imultiheme hydroxylamine oxidoreductase [J]. Electrophoresis, 1990, 11: 128-133.
    [47] Hawley S.A., Reversible pressure-temperature denaturation of chymotrypsinogen [J]. Biochem., 1971, 10: 2436-2442.
    [48] Hayakawa I. Mechanism of high pressure denaturation of proteins [J]. LWT., 1996, 29: 756-762.
    [49] Cruz-Romero M., Effects of high pressure treatment on physicochemical characteristics of fresh oysters (Crassostrea gigas) [J]. Innovative Food Science and Emerging Technologies, 2004, 5: 161-169.
    [50] Dumay E., et al. High pressure unfolding and aggregation ofβ-lactoglobulin and the baroprotective effects of sucrose [J]. J. Agric. F ood C hem., 1994, 42: 1861-1868.
    [51] Dufour E., Bon Hoa G. H., Haertle T. High pressure effects onβ-lactoglobulin interactions with ligands studied by fluorescence [J]. Biochem. Biophys. Acta., 1994, 1206: 166-172.
    [52] Defaye et al. Renaturation of metmyoglobin subjected to high isostatic pressure [J]. Food Chem.,1995, 52:19-22.
    [53] Dickinson E., Pawlowsky K. Rheology as a probe of protein-polysaccharide interactions i n oil-in-water emulsions [J]. Gums and Stabilisers for the Food Industry,1996, 8: 181-191.
    [54] Kajiyama N. Changes of soy protein under ultra-high hydraulic pressure [J]. Int. Food Sci. technol., 1995, 30: 147-158.
    [55] Molina E., Papadopoulou A., Ledward D. A. Emulsifying properties of high pressure treated soy protein isolate and 7S and 11S globulins [J]. Food Hydrocolloids, 2001, 15: 263-269.
    [56] Molina E., Papadopoulou A., Ledward D. A. Effects of combined high-pressure and heat treatment on the textural properties of soya gels [J]. Food Chem., 2003, 80: 367-370.
    [57] Thevelein J. M., Assche J. A. V., Heremans K. Gelatinisation temperature of starch, as influenced by high pressure[J]. Carbohydrate Research, 1981, 93: 304-307.
    [58] Muhr A. H., Blanshard J. M. V. Effect of hydrostatic pressure on starch gelatinization [J]. Carbohydrate Polymers, 1982, 2: 61-74.
    [59] Stute R., Klingler R. W., Boguslawski S., et a1. Effects of high pressures treatment on starches [J]. Starch, 1996, 48: 399-408.
    [60] Stolt M., Oinonen S., Autio K. Efect of high pressure on the physical properties of barley starch [J]. Innovative Food Science and Emerging Technologies, 2001, 1: 167-175.
    [61] Lowry O. H., Rosebrough N. J., Lewis A L, et al. Protein measurement with the Folin phenol reagent [J]. J. Biolog. Chem. , 1951, 193:265-275.
    [62] Kato A., Nakai S. Hydrophobicity determined by fluorescence probe methods and its correlation with properties of proteins [J]. Biochim. Biophys. Acta, 1980, 642:13~20.
    [63] Beveridge T., Toma S. J., Nakai S. Determination of -SH and S-S groups in some food proteins using Ellman’s reagent [J]. J. Food Sci., 1974, 39(1): 49-51.
    [64]郭尧军.蛋白质电泳实验技术[M].北京:科学出版社. 1998: 54-115.
    [65] Neuman R. C., Kauzmann W., Zipp A. Pressure dependence of weak acid ionization in aqueous buffers [J]. J. Phys. Chem. 1973, 77: 2687-2691.
    [66] Funtenberger S., Dumay E., Cheftel J. C. Pressure-induced aggregation ofβ-lactoglobulin in pH 7.0 buffers [J]. LWT, 1995, 28: 410-418.
    [67] Puppo, C., Chapleau, N., Speroni, F., et al. Physicochemical modification of high-pressure-treated soybean protein isolates [J]. J. Agric. Food Chem., 52: 1564–1572.
    [68] Chapleau N., de Lamballerie-Anton M. Improvement of emulsifying properties of lupin proteins by high-pressure induced aggregation [J]. Food Hydrocolloids, 2003, 17: 273-280.
    [69] Funtenberger S., Dumay E., Cheftel J. C. High-pressure promotesβ-lactoglobulin aggregation through SH/S-S interchange reactions [J]. J. Agric. Food Chem. 1997, 45: 912-921.
    [70] Balny C. Effects of high pressure on proteins [J]. Food Rev. Int., 1993, 44: 89~113.
    [71] Chapleau N., Mangavel C., Compoint J-P. Effect of high-pressure processing on myofibrillar protein structure [J]. J. Sci. Food Agric., 2003, 84, 66-74.
    [72] Pearce K. N., Kinsella J. E. Emulsifying properties of proteins: evaluation of a turbidimetric technique [J]. J. Agric. Food Chem., 1978, 26(3): 716-723.
    [73] Tsaliki E., Kechagia U., Doxastakis G. Evaluation of the foaming properties of cottonseed protein isolates [J]. Food Hydrocolloid., 2002, 16: 645-652.
    [74] Kinsella J., Soucie W. Food Proteins [M]. Champaign, IL, USA, The American Oil Chemists' Society, 1988: 21-51.
    [75] Zhang H., Li L., Tatsumi E., et al. High-pressure treatment effects of proteins in soy milk [J]. 2005, LWT, 38: 7-14.
    [76] Neuman R., Kauzmann W., Zipp A. Pressure dependence of weak acid ionization in aqueous buffers [J]. J. Phys. Chem., 1973, 77: 2687-2691.
    [77] Puppo C., Chapleau N., Speroni F., et al. Physiochemical modification of high-pressure-treated soybean protein isolates [J]. J. Agric. Food. Chem., 2004, 52: 1564-1571
    [78]熊犍,冯凌凌,叶君. SPC溶解性的研究[J].食品工业科技, 2006,7: 86-92.
    [79] Viviane D., Marialice P. Functional properties of bovine blood plasma intended for use as a functional ingredient in human food [J]. LWT, 2003, 36: 709-723.
    [80] Vera L., Michelle M., Sérgio T. Pressure-induced subunit dissociation and unfolding of dimericβ-lactoglobulin [J]. Biophys. J., 1998, 75: 471-476.
    [81]张根生,岳晓霞,李继光等.大豆分离蛋白乳化性影响因素的研究[J]. 2006, 27(7): 48-51.
    [82] Nakai S J.Structure-function relationships of food proteins with the importance of protein hydrophobicity [J]. J. Agric. Food Chem., 1983, 31: 676-683.
    [83] Molina E., Papadopoulou A., Ledward D. A. Emulsifying properties of high pressure treated soy protein isolate and 7S and 11S globulins [J]. Food Hydrocolloids, 2001, 15: 263-269.
    [84] Wagner J. R., Sorgentini D. A., Anon M. C. Thermal and electrophoretic behavior, hydrophobicity and some functional properties of acid-treated soy isolates [J]. J. Agric. Food Chem., 1996, 44: 1881-1889.
    [85] Puppo M C, Speroni F, Chapleau N, et al. Effect of high-pressure treatment on emulsifying properties of soybean proteins [J]. Food Hydrocolloid, 2005, 19: 289-296.
    [86] Chapleau N., de Lamballerie-Anton M. Improvement of emulsifying properties of lupin proteins by high-pressure induced aggregation [J]. Food Hydrocolloids, 2003, 17: 273-280.
    [87]石彦国,任莉编著.大豆制品工艺学[M].北京:中国轻工业出版社. 1993: 371-386.
    [88] Petruccelli,S.and Anon,M.C.Relationship between the Method of Obtention and the Structural and Functional Properties of Soy Protein Isolates.2.Surface Properties [J]. J. Agric. Food Chem., 1994, 42(10): 2170-2176.
    [89] O.R.Fennema,食品化学[M].第二版,王璋等译.北京:中国轻工出版社, 1991
    [90] Zhu H., Damodara S. Heat-induced conformational changes in whey protein isolate and its relation to foaming properties [J]. 1994, 42: 846-855.
    [91] Hirose M. Molten globule state of food proteins [J]. Trends Food Sci. Technol., 1993, 4:48-51.
    [92]张涛.鹰嘴豆分离蛋白的制备及其功能性质研究[D].江南大学博士学位论文, 2005
    [93] Joot R., Nonti J. C. Partial enzymatic hydrolysis of whey protein by trypsin [J]. J. Dairy Sci., 1977, 60: 1387-1393.
    [94] Chu K. T., Liu K. H., Ng T. B. Cicerarin, a novel antifungal peptide from the green chickpea [J]. Peptides, 2003, 24: 659–663.
    [95] Ye X. Y., Ng T. B. Isolation of a new cyclophilin-like protein from chickpeas with mitogenic, antifungal and anti-HIV-1 reverse transcriptase activities [J]. Life Sci., 2002, 70: 1129–1138
    [96] Yust M. M., Pedroche J., Girón-Calle J., et al. Production of ace inhibitory peptides by digestion of chickpea legumin with alcalase [J]. Food Chem., 2003, 81, 363-369.
    [97] Li Y. H., Jiang B., Zhang T., Mu W. M., Liu J. Antioxidant and free radical-scavenging activities of chickpea protein hydrolysate (CPH) [J]. Food Chem., 2007, In press.
    [98]李艳红,江波,刘柱,张涛,沐万孟.鹰嘴豆蛋白Alcalase水解工艺及其体外抗氧化活性的研究[J].浙江大学学报(农业与生命科学版), 2007, 33(3): 00-00.
    [99] Adler-Nissen J. Enzymatic hydrolysis of food proteins [J]. Process Biochem., 1977, 7:18-23.
    [100] Adler-Nissen J. Enzymic hydrolysis of food proteins [M]. Elsevier Applied Science Publishers, London, 1986
    [101] Weemaes C., Ludikhuyze L., Van den Broeck I., Hendrickx M. Kinetic Study of Antibrowning Agents and Pressure Inactivation of Avocado Polyphenoloxidase [J]. J. Food Sci., 1999, 64(5): 823-827.
    [102] Kim S. Y., Park P. S., Rhee K. C. Functional properties of proteolytic enzyme modified soy protein isolate [J]. J. Agric. Food Chem., 1990, 38: 651–656.
    [103]王肇慈.粮油食品品质分析[M].北京:中国轻工业出版社, 1994: 378-381.
    [104] Mine Y., Noutomi T., Haga N. Thermally induced changes in egg white proteins [J]. J. Agric. Food Chem., 1990, 38: 2122-2125.
    [105] Suzuki K. Studies on the denaturation of egg albumin under high pressure [J]. Rev. Phys. Chem. Jpn., 1958, 28: 24-30.
    [106] Morild, E. The theory of pressure effects on enzymes [J]. Advances in Protein. Chem., 1981, 34: 93-166.
    [107] Mozhaev V. V., Lange R., Kudrashova E. V., Balny C. Application of high hydrostatic pressure for increasing activity and stability of enzymes [J]. Biotechnol. Bioeng., 1996, 52: 320- 331.
    [108] Penňas E., Préstamo G., Gomez R. High pressure and the enzymatic hydrolysis of soybean whey proteins [J]. 2004, 85: 641-648.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700